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Abstract: In this paper, we propose an intervallic approach to tone rows, making use of mathematical 
concepts from the theory of partitions and original musical ones, also presenting a new software called 
SerialGen, which generates tone rows and row classes based on interval compositions. At the end, we 
present preliminary results in dialogue with important works in the specific area, which address group 
theory and twelve-tone music. 
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1. Introduction 

Serial music or, more specifically, dodecaphonic serialism plays an important 
role in twentieth-century music. Developed by Arnold Schoenberg (1874-1951) from 
early 1920s onwards, the method of composing with twelve tones is a compositional 
procedure based on his theory of “the emancipation of the dissonance” 
(SCHOENEBRG, 1950 and 1969), where dissonances are considered merely more 
remote consonances in the series of overtones, so that it does not aim at the 
establishment of a tonality (yet does not exclude it entirely), deriving a total musical 
structure from a complex of pitch classes not functionally differentiated. 

The basis of the twelve-tone technique is what Schoenberg used to refer as 
the basic set (BS) and today is often called a tone row or series,1 which consists of an 
ordered arrangement or succession, i.e., a permutation without repetition of the twelve 
pitch classes from the equal-tempered chromatic scale to be used as basic (structural) 
material in a musical composition. 

As a general rule, the pitch classes within a tone row must be used according 
to their fixed order. Roughly speaking, one cannot be repeated until all others are 
played. In turn, a tone row may be combined with its various transformations which 
include the transpositions of its original or prime form (denoted 𝑂 or 𝑃)2 and its 
derivatives — inversion ( 𝐼 ), retrograde ( 𝑅 ) and retrograde inversion ( 𝑅𝐼 ). As 
Schoenberg points out, all of these possibilities may appear in a wide variety of ways 
within a composition: 

 
1 Other names are pitch row, note row, or simply row, also (ordered) set, sequence, and so forth. 
2 We will adopt 𝑂. 
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For the sake of a more profound logic, the Method of Composing with Twelve 
Tones derives all configurations from a basic set (Grundgestalt) [tone row]. 
The order in this basic set and its three derivatives — contrary motion 
[inversion], retrograde, and retrograde inversion respectively — is, like the 
motive, obligatory for a whole piece. Deviation from this order of tones should 
normally not occur, in contrast to the treatment of the motive, where variation 
is indispensable. Nevertheless, variety is not precluded. The tones in the right 
order may appear either successively in a melody, theme or independent voice, 
or as an accompaniment consisting of simultaneous sounds (like harmonies). 
(SCHOENBERG, 1969, p. 193-194). 
 

For Schoenberg (1950, p. 103-108), “composition with twelve tones has no 
other aim than comprehensibility.” To ensure that, the tone row “functions in the 
manner of a motive,” and this explains why it has to be “invented anew for every 
piece.” For him, it has to be “the first creative thought” of a twelve-tone composition. 
In this sense, a tone row is not merely another type of pre-compositional material, but 
a compositional (musical) idea in itself, and its construction, more than just a previous 
stage of the compositional process, is instead already a fundamental part of it. 

Building a tone row is much more than randomly picking a sequence of pitch 
classes (although it may also be just that). It is actually a creative decision-making 
process with countless musical implications, and almost all of these basically stem from 
the choice of the musical intervals within the row. In a nutshell, the “sonic identity” 
or “profile” of a tone row depends directly on its interval structure: 

 
Each row’s “sound” is determined not so much by its sequence of pcs [pitch 
classes] (unless one has absolute pitch) as by the ordered intervals between its 
successive pcs. […] Rows can be created to maximize certain intervals, to omit 
others or to provide as much diversity as possible — as in all-interval rows. 
(MORRIS, 2015, p. 182). 
 

As we can notice, intervals — even more than the pitch classes themselves 
— are essential for the construction of a tone row and its sonic identity. But how can 
one use intervals to build a row? Rather, how can one build a row exclusively from 
intervals? At first glance, that seems like an easy question. However, as we will show, 
the answer is not as simple and trivial as one might think. 

