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Abstract: Computational models of music cognition generally distinguish between static and dynamic
tonal attraction. Starting with the famous Krumhansl-Kessler (KK) pitch class profiles as a particular
tonal schema for static attraction, we investigate a one-dimensional quantum system on the continuous
line of fifth-width. From a Gaussian mixture model (GMM) fit, we construct its schematic Hamiltonian
in the form of a perturbed quantum harmonic oscillator. In the concrete musical application of the C major
tonality, we offer a unified approach to static and dynamic tonal attraction as follows. Static attraction
is described in terms of the stationary ground state solution of the underlying schematic Schrodinger
equation. Dynamic attraction is investigated in terms of the temporal evolution of suitably chosen initial
states. As a measure for dynamic attraction among tonal states we calculate the Hilbert space overlaps
between the time development of some coherent states of the unperturbed harmonic oscillator in the role of
antecedents with some other coherent states in the role of consequents.

Keywords: Musical schematism; quantum statistical learning; Gaussian mixture models; tonal at-
traction; anharmonic quantum oscillator. 2020 Mathematics Subject Classification: 62J02; 81Q05;
81R40.

1. INTRODUCTION

musicology. In music psychology, the priming experiments devised by Krumhansl and

Kessler [29] for static attraction and by Krumhansl and Shepard [30] for dynamic attraction
that have been further explored in [31, 55], delivered substantial insights into mental processes of
music perception and the topology of the underlying configuration spaces [29, 27].

Tonal attraction is an important research topic in music psychology and in mathematical

Received: May 6th, 2025
Approved: September 18th, 2025


mailto:Email: peter.beimgraben@b-tu.de
mailto:thomas.mamuth@gmail.com
https://doi.org/10.46926/musmat.2025v9.1-26

Journal MusMat e Vol. IX (2025)

In a paradigmatic psychological priming experiment, a prime presents a preparing context for
the processing of upcoming stimuli. Dependent on the subject’s instruction, one distinguishes
between static and dynamic tonal attraction as follows. In the experiment of [29] subjects were
presented with different musical primes, such as ascending scales, various chords or diverse
cadences, all establishing a particular key as context. After each prime, the subjects were presented
with one of the twelve tones of the chromatic scale as probes. They were instructed to tell how
well the given probe tone fits statically into the established tonal context. By contrast, in the
earlier experiment of [30] subjects were presented with either ascending or descending scales as
primes, with the instruction to indicate how well a subsequent probe tone completes the given
scale. Likewise, in the experiments conducted by [31, 55] subjects were instructed to tell how
well short melodic segments [31] or single chords [55] are dynamically resolved by the successive
probe tones.

The results of those priming experiments were presented as tonal attraction profiles [55] or
anchoring strengths [32] for minor and major modes, respectively. Bharucha [12, p. 489] remarked:

As a shorthand, the distortion of psychological tone-space and chord-space by creating
focal points around which stable tones or chords locate themselves, along with the
inducement of asymmetries, will be described as the engagement or activation of a tonal
schema. A tonal schema specifies a hierarchy of stability (a tonal hierarchy) of all
possible tones and chords [...].

Schematic models play an important role in cognitive psychology [3] and musicology [12, 21, 39].
Originally, the concepts of schematism can at least be traced back to Kant’s transcendental
phenomenology [24, pp. B 176], where schemata provide the interface between the categories of
understanding and the pure forms of intuition, i.e. time and space [24, pp. B 177]. As a specific
example, Kant referred to number as the transcendental schema for the category of quantity that is
construed in intuition by the operation of counting in time [24, p. B 182].

In cognitive psychology and computational linguistics, schemata are realized, e.g., as frames
[3, 25] or attribute-value structures (AVS) [23]. Applied to musical schematism [12, 21, 39], a tonal
attraction profile, e.g., assigning to each chromatic tone its corresponding anchoring strength,
is represented as an AVS with chromatic tones as attributes and anchoring strengths as their
respective values.! In his book Sweet Anticipation: Music and the Psychology of Expectation, Huron
[21] located tonal schemata in the realm of cognition rather than perception, despite of his usage
of the attribute “auditory.” When Huron [21, pp. 339 — 344] characterized the attitude of listeners,
who get disturbed by Schonbergs “contratonal” twelve-tone music as an instance of a “schematic
failure,” he referred to their reliance on “key schemas,” “scale-related schemes” or “tonal schemas.”

Several authors assume that musical schemata are acquired through statistical learning in
the process of musical enculturation [21, 44, 53]. For the investigations of this paper it is not
decisive whether these attraction profiles are real psychological entities or whether they are robust
quantitative traces of the tonal qualia that occur in the experience of the musical listener and to
which we have no experimental access. When we speak about statistical learning and later about
quantum statistical learning we abstain from making ontological assumptions. These are technical
terms in the context of computational musicology.