Thus, bearing that question in mind and endeavouring to answer it, we 
propose in this paper an intervallic approach to tone rows, making use of mathematical 
concepts from the theory of (integer) partitions and original musical ones, also 
presenting a new software tool in Python language called SerialGen (still in 
development), which generates tone rows and row classes based solely on intervals and 
interval structures, or more precisely, on interval compositions, as will be defined.3 At 

 
3 The theoretical bases of the concepts and definitions presented here are found in FEITOSA (2020). 
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the end, we present preliminary results in dialogue with important works in the specific 
area, which address group theory and twelve-tone music. 

 
2. Concepts and Definitions 

Before introducing new musical concepts and definitions, let us take a look 
at some basic mathematical concepts. According to Andrews (1994, p. 149), “the theory 
of partitions is an area of additive number theory, a subject concerning the 
representation of integers as sums of other integers”. Briefly, a partition is “a way of 
splitting a number into integer parts” (ANDREWS; ERIKSSON, 2004, p. 3). Let us 
consider the following: 

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. 
 
As we see, there are 5 partitions of the number 4, since there are 5 ways of 

splitting it into integer parts. Thus, a partition of a positive integer 𝑠  is a 
representation of 𝑠 as a sum of positive integers, called summands or parts of the 
partition, the order of which is irrelevant. Since order is irrelevant, we shall henceforth 
write partitions with non-increasing order of parts. In this sense (ANDREWS, 1998, p. 
1), a partition of a positive integer 𝑠 is a finite non-increasing sequence of positive 
integers λ = (λଵ, λଶ, … , λ௞), such that ∑ λ௜

௞
௜ୀଵ = 𝑠 . Each λ௜ corresponds to a part of the 

partition and if λ is a partition of 𝑠, we write λ ⊢ 𝑠. The number of partitions of 𝑠 is 
denoted by 𝑝(𝑠), therefore 𝑝(4) = 5. 

By definition, the order of the parts of a partition is irrelevant, which 
technically characterizes an unordered partition. However, when the order of the parts 
is considered, then we have what is called an ordered partition or, simply, a 
composition. Hence, a composition of 𝑠 can be thought of as an expression of 𝑠 as an 
ordered sum of integers. Formally, a composition of 𝑠 is a finite (ordered) sequence of 
positive integers α = ⟨αଵ, αଶ, … , α௞⟩,4 such that ∑ α௜

௞
௜ୀଵ = 𝑠 . For example, for 𝑠 = 4, 

besides the 5 partitions mentioned before: (4), (3,1), (2,2), (2,1,1), (1,1,1,1); there are 
8 distinct compositions: ⟨4⟩, ⟨3,1⟩, ⟨1,3⟩, ⟨2,2⟩, ⟨2,1,1⟩, ⟨1,2,1⟩, ⟨1,1,2⟩, ⟨1,1,1,1⟩. Again, 
each 𝛼௜ corresponds to a part of the composition and the number of compositions of 𝑠 
is denoted by 𝑐(𝑠), in the present case, 𝑐(4) = 8. 

Now that we are already familiar with the elementary concepts of partition 
and composition, let us take as a starting point the tone row B, A, C, B, F, G, E, C, 
A, E, F, D, from Schoenberg’s Fantasy for Violin and Piano, Op. 47 (1949), 5 
presented in both musical and integer notation6 (Figure 1). 

 
4 We will differentiate partitions from compositions by using round and angle brackets, respectively. 
5 For an analysis of that piece, see TIPTON (2017). 
6 For details on integer notation, see STRAUS (2016, p. 5-6). 
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Figure 1: Tone row from Schoenberg’s Fantasy for Violin and Piano, Op. 47 (1949). 

 
By replacing each pitch class with its corresponding numerical label, the row 

may be represented as the 12-tuple (10, 9, 1, 11, 5, 7, 4, 0, 8, 3, 6, 2). In addition, since we 
are dealing with pitch classes within a modular space, an alternative representation of 
that row is as a clock diagram, i.e., a directed graph in the form of a regular dodecagon 
whose vertices correspond to the respective pitch classes being successively connected 
by directed edges (Figure 2). 

 
Figure 2: Clock diagram of the tone row (𝟏𝟎, 𝟗, 𝟏, 𝟏𝟏, 𝟓, 𝟕, 𝟒, 𝟎, 𝟖, 𝟑, 𝟔, 𝟐). 

 
Insofar as the directed edges may be associated with the directed intervals 

between the successive pitch classes (ordered pitch-class intervals 7), we can also 
represent the row in terms of those intervals only. For that, we need to compute the 
number of clockwise steps necessary to get from one pitch class to the next, starting 
from the first to the second, then from the second to the third, and so on, obtaining 
the interval succession 11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8 (Figure 3a). However, since the row is 
within a modular space, we should think of it cyclically and then, in order to derive its 
complete interval structure, we should also include the interval between the last and 
the first pitch class, getting the sequence 11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8 (Figure 3b). 

 

 
7 For details on ordered pitch-class intervals, see STRAUS (2016, p. 9-11). 
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a) Intervals: 11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8 b) Intervals: 11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8 

Figure 3: Clock diagrams with directed intervals. 
 

Mathematically, the directed interval from pitch class 𝑥 to pitch class 𝑦 is 
given by (𝑦 − 𝑥) mod 12. The modular arithmetic gives us a more practical method 
for calculating directed intervals between pitch classes than counting clockwise steps. 
Hence, when we go from pitch class 10 to pitch class 9, we have the directed interval 
(9 − 10) mod 12 = −1 mod 12 = 11. By repeating this process for all successive pitch 
classes within the row (last and first inclusive), we will obtain the same sequence given 
in Figure 3b. If we finally associate those directed intervals with the parts of a partition, 
or rather, with the parts of a composition, and sum them up, we will get: 

11 + 4 + 10 + 6 + 2 + 9 + 8 + 8 + 7 + 3 + 8 + 8 = 84. 
 
From this we may verify that the present sequence of directed intervals is 

actually a composition of 84. Thus, by generalizing all the reasoning done so far, we 
finally arrive at the following definition. 

DEFINITION 2.1 (INTERVAL COMPOSITION). Let ℤ௡ = {0, 1, 2, … , 𝑛 − 1}, 𝑛 ∈ ℤା, be the 
set of 𝑛 pitch classes labeled successively from 0 to 𝑛 − 1, an interval composition α is 
generically defined by: 

α = ⟨αଵ, αଶ, … , α௞⟩,  such that ෍ α௜

௞

௜ୀଵ

= 𝑛 ⋅ 𝑑, (1) 

where α௜ ∈ ℤା is called a part of α; 𝑘 ∈ ℤା, 𝑘 ≤ 𝑛, is the length of α; 𝑑 ∈ ℤା is the 
dimensional factor of 𝛼 ; and 𝑠 = 𝑛 ⋅ 𝑑  is the span of 𝛼 . Then, given a tone row 
(𝑝ଵ, 𝑝ଶ, … , 𝑝௞), 𝑝௜ ∈ ℤ௡, its corresponding interval composition α is defined by: 

α = ൻ൫𝑝(௜ାଵ) mod ௞ − 𝑝௜ mod ௞൯ mod 𝑛ൿ
௜ୀଵ

௞
,  where 𝑝଴ = 𝑝௞. (2) 

 
For our present purposes, since we are dealing with pitch classes and twelve-

tone rows within a modular space derived from twelve-tone equal temperament, it is 
clear that 𝑛 = 12 and 𝑘 = 12 always. Consequently, we may infer that α௜ ≤ 11, which 
implies that ∑ α௜

ଵଶ
௜ୀଵ ≤ 12 ⋅ 11 = 132 (i.e., 𝑠 = 𝑛 ⋅ 𝑑 ≤ 132) and, therefore, 𝑑 ≤ 11. 
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Now, returning to our particular example, the corresponding interval 
composition of the row (10, 9, 1, 11, 5, 7, 4, 0, 8, 3, 6, 2) is ⟨11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8⟩. 
In this case, as we mentioned before, the span 𝑠 = 84 = 12 ⋅ 7, so the dimensional factor 
𝑑 = 7. We may alternatively say that such row has dimension 7. It is worth mentioning 
that the dimensional factor corresponds to the number of overlapping clockwise turns 
around the clock diagram, which musically represents the “number of octaves” that 
the row theoretically comprises (thinking of its pitch realization only in ascending 
direction). Thus, in an abstract sense, the dimensional factor is a measure of 
compression or dispersion of a row in terms of its directed intervals. 