The quotation of Bharucha [12] above also indicates that a particular musical schema induces
a specific “distortion of psychological tone-space and chord-space” and hence the emergence of
musical forces in the sense of [31]. Those distortions of tonal space have been mathematically
modeled by beim Graben and Blutner [8, 9] and beim Graben [7] in terms of musical quantum

11t should be noted though, that the term tonal scheme has been used quite differently by Noll [41] in extension of the
concept of voice leading schemata [17, 41].


http://www.musmat.org/

Journal MusMat e Vol. IX (2025)

models (cf. [16, 10, 42, 45] for related developments). This novel research field of quantum music can
be characterized as an attempt to extend well-established statistical and probabilistic approaches
of music cognition [2, 53] through quantum-theoretical models. The prominence of probabilistic
and statistical models in the empirical human sciences is—last but not least—influenced by
the tremendous success of these methods in quantum theory. In physics these methods form
an interface between the physical level of description, i.e. Schrodinger wave functions and
experimental observations of accessing the former through measurements. Therefore, the quantum
approach chosen here offers itself quite naturally in this wider context. The emphasis is hence on
quantum-theoretical, as these models are purely motivated by the mathematics of quantum theory,
instead by physical interpretations at all.

More specifically, beim Graben and Blutner [9] presented two different quantum models, one
quantum deformation model of the circle of fifths accounting for static attraction, and another
one that is based on the interval cycle model of Woolhouse [55] for the description of dynamic
attraction along the chroma circle. Thus, static and dynamic attraction have been described over
two different tonal configuration spaces (cf. [13] for a related approach).

It is the aim of the present study to unify the different accounts of static and dynamic tonal
attraction in an overarching quantum model. To this end, one may interpret the schematic
attraction profiles as probability density functions over suitable musical configuration spaces in a
first step. This is also a common strategy in machine learning approaches for the simulation of
musical processes, e.g. through Markov chain models [21, 53]. The second step is the door-opener
to our quantum approach, namely the interpretation of the square root of a given probability
density function as the ground state solution of a suitable Schrodinger equation as a model for
static tonal attraction.

The article provides rigorous mathematical results of more general interest and a detailed
investigation of a concrete example. In Sect. 2 we review previous empirical work around the
concept of tonal attraction. It serves as a motivation and preparation for our interpretation of the
quantum model in Sect. 3. There, after a short review of previous work on quantum models of
tonal attraction, we present our mathematical main result: for some Gaussian mixture models
over the real numbers, that could be acquired through some classical statistical learning algorithm,
there exists an associated perturbation of the Hamiltonian energy operator of a quantum harmonic
oscillator, whose stationary ground state renders the prescribed schematic Gaussian mixture.
Under this reinterpretation, the focus of investigation shifts to the time-dependent Schrodinger
equation affiliated with this schematic Hamiltonian. This defines the dynamic evolution for the
quantum mechanical initial value problem. Computing the transition probabilities of the quantum
dynamical system by the projection of consequent states onto antecedent states provides a model
for dynamic tonal attraction. Section 4 presents the results of our first numerical experiments
on static and dynamic attraction. The article concludes with a critical discussion of several
peculiarities and open problems in Sect. 5.

2. EMPIRICAL INVESTIGATIONS INTO TONAL ATTRACTION

Musical tones achieve meaning through their position in the context of other tones [21, 38]. In
recent quantitative approaches to tonality the term tonal attraction has been proposed to encode
the relative importance or salience of the notes of the chromatic scale with respect to the context
of a given major or minor key, such as the Krumhansl and Kessler [29] (KK) probe tone profiles
(see Sect. 2.1). We refer to this aspect as static tonal attraction. The relative prominence of tone
transitions is referred to as dynamic tonal attraction. The term has been used in a computational
model by Woolhouse [55].
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2.1 Krumbhansl-Kessler attraction profiles

In a celebrated study, Krumhansl and Kessler [29] asked listeners to rate how well each note of
the chromatic octave fitted with a preceding context, which consisted of short musical sequences
in major or minor keys. The empirical rating results of [28, 29] are numerically presented in Tab.
1 and graphically depicted in Fig. 1 after suitable normalization to probabilities p(x). Here, x
denotes the note position at the fifth-width axis as outlined in Sect. 2.2 below.

Table 1: Original attraction ratings KK(x) and normalized ratings p(x) for C major (top) and C minor (bottom) after

[28].
[ note [ Db [ A [ EB [ B | F | C ]
pos x / fifth-width -5 —4 -3 -2 -1 0
C major KK(x): 223 2.39 2.33 2.28 4.09 6.35
C minor KK(x): 2.68 3.98 5.38 3.34 3.53 6.33
C major: p(x) 0.0 0.0203 | 0.0127 | 0.0064 | 0.2365 | 0.524
C minor: p(x) 0.0184 | 0.1893 | 0.3733 | 0.1052 | 0.1301 | 0.4982
[ note | 6 ]| D[ A T E | B | F |
pos x / fifth-width 1 2 3 4 5 6
C major KK(x): 5.19 3.48 3.66 4.38 2.88 2.52
C minor KK(x): 4.75 348 3.52 2.6 2.88 2.54
C major: p(x) 03764 | 0.159 | 0.1819 | 0.2734 | 0.0827 | 0.0369
C minor: p(x) 0.2905 | 0.1236 | 0.1288 | 0.0079 | 0.0447 0.0

Figures 1(a, c) plot the results for the C major context and 1(b, d) for the C minor context. We
replicate the original rating data from Tab. 1, plotting them over the chromatic line in Figures
1(a, b). Figures 1(c, d) show the same data after rearrangement from the chromatic line to the
fifth-width line and after normalization to probability values. Normalization was achieved by the
GMM fit explained in Sect. 2.3 below. In Fig. 1(c), the tonic pitch n = 0 which is mostly attracting
received the highest rating, followed by the pitches completing the tonic triad (fifth n = 1 and
third n = 4), followed by the remaining diatonic scale degrees, and finally the chromatic, nonscale
tones. Moreover, in Fig. 1(d), the tonic pitch n = 0 received the highest rating, followed by the
pitches of the tonic triad (fifth n = 1 and third n = —3), followed by the remaining diatonic scale
degrees, and finally the chromatic, nonscale tones, again.