As we can observe so far, an interval composition indicates only the interval 
structure of the row, not providing any information about its pitch classes. For that, 
it is necessary that we associate the pitch operator 𝑃௫ , 𝑥 ∈ ℤ௡ , with the interval 
composition, obtaining a pitched interval composition 𝑃௫α, where the pitch index 𝑥 is 
the first pitch class of the corresponding row. For the mentioned example, we have: 
(10, 9, 1, 11, 5, 7, 4, 0, 8, 3, 6, 2) = 𝑃ଵ଴⟨11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8⟩ . Conversely, given a 
pitched interval composition 𝑃௫⟨αଵ, αଶ, … , α௞⟩, α௜ ∈ ℤା, we can obtain its corresponding 
tone row (𝑝ଵ, 𝑝ଶ, … , 𝑝௞), 𝑝௜ ∈ ℤ௡, as follows: 

𝑃௫⟨αଵ, αଶ, … , α௞⟩ = ൮ቌ𝑥 + ෍ α௜ିଵ

௝

௜ୀଵ

ቍ  mod 𝑛൲

௝ୀଵ

௞

, (3) 

where α = ⟨αଵ, αଶ, … , α௞⟩ is a restricted interval composition whose parts satisfy 

ቌ෍ α௜

௝

௜

ቍ  mod 𝑛 ≠ 0,  for every 𝑖, 𝑗 ∈ ℤା, such that 𝑖 < 𝑗 ≤ 𝑘 − 1. (4) 

 
Simply put, this last condition means that the sum of the successive 

(contiguous) parts of α, taken two by two, three by three, and so on, from the first up 
to the penultimate part, should not be a multiple of 𝑛, otherwise we would get repeated 
pitch classes. And again, since we are dealing with twelve-tone rows, 𝑛 = 12 and 𝑘 =

12. 
At this point, we can already answer our motivation question — how can 

one build a row exclusively from intervals? And the answer is basically — through a 
restricted interval composition whose parts satisfy Equation 4. However, that is not an 
easy task to perform manually8 and here computer assistance is welcome. But before 
we present our software, let us delve a little deeper into some properties of interval 
compositions and introduce other useful concepts and definitions. 

 
8 It would be necessary to check ൫௞ିଵ

ଶ ൯ successive sums manually. For 𝑘 = 12, then the total is 55. 
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First, let us consider the twelve-tone matrix9 for our sample row (Figure 4). 
We notice that there are 48 forms of the row, i.e., 12 transpositions for each of its 4 
basic forms — original (𝑂), inversion (𝐼), retrograde (𝑅), and retrograde inversion (𝑅𝐼). 

 
Figure 4: Twelve-tone matrix for (𝟏𝟎, 𝟗, 𝟏, 𝟏𝟏, 𝟓, 𝟕, 𝟒, 𝟎, 𝟖, 𝟑, 𝟔, 𝟐). 

 
Since all transpositions of those basic forms have the same interval 

composition, we may conceive them as equivalence classes of rows related by 
transposition and represent them by their corresponding interval compositions, then 
we have: 〈11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8〉  for 𝑂 , 〈1, 8, 2, 6, 10, 3, 4, 4, 5, 9, 4, 4〉  for 𝐼 , 
〈4, 9, 5, 4, 4, 3, 10, 6, 2, 8, 1, 4〉 for 𝑅, and 〈8, 3, 7, 8, 8, 9, 2, 6, 10, 4, 11, 8〉 for 𝑅𝐼. According 
to Schoenberg’s method, tone rows are equivalent if they can be determined by 
transposition, inversion, and/or retrograde from a single tone row. In this sense, those 
four interval compositions satisfy the Schoenbergian notion of equivalence insofar as 
they comprise all the rows related by such operations. Finally, we may define those 
basic operations and more elaborate ones, such as cyclic shift (𝑆), multiplication (𝑀), 
and five-step permutation (𝐹), in terms of interval compositions only, in order to obtain 
different equivalence classes, or rather, row classes from their various combinations, as 
follows. 

DEFINITION 2.2 (OPERATIONS). Let α = ⟨αଵ, αଶ, … , α௞⟩ , α௜ ∈ ℤା , be an interval 
composition, the operations of inversion (𝐼), retrograde (𝑅), retrograde inversion (𝑅𝐼), 
cyclic shift (𝑆), multiplication (𝑀), and five-step permutation (𝐹) are respectively 
defined by: 

 
9 For details on twelve-tone matrices, see STRAUS (2016, p. 301-302). 

10 9 1 11 5 7 4 0 8 3 6 2

11 10 2 0 6 8 5 1 9 4 7 3

7 6 10 8 2 4 1 9 5 0 3 11

9 8 0 10 4 6 3 11 7 2 5 1

3 2 6 4 10 0 9 5 1 8 11 7

1 0 4 2 8 10 7 3 11 6 9 5

4 3 7 5 11 1 10 6 2 9 0 8

8 7 11 9 3 5 2 10 6 1 4 0

0 11 3 1 7 9 6 2 10 5 8 4

5 4 8 6 0 2 11 7 3 10 1 9

2 1 5 3 9 11 8 4 0 7 10 6

6 5 9 7 1 3 0 8 4 11 2 10

↑
RI

I
↓

O → ← R
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𝐼⟨αଵ, αଶ, … , α௞⟩ = 〈(−𝛼௜) mod 𝑛〉௜ୀଵ
௞ . (5) 

𝑅⟨αଵ, αଶ, … , α௞⟩ = ൻ൫−𝛼(௞ି௜) mod ௡൯ mod 𝑛ൿ
௜ୀଵ

௞
,  where 𝛼଴ = 𝛼௞ . (6) 

𝑅𝐼⟨αଵ, αଶ, … , α௞⟩ = ൻα(௞ି௜) mod ௡ൿ
௜ୀଵ

௞
,  where α଴ = α௞. (7) 

𝑆⟨αଵ, αଶ, … , α௞⟩ = ൻα(௜ାଵ) mod ௡ൿ
௜ୀଵ

௞
,  where α଴ = α௞ . (8) 

𝑀⟨αଵ, αଶ, … , α௞⟩ = ⟨(5 ⋅ α௜) mod 𝑛⟩௜ୀଵ
௞ . (9) 

𝐹⟨αଵ, αଶ, … , α௞⟩ = ൾ෍ α(௜ାହ⋅௝) mod ௡

ହ

௜ୀଵ

ං

௝ୀ଴

௞ିଵ

,  where α଴ = α௞. (10) 

Therefore, taking our example: 

α = 〈11, 4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8〉, 𝑠 = 84 and 𝑑 = 7; 
𝐼α = 〈1, 8, 2, 6, 10, 3, 4, 4, 5, 9, 4, 4〉, 𝑠 = 60 and 𝑑 = 5; 
𝑅α = 〈4, 9, 5, 4, 4, 3, 10, 6, 2, 8, 1, 4〉, 𝑠 = 60 and 𝑑 = 5; 
𝑅𝐼α = 〈8, 3, 7, 8, 8, 9, 2, 6, 10, 4, 11, 8〉, 𝑠 = 84 and 𝑑 = 7; 
Sα = 〈4, 10, 6, 2, 9, 8, 8, 7, 3, 8, 8, 11〉, 𝑠 = 84 and 𝑑 = 7; 
𝑀𝛼 = 〈7, 8, 2, 6, 10, 9, 4, 4, 11, 3, 4, 4〉, 𝑠 = 72 and 𝑑 = 6; 
𝐹𝛼 = 〈9, 11, 5, 9, 1, 7, 10, 3, 10, 10, 11, 10〉, 𝑠 = 96 and 𝑑 = 8. 

 
Here we verify that the dimensional factor is the same for the original 

interval composition α and 𝑅𝐼α (also for 𝑆𝛼), as well as for 𝐼α and 𝑅α, being different 
for 𝑀𝛼  and 𝐹𝛼 . This means that 𝐼𝛼  and 𝑅𝛼  are the “most compact” in terms of 
directed intervals (𝑑 = 5) and, between them, 𝐼𝛼 would be the class representative 
(normal form10) of the row classes comprising such operations, since it is even more 
compact. 