The note names Db, Ab, Eb, Bb, F,C, G, D, A, E, B, Ff (ordered by fifths in §-ward direction) are
assigned to radian angles x = n7m/6 (n € Z) centered around the note C at the origin x = 0. We
write x = pos(n) € R for the position of the note # in fifth-width units (“quints”) (= 71/6) at the
real width space, equally lifting the values of the measured data for enharmonically equivalent
notes Gb and F4.

2.2 Tonal configuration spaces

The concept of tonal attraction hints at the actual mental reality of the (tonal) musical experience.
But it does not provide a comprehensive model of this reality. Listeners experience the tonal
meanings of musical notes as qualia [21]. Whereas these qualia (as phenomena) withstand precise
and complete scientific analysis, it is interesting that their seats have been located not in the notes
themselves (or not exclusively [47]), but rather in the diatonic scale-height-degrees [4, 5, 20] and
in the fifth-width-degrees [19, 40]. From a music-theoretical and music-semiotic point of view,
we may consider tonal signification as a function which maps notes to pairs of fifth-width and
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Figure 1: Results of the Krumhansl and Kessler [29] experiment on static tonal attraction, given in Tab. 1. (a)
Original ratings for C major context [28]. (b) Original ratings for C minor context [28]. (c) Rearranged and
normalized rating data p(x) in fifth-width ordering for C major context. (d) Rearranged and normalized
rating data p(x) in fifth-width ordering for C minor context.

scale-height degrees. A suitable mathematical model for this kind of tonal signification is the
Regener space: a convincing unifying space for notes and scale degrees, suggested by Regener [46].?
The positioning of the notes within the coordinate system of heights and widths allows to describe
their tonal meaning. Each tonality corresponds to a particular embedding of the note space into
Regener’s fifth-width and scale-height degree space. In Fig. 2 we display the C major embedding
together with the associated KK attraction values from Tab. 1.

Hence we have the following situation: Tonal attraction deals with an empirical trace of tonal
qualia, which themselves—although being not accessible as such—can be anchored in the Regener
space. Thus it seems reasonable to define tonal attraction profiles on the Regener space. The fact
that Krumhansl and Kessler [29] use the note names C,CH, D, D4, E, F, F§, G, G§, A, Af}, B should
not be misunderstood in the sense that their attraction profiles are defined on notes. Rather,
Regener coordinates are all implied due to the presupposed C major context. One little detail is the
interpretation of the sharpened notes Cl, Dt, F, Gf, Afi, which stand for their enharmonic classes
in the Krumhansl and Kessler [29] study. Here we use the following 13 notes in the Regener space
C=(0,0), Db = (7,0), D= (2,1), Eb = (-3,2), E= (4,2), F = (—1,3), Ff = (6,3), Gb = (—6,4),
G=(1,4), Ab=(—-4,5), A= (3,5), B =(—-2,6), B= (5,6).

In Fig. 2 we use scale degres 1, .., 7 for the height values, and solmisation syllables for the width

2Note intervals are thereby decomposed into scale-degree height intervals on the one hand and fifth-width intervals on
the other hand. The elementary fifth-width (Regener called it quint) is the difference between the note interval P5 of the
perfect fifth and the generic fifth (consisting of four scale steps). It corresponds to the elementary horizontal unit of the
grid in Fig. 2
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Figure 2: The Regener space as two-dimensional tonal configuration space. Notes are shown as disks centered at their
fifth-width and scale-height coordinates. Their radii and gray scales (from light to dark) correlate with the
KK attraction values. The lower and right border lines of the grid are labeled by the respective width and
height coordinates. The upper and left border lines are labeled by corresponding music-theoretical symbols:
solmization syllables and diatonic scale degrees.

values, respectively. In addition to Huron’s classification of tonal attraction profiles as cognitive
schemata we envisage their phenomenological characterisation as mental gestalts with reference to
Leonard B. Meyer’s concept of a sound term. Meyer’s distinction between sound terms and sound
stimuli is a useful starting point for an answer.

A sound or group of sounds (whether simultaneous, successive, or both) that indicate,
imply, or lead the listener to expect a more or less probable consequent event are a
musical gesture or “sound term” within a particular style system. The actual physical
stimulus which is the necessary but not sufficient condition for the sound term will
be called the “sound stimulus.” The same sound stimulus may give rise to different
sound terms in different style systems or within one and the same system. [38, p. 45]

(See Sect. 3 for our quantum-theoretical adaption of Meyer’s concept).
In a similar vein, Jacques Handschin talked metaphorically about a “society of tones:”

What I would now like to state—and believe I must state—is that the musical character
of the tone is determined precisely by the position it occupies in the series [f-c-g-d-a-e-
h], this society of tones. [19, p. 7]

This metaphor resonates with the idea of a mental gestalt: Only the wholeness of this society, and
not the single notes, creates the musical character of each note. But we think that Handschin
underrates the phenomenological challenge of the tonal qualia, when he says:

What we are dealing with here, with the tone characters, is the actual musical quality
of the tone; and it is somehow wonderful that this quality evidently only comes about
through the tones” position within the system. Or, better said, it consists in it. [19,
p- 24]

Now, looking at the rearranged KK data in Figures 1(c, d), one immediately recognizes that the
reordering along Regener’s fifth-width line at the abscissa entails a much smoother and thereby
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much more pregnant gestalt of the tonal attraction schema than its original presentation along the
chromatic line. Therefore, we follow Handschin in the emphasis of the line of fifth-widths as a
key to an understanding of the tonal qualia with the intention to integrate this with the empirical
concept of tonal attraction. The latter can be regarded as an empirical trace of the tonal qualia.

The gestalt idea also motivates our consideration of a continuous quantum model [1]. Quantum
wave functions offer themselves as suitable mathematical models for gestalts in the sense that
their values along the configuration space and in their time developments form an organic whole
thanks to the underlying Schrodinger equation. For the beginning of our investigation we decided
to develop a one-dimensional quantum model along the fifth-width axis which musically supports
Handschin’s position [19] that fifth-ordering corresponds to an ordering of the tonal qualia (tone
character in Handschin’s terminology).

In the concrete investigation of the present article we view Regener’s space as being continuous
and we practically restrict ourselves to the horizontal width axis. Both decisions deserve further
discussion.

First, one has to note that from an acoustical point of view the fifth is merely a fixed frequency
ratio and it might seem counterintuitive to assume the line of fifth-widths to be continuous. From
a music-phenomenological point of view, however, a modulation in f-ward or b-ward direction
is a transformation of the musical meaning of the note space which could well be said to be
experienced as a continuous musical gesture [35]. Furthermore, there is another reason to consider
real coordinates as well: The linear Regener transformation

=(31)

of the note space—converting fifth/fourth coordinates into major/minor-step coordinates [46]—
has meaningful eigenvectors [40]. The eigenvector associated with the larger eigenvalue represents
the gradient of an intrinsic linear pitch height form. Its coordinates are not integer numbers,
though.

Second, one may notice that for the initial formulation of our quantum model it is demanding
enough to operate on a one-dimensional configuration space, which becomes the fifth-width
axis here. But in order to interpret our findings properly in future research we need to keep an
awareness of the entire Regener space.’

2.3 Statistical learning of tonal attraction

According to the statistical learning approach to music psychology [21, 44, 53], tonal attraction
profiles, degree distributions, and melodic transition probabilities such as those presented in Tab.
1 may result from training statistical models through predictive processing [15, 26].

Therefore, one could fit, e.g., the Krumhansl and Kessler [29] data p(x) from Tab. 1 to Gaussian
mixture models (GMM) of the general form

N
p(x) =) apve(x) 1)
k=1
where 5
_ 1 1 /x—ay
ve(x) = %exp [—2 ( o ) ] 2)

3For the readers’ convenience we will use note names to designate the familiar discrete positions on the fifth-width axis,
although it would be theoretically more appropriate to use the syllables as in the left panel of Fig. 2.
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are N € IN normal distribution densities with means a; € R and variances (7,3 € IR. The coefficients
ax € R are the respective weights in the convex linear combination (1) with

N
Zﬂck=1.
k=1

The sum (1) extends over a fonal context, e.g. of a given chord as discussed by [9]. In the present
case, we identify a context C with a set of note positions

C={a €R|1 <k<N}. 3)

By assuming just three components in the tonal attraction profiles [Fig. 1], the choice N =3
leads to the most general GMM with eight free parameters: a1,a,4a3,01,07,03,&1, 42 € R (while
a3 = 1 — a1 — ap through the convexity constraint).

Such a most general GMM is substantially simplified by assuming only one principal attraction
kernel that is invariant under musical transposition [9],

1 1x?
Pl = 22 ¥ (2:;2> . @

Now, the kernel is parameterized by its unique variance ¢, such that the resulting convolutional
GMM becomes a discrete convolution

N
p(x) =) app(x —ay) 5)
=1

with six remaining free parameters: a1, a2, 43,0, &1, a2.4

A further constraint identifies the three mean values a1, a5, a3 with the members of the tonic
triade in the context C = {T, D, M} (Tonic, Dominant, Mediant), such that only three parameters
o, a1, ey of the resulting tonal GMM remain.

Another simplification, subsequently called Lerdahl GMM, is obtained from the Lerdahl interpo-

lation,
4 (%) = 20(0),

which is motivated by Lerdahl’s hierarchical model [33], whose kernel function assumes half of
the attraction of the tonic C for the dominant G and the subdominant F (cf. Fig. 3 below). From
this interpolation equation one yields the variance parameter through
T
0O = ——— . 6
6v2In2 ©
Hence, only the two independent mixing weights a1, a4y remain as free parameters.
We present the results of the Lerdahl GMM in Sect. 4.1 below.

3. QuaNTUM MODELS OF TONAL ATTRACTION

For the motivation of our subsequent quantum model, we consult the respective passage of Meyer
[38, p. 52]: “A sound stimulus becomes a sound term by entering into probability relationships
with other sound terms within the style. These probability relationships are of different degrees.”

4The convolution operation in (5) becomes obvious by writing a; = «(ay).
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Thus, a “sound term” in Meyer’s theory is just a pregnant gestalt that is further related to a
probability interpretation.

Considering tones as mental gestalts [9, 38] encourages us to formally identify them as quantum
wave functions over abstract configuration spaces. Let the configuration space be the continuous
fifth-width axis X = R. A sound term [38] in the sense of the present study is then a wave function
i : R — C, such that the Hilbert space scalar product (¢, 9) = [, #*(x)¢(x) dx = 1. Hence, a
tone is a state in the complex Hilbert space H = L?(X). Let ¢ € L2(X) be a sound term over real
configuration space. The squared modulus p(x) = [(x)|?> = ¥*(x)(x) is the attraction rate—or
anchoring strength according to [34]—of the probe x € IR in the context 1. This justifies the proposed
terminology, interpreting sound terms as quantum wave functions in our exposition.

As beim Graben and Blutner [8] and beim Graben [7] have shown, it is possible to describe
tonal attraction as an eigenvalue problem

Hyp(x) = E¢(x) )

with real eigenvalue E for a hermitian differential operator H, called the Hamiltonian acting on
Hilbert space H = L?(X). Basically, equation (7) is a stationary Schrodinger equation for the wave
function ¥ of a single quantum particle [48, 49, 50, 51].

Next, we observe that a Gaussian wave packet

p = {f e ®

1
552 ©)

and variance ¢ is able to describe the tonal attraction data of [29] equally well, as shown in Fig. 3
[42]. The resulting attraction rate becomes

with energy

Eo=

Eg

p(x) = P = |/ e o (10)

GbDhAbEbPBP F C G D A E B F#

Figure 3: Attraction kernel p(x) = | (x)|? of the Krumhansl and Kessler [29] experimental data for C major (centered
at tone C of the fifth-width axis). Solid: Gaussian wave function (x) [Eq. (8)], Dashed: deformed cosine
similarity kernel of [8], and [7].
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Figure 3 displays the kernel obtained from the Gaussian wave function (x) [Eq. (8)] as solid
line and the deformed cosine similarity kernel from the gauge-theoretic approach of [8, 7] as
dashed line for comparison.

Interestingly, the Gaussian wave packet (8) solves the Schrodinger equation of the quantum
harmonic oscillator

—9" (x) + Egx*y(x) = Eyp(x) (11)

for the ground state energy E = Ej [49, 52]. The energy parameter Ey can be interpolated by
comparison with the attraction kernel of Lerdahl’s hierarchical model [34]. This leads to

3612

E
0 2

, (12)

proportional to the reciprocal variance (6) in our Lerdahl interpolation. The energy of the ground
state of the Schrodinger equation (11) is then Ey = E, i.e. the parameter of the Lerdahl interpolation
(12) to which we refer as to the Lerdahl energy henceforth.”

From a mathematical point of view the KK profiles are special instances of pitch class profiles,
which play a central role also in computational music theory and analysis. Pitch class profiles
also comprise single notes (pitch classes) and chords (pitch class sets) as special cases. On the
pure mathematical level we can turn pitch class profiles into wave functions as superpositions of
Gaussians. But then a phenomenological question arises: Does not such a superposition of waves
still represent a kind of “atomistic” model? How does this relate to our idea to consider mental
gestalts, where the whole is more than the sum of its constituents?

What Meyer [38] calls a “sound stimulus” would in our concept be an isolated Gaussian wave
function (or a superposition of Gaussians) without a tonal context.® A “sound term” could, in
fact, be also be a single note, but it would be loaded with musical meaning in the context of a
tonality. The knowledge about consequent events becomes modeled by the Schrodinger equation
in our quantum approach. If there are elementary sound terms in this sense, they are not the
Gaussians, modeling single notes, but rather the stationary eigenstates of the Hamilton operator.
When we interpret a Gaussian as the initial state of a time development, then it embodies dynamic
properties of the tonality and thereby exemplifies an interaction with the tonal attraction as it is
modeled by the Hamiltonian below in Sect. 3.1. The key to an understanding of this approach is
the insight that the superposition of stationary eigenstates is not stationary. This is precisely the
case where the “whole becomes more than its parts.”

3.1 Quantum statistical learning of tonal interaction

Quantum statistical learning became recently an important research area in connection with
quantum computation and quantum information processing [14, 37]. In the present context of
musical statistical learning, we consider the following research problem: Given a statistical model
for some empirical data, that could have been acquired by some classical statistical learning
algorithm, could one construe a corresponding quantum Hamilton operator that reproduces the
statistical model as the ground state of a stationary Schrodinger equation (7)?

Introducing the harmonic oscillator potential

Vo(x) = E3x?%, (13)

5Note that we also confirm Lerdahl’s speculation about a Hamiltonian principle of musical least effort [33] in the
present framework, as the ground state energy Ey can be obtained from a corresponding variational principle.
6In deviation from Meyer [38] we abstain from a reference to an acoustic level of reality.

10
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entails the Hamilton operator in the form

82

The correspondingly rewritten Schrodinger equation

$"(x) = [Vo(x) — Elg(x) (15)
has the Gaussian wave function (8) as its stationary ground state for eigenenergy E = E.

Now, given a convolutional GMM p(x) of tonal attraction (5), we want to construe a quantum
Hamiltonian H with interaction potential V(x) such that p(x) = |¢(x)|> and ¢(x) solves the
Schrodinger equation

Hip(x) = Eop(x) (16)
as its stationary ground state.

In order to tackle this problem, we first derive a differential equation for the tonal attraction
rate. First, we observe that the Gaussian wave function (8) is real-valued and positive. Therefore,

p(x) = [p(x)]* = p(x)*. (17)

Differentiating this expression twice, yields

pix) = 29(x)¢'(x) (18)
prx) = 29 (x)7 + 29 (x)y () (19)

Squaring (18) gives
P'()* = 4y (x)*¢' (x)* (20)

Now, we can eliminate all occurrences of ¢ and its derivatives in (19) as follows. First, we
insert ¥ from (15)

P (x) = 2¢' (x)? +2[V(x) — Eoly(x)?,
multiplication with 2¢(x)? entails
2¢(x)?p" (x) = 4y (x)*¢' (x)* + 4V (x) — Eo]y(x)*,
where we eventually insert (17) and (20)
2p(x)p" (x) = p'(x)? — 4V (x) — Eo]p(x)* = 0. (21)

Equation (21) is a nonlinear differential equation for the quantum probability p(x), corresponding
to the linear Schrodinger equation (15) for the quantum probability amplitude (x).

Next, we consider the convolutional GMM (5). Its derivatives are given by the unique deriva-
tives of the convolution kernel (10).

N
p(x) = ar o' (x — ar) (22)

k=1

N
p'(x) = ar " (x — ay) . (23)

k=1

Where we have

pl(x) = \/é(ZEOJc)e_EO"2 = —2Epxp(x) (24)
p"(x) = [4E3x* —2Eg)p(x). (25)

Inserting (22), (23), (24), and (25) into the differential equation (21) yields
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Note that the tonal interaction potential

Y [2(x —a)* — (x — ag) (x — ap)]agey p(x — ag)p(x — ay)
V(x) = B34

26
S s p(x — ) p(x — 1) 26)
kl

in the presence of N interacting force centers turns out as the center of gravity in the corresponding
function space.
Equation (26) can be further simplified, leading to

Y 2(x* = 2ayx 4 a7) — (x* — apx — apx + agay)|agey p(x — ag)p(x — ay)
V(x) = B3

Y g p(x —a) p(x —ap)
&

Z[sz —dayx +2a7 — x* + apx + apx — agag|age o(x — ag)p(x — ap)

Kl
Ve =B %"Ck‘xl p(x —ax) p(x — ay)
%[Jg — 3apx + 207 + arx — agag|agey p(x — ap)p(x — a)
V=5 Lo ol =) ol — )
Y I+ (ap — 3ap)x + a;(2a; — ap)|agey p(x — ag)p(x — ay)
V(x) = B34

Y ape p(x —ag) p(x — ap)
K

Y [(ax —3ap)x + a;(2a; — ag)]age; p(x — ag)o(x — ay)
V(x) = B3+ E3 X

Y o p(x —ag) p(x — ay)
&

V(x) = Vo(x) + W(x) (27)

with the harmonic oscillator potential Vj(x) (13) and a perturbation

Y [(ax — 3ap)x + a; (2a; — ag) gy p(x — ag)p(x — ay)
W(x) = B34

28
Y wrarp(x — ) plx — 1) 29
kil

for the interactions between the context tones. The potential (27) belongs to the general class of
quantum anharmonic oscillators, as discussed, e.g., in [36, 54, 11, 6]. Henceforth we refer to the

differential operator
92
H= —57+ V(x) (29)
with potential (27) as to the schematic Hamiltonian of the statistically acquired musical GMM
schema. The tonal attraction profile is then obtained as the ground state solution of the stationary
Schrodinger equation

—¢"(x) + V(x)p(x) = Ep(x) (30)
with eigenenergy E = Ey.
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3.2 Static attraction

In order to solve the stationary Schrodinger equation (30), we exploit the basic idea of quantum
perturbation theory [50], by developing the solutions ¢ in the complete orthonormal system of the
eigenstates of the harmonic oscillator potential Wo. These are known as the Hermite functions

4 E
(P”<x) = \/W \/7x 2 . (31)

with h, (x) the Hermite polynomials of order # [50, 52]. Then, (31) solves the Schrodinger equation
for eigenenergy E;,

— @ (x) + Vo(x)gn(x) = Enp(x), (32)
with energy spectrurn7
En—2%<n+;), (33)
and orthonormality relations
(Gomr q’n / q’m q)n( ) X = 0mn . (34)

For the anharmonic oscillator potential (27), we make a superposition ansatz for its k-th
eigenstate 77y,

x) =Y Quei(x) (35)
1

with the Hermite functions (31).
For the solution of the stationary Schrodinger equation (30), we firstly have to diagonalize the
schematic Hamiltonian
92 92
H= V(x) =
e TV =32
which is achieved by solving the associated eigenvalue problem

+Vo(x) + W(x),

aZ
gz V) ) = Dee), G0

i.e. the stationary Schrodinger equation for eigenstate 7, with eigenvalue Dy € R.
Then,

82
[aﬂ+V&ﬂmw)= Dicni(x)

a2
[_82 + Vo(x) + W(x)] nk(x) = Dynp(x)
[ LaAR <x>] L) = DL Q)
1
Y [ — + Vo(x) + W(X)} Quegr(x) =} QuDegi(x)
z 1
2

Zle{[ J+ vo<x>} ¢l(x)+W(x)¢l(x)} = TouDn)
Y Quk [Ergi(x) + W(x) gy ()] Y QuDxgi(x),
! !

"Note that the results of our quantum statistical learning approach differ from the quantum physical account by a factor
2 in the spectrum (33). This is also reflected by a slightly different normalization of the Hermite polynomials, here.
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for ¢; solves the unperturbed Schrodinger equation (15) for the oscillator potential Vy with
eigenvalue E; given through (33).

Next we multiply with another base function ¢;, and integrate over configuration space X,
exploiting the orthonormality relations (34),

L QuEr [ 9 (3)°9u(x) dx + Qe [ gn(x) W91 () e =

= LQuDx [ 4" 1)

such that
ZQlkElfsml+ZQ1k/X(Pm(X)*W(x)€0l(x) dx = ) QuDibyu
1 1 1

QukEm +Y_ Quwp = QuuDx.
1
Introducing matrix elements

W = [ () W(x)gu(x) dx, (37)

we may write this eigenvalue equation for the Dy as an infinite matrix equation in the coefficient
Hilbert space ¢?(R) by introducing a diagonal matrix

emn = Endmn (38)

with the energy spectrum (33), in compact form writing

E = (emn)m,nE]No ’ (39)
Q= (ka)k,mEINO ’ (40)
and
A = (Dibkm)kmeNg - (41)
as
(E+W)-Q=Q-A, (42)
or, equivalently, as
Q- (E+W)-Q=A4A, (43)

with the diagonalized Hamiltonian A in the eigenvector basis Q with adjoined Q*.

Numerically, we solve (42) for finite-dimensional approximations C* of the coefficient Hilbert
space Ez(]R) with d = 5,10, 15, 20 for the present analysis, and for d = 30 in the next section [10].
The matrix elements

Wn = /rr @m(x)* W(x)pn(x)dx (44)

of the perturbation potential (28) are numerically estimated with r = 20.
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3.3 Dynamic attraction
In our quantum music framework, we obtain a concept of schematic dynamics in terms of the

time-dependent Schrodinger equation [51],

i9¥(x, 1) (45)

HY¥ (x,t) = i

for a spatiotemporal wave function ¥ (x,t) € L?(X,R).

Now, for the schematic Hamiltonian H is diagonal in its own orthonormal basis (35), it is
straightforward to prescribe the general solution algorithm for the musical quantum dynamics.
Starting with an arbitrary stationary wave function ¢ as an initial condition, we develop it into a
series of H eigenstates:

x):;RkUk ZRkZQlkq’l ZQlkRk(Pl x) =) (Q-1)igi(x)

1
(46)

with the product of the eigenvector matrix (40) with the coefficient vector

r= (Rk)ke]No . (47)

The coefficients are obtained by the orthogonal projections

(o 9) = [ ) () d. (48)
Then, the solution of the time-dependent Schrodinger equation is given by

Y(x,t) =Y Ree Priy(x) (49)
k

with the eigenenergies Dy solving (42).
In the given framework of a musical quantum model, a single tone could be represented by a
coherent state of the associated harmonic oscillator with potential Vy(x) and ground state ¢g [52],

%u»=¢ax—wzzyi%*“7’ (50)

centered at tone position a at the fifth-width axis. Then, we interpret the tone position a of a
coherent initial state i, as an antecedent state of schematic dynamics. Letting this state evolve
according to (49), leads to

= L Rela)e PHp(x) (51)
with
Ri(@) = () = [ () () dr. 62)

as the coefficients of the coherent state 1, in the schematic orthonormal basis 7. Then, we compute
the transition probability from the antecedent a to any consequent state ¢ on the fifth-width axis
after some time t as the projection

plela;t) = (e, ¥al- 1)) (53)
of ¥, onto . [9].
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4. FIrRsT EXPERIMENTS AND RESULTS

We present our results for the C major tonality shown in the third row of Tab. 1 for the Krumhansl
and Kessler [29] profiles here.

4.1 Gaussian mixture models

Figure 4 displays nonlinear model fits of the Lerdahl Gaussian mixture models (GMM) on the
Krumhansl and Kessler [29] probe tone profiles p(x) against the real fifth-width line.

GbDbAbEbBbFCGDAEBFﬁX GhDb AbEbBP F C G D A E B F#

(a) (b)

Figure 4: Lerdahl Gaussian mixture model (GMM) for the Krumhansl and Kessler [29] rating data p(x) against the
width axis. Solid: fitted GMM; dashed p(x). (a): For C major context; (b): for C minor context.

By prescribing the variance of the model through the Lerdahl interpolation (12), yielding (6),
we obtain a particular convolution model, dubbed Lerdahl GMM, containing only two parameters
1, &p. Figure 4(a, b) shows our results. For C major [Fig. 4(a)] the model is able to cover %2 = 0.986
of the data variance, with parameters a1 = 0.49,ap = 0.2, a3 = 0.31. For C minor [Fig. 4(b)] the
covering is a bit lowered to r2 = 0.93, with parameters ¢y = 0.4, = 0.19,a3 = 0.4.

4.2 Interaction potential

From the Lerdahl GMM in Fig. 4(a), we obtain the musical interaction potential (27) of the C major
scale through our quantum statistical learning approach. Figure 5 plots the resulting anharmonic
oscillator potential V(x) (solid) in comparison with the unperturbed harmonic oscillator potential
Vo(x) (dashed).

As Fig. 5 reveals, the schematic interaction potential V(x) turns out to be a kind of a quantum
double-well potential for an anharmonic quantum oscillator [6, 22].

4.3 Static attraction

Solving the stationary Schrodinger equation (7), or (36) respectively, by diagonalizing the schematic
Hamiltonian (29), yields the orthonormal eigenfunctions 7, (x) together with their associated
energy eigenvalues D, through (42). In finite-dimensional approximations with dimensions
d = 5,10, 15,20, we compute the distance of the eigenvalues D,, from their unperturbed harmonic
counterparts E,, i.e. D, — E;, as a measure for the quality of the approximation.

Figure 6 plots the spectral differences for the four finite-dimensional approximations.
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FbCbGhDbALEbBh F C G D A E B F#CHGE

Figure 5: Musical interaction potential of C major. Solid: V (x) [Eq. (27)]. Dashed: harmonic oscillator potential
Vo(x) [Eq. (13)] for comparison.

As Fig. 6 reveals, the finite-dimensional approximations continuously improve for larger em-
bedding dimensions d. For d = 5 [Fig. 6(a)] the anharmonic ground state energy Dy substantially
deviates from its harmonic counterpart Ey. For increasing dimensions, Fig. 6(b,c), the difference
Dy — Ej tends toward zero. Finally, for d = 20 [Fig. 6(d)], there is almost no further difference
between both ground state energies.

Moreover, the energy spectra show large differences D, — E, for intermediary n, while for
increasing n these differences become eventually smaller. This is reflected by the fact that the
anharmonic schematic interaction potential also converges to the harmonic oscillator potential for
large deflections along the fifth-width line, indicating larger deflection energies.

In Figure 7 we present the squared ground state solution p(x) = |7o(x)|? of the stationary
Schrodinger equation (36) in comparison with the Lerdahl GMM from Fig. 4(a) for increasing

embedding dimensions.

As already indicated by the behavior of the energy spectra in Fig. 6, we see that also the ground
state probability densities |179(x)|?> converge against the Krumhansl and Kessler [29] profile for C
major with increasing dimension. This numerically proves that the ground state of the schematic
Hamiltonian is indeed the GMM model of the KK profile.
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Figure 6: Energy spectra Dy, — E, of the C major stationary Schrodinger equation (36) for finite-dimensional Hilbert
space approximations. Dimensions: (a) d =5, (b) d =10, (c) d =15, (d) d = 20.
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Figure 7: Ground state probability densities of the C major stationary Schrodinger equation (36) for finite-dimensional
Hilbert space approximations. Solid: Lerdahl GMM [Fig. 4(a)], dotted: Schrodinger ground state probability
densities |1o(x)|?. Dimensions: (a) d =5, (b) d = 10, (c) d = 15, (d) d = 20.
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4.4 Dynamic attraction

For the simulation of dynamic attraction we use a greater numerical embedding dimension of
d = 30. Figure 8 displays a temporal snapshot sequence for the dynamics of a Gaussian wave
package pa(x,t) = [Ya(x,t)|? [Eq. (51)], initially centered at tone a = pos(E) = 4 quint according
to the schematic Hamiltonian (29) of C major. Shown are 12 time slices for times t = 0 until t = 5.5
in steps of At = 0.5.

t=0. t=0.5 t=1.
p p

0.2

1.0
0.8
0.6
0.4
0.2

1 .Op
0.8
0.6
0.4
0.2

F» Gb Ab B» C D E F# G# Fr Gb Ab B» C D E F# G# Fb G» Ab B C D E F# G2

F» Gb Ab B> C D E F# G# Fb Gb Ab B> C D E F# G# Fb Gh Ab B C D E F# G#

F» Gb Ab B» C D E F# G# Fr G» Ab B» C D E F# Gt Fb G» Ab Bb C D E F# G2

F» Gb Ab B» C D E F# G# Fb Gb Ab B C D E F# G# Fb G» Ab B C D E F# G#

Figure 8: Temporal development of Gaussian wave package centered at tone pos(E) = 4 quint according to schematic
C major Hamiltonian (29).

Figure 8 demonstrates that an initially coherent state with respect to the harmonic oscillator
potential Vp(x) disperses under the impact of the schematic Hamiltonian. The Hilbert space
overlap (53),

plela;t) = (e, ¥a (-, 1))

between the temporally evolved antecedent state ¥,(x, ) and a tentative consequent wave package
Pc(x) could be potentially regarded as the continuous transition probability from a to c¢. Under this
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interpretation, our dynamic model offers a continuously