Considering all the theoretical scope provided so far, we can then describe 
how these concepts and definitions were used in our software. 

 
3. SerialGen 

The SerialGen software11 was built in two steps. The first one generated the 
restricted interval compositions whose parts satisfy Equation 4 in the form of a 
database. The second one aimed to partition that database into equivalence classes 
determined by the combination of operations (Definition 2.2) and filter those interval 
compositions with user-defined parameters, such as intervallic constraints. 

First, we must explain the restricted_compositions function, that returns a 
Python Generator object listing all interval compositions restricted by Equation 4, 

 
10 The normal form is the interval composition with the smallest 𝑑 and greatest 𝛼௞, 𝛼௞ିଵ, and so on. 
11 The source code of the software is available at: https://github.com/marco-feitosa/serialgen. 
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given the positive integers 𝑠 , 𝑘  and 𝑛 as parameters. This algorithm was used to 
populate the database with the restricted interval compositions for every dimensional 
factor 𝑑 ∈ ℤା, such that 𝑑 ≤ 11. 

The main idea of the algorithm comes from the perception that it is possible 
to reach every valid interval composition by recursively assigning each eligible value to 
each part, checking that the current composition satisfies the constraints at each 
recursive call. The recursion itself is implemented in fact by the compute function, 
which is defined within the scope of restricted_compositions and is where the 
compositions are actually generated, while the only role of the outer function is to call 
compute with the initial values. In addition, the restrict function calculates the 
summation constraints defined by Equation 4, ensuring the integrity of the current 
composition. 

The compute function takes as parameters the values 𝑠  and 𝑘 , which 
correspond to the remaining sum and number of parts of the composition, respectively. 
The other parameters are the variable composition, a tuple representing the current 
interval composition, and the variable 𝑟, which is an auxiliary array used to prevent 
redundancy in the summation calculations made by the restrict function. In the first 
call to the compute function, 𝑠 and 𝑘 assume the values that were also passed to 
restricted_compositions as inputs, while composition and 𝑟 start as empty structures. 
During the execution of the algorithm, the parts of composition are filled with all 
possible values, while 𝑠 and 𝑘 decrease at each choice. Before calling the recursion, 𝑟 
is updated with the summation values by restrict, which acts as an auxiliary function. 
It should be noted that a branch is created on every call to the compute function, as 
it is called for each possible value to be inserted in composition. An interval composition 
is yielded when there is no part left to choose and the desired sum is reached, i.e., if 
𝑘 = 0 and 𝑠 = 0. Finally, the restricted interval compositions are returned and written 
to the database. 

The classification algorithm starts from the database containing all the 
interval compositions explained above. The goal of this procedure is to group all 
interval compositions in their respective equivalence classes. In our classification, we 
identify each class by the normal form of its members based on the fact that every 
member of a class has the same normal form. This gives us a straightforward way of 
grouping all interval compositions in class. We scan the whole database of interval 
compositions computing the normal form of each one and group them as we go along. 
After having completed this, we should have a mapping between normal forms and the 
members of their corresponding class.  

At the core of the algorithm, lies the normalization procedure, i.e., how we 
compute the normal form of a given interval composition. It consists of two steps:  

 
1. Given an interval composition and the argument to the normalization 

function, list all members of its class.  
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2. Given the list of interval compositions generated in the previous step, 
find the most compact one. 
 

For the first step, in order to list all members of a class given one of its 
members, we need to first define the functions on interval compositions that we wish 
to take as defining our classes. For example, if we want our classes to group the interval 
compositions related by retrogradation, the only function needed is the retrograde 
function. However, if we want our classes to group the interval compositions related 
by retrogradation and inversion, we need to use the retrograde and inversion functions. 
Having that, we can apply them repeatedly to the input interval composition to 
compute all the members of its class. In order to achieve this, the normalization 
procedure is parameterized by the set of functions that determines the equivalence 
class. This allows the user to choose the operations that are relevant to their work.  

The second step is the simplest one. Having the list of all interval 
compositions, we sum all elements of each one of them and pick the ones with the 
lowest resulting number. If there is only one, that is the normal form. If there are more 
than one, this process is repeated with the following two changes on each iteration until 
we have a single interval composition, the normal form: 

▪ We only consider the interval compositions that are tied with the lowest 
sum in the previous iteration. 

▪ Starting from the last element, we disregard one more element from the 
right end of the interval compositions while summing them. 

 
Besides classifying the entire database of interval compositions, SerialGen is 

also able to filter them to include in the output only those that match certain user 
provided criteria. These can be the number of distinct or specific intervals and the 
presence of a given sequence of intervals. 

 
4. Preliminary Results and Concluding Remarks 

With the software we were able to generate all the restricted interval 
compositions and produce the following tables listing the number of tone rows and row 
classes, according to their respective combinations of operations (types) 12  and 
dimensional factors. 

The data presented here is not completely new, since there are other works 
which achieve similar results through group theory. 13 However, the mathematical 
means to obtain it and its segmentation by dimension provide a new perspective of 
understanding tone rows and row classes, opening the way for a broader and exhaustive 
taxonomy.  

 
12 Some of these row classes (types) are isomorphic to finite groups (cyclic, symmetric, dihedral, etc.). 
13 See FRIPERTINGER and LACKNER (2015), HUNTER and HIPPEL (2003), and REINER (1985). 
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At last, both the research and the software are still under development, with 
room for new operations, functions, and applications exploring tone rows and row 
classes that are symmetrical or combinatorial, among other possibilities, which will be 
done in due course. 

 

Table 𝟏: Tone rows and row classes of each type by dimensional factors. 

d s Tone Rows 
Type 1 

T 
Type 2 
T, RI 

Type 3 
T, R 

Type 4 
T, I 

Type 5 
T, I, R, RI 

1 12 12 1 1 1 1 1 
2 24 24,432 2,036 1,049 2,036 2,036 1,049 
3 36 1,831,644 152,637 76,617 152,637 152,637 76,617 
4 48 26,441,856 2,203,488 1,102,940 2,203,488 2,203,488 1,102,940 
5 60 116,857,368 9,738,114 4,871,638 9,738,114 9,738,114 4,871,638 
6 72 188,690,976 15,724,248 7,865,430 7,864,044 7,862,124 3,933,675 
7 84 116,857,368 9,738,114 4,871,638    
8 96 26,441,856 2,203,488 1,102,940    
9 108 1,831,644 152,637 76,617    

10 120 24,432 2,036 1,049    
11 132 12 1 1    
Total 479,001,600 39,916,800 19,969,920 19,960,320 19,958,400 9,985,920 

Table 𝟐: Row classes of each type (including 𝑺) by dimensional factors. 

d s Type 6 
T, S 

Type 7 
T, RI, S 

Type 8 
T, R, S 

Type 9 
T, I, S 

Type 10 
T, I, R, RI, S 

1 12 1 1 1 1 1 
2 24 171 101 171 171 101 
3 36 12,741 6,579 12,741 12,741 6,579 
4 48 183,634 92,415 183,634 183,634 92,415 
5 60 811,670 407,546 811,670 811,670 407,546 
6 72 1,310,354 656,830 656,137 656,137 329,375 
7 84 811,670 407,546    
8 96 183,634 92,415    
9 108 12,741 6,579    

10 120 171 101    
11 132 1 1    
Total 3,326,788 1,670,114 1,664,354 1,664,354 836,017 
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Table 𝟑: Row classes of each type (including 𝑺, 𝑴, and 𝑭) by dimensional factors. 

d s Type 11 
T, I, R, RI, S, M 

Type 12 
T, I, R, RI, S, F 

Type 13 
T, I, R, RI, S, M, F 

1 12 1 1 1 
2 24 101 100 100 
3 36 6,563 6,412 6,371 
4 48 87,170 83,834 74,898 
5 60 260,327 258,977 123,257 
6 72 65,251 70,089 6,385 
Total 419,413 419,413 211,012 
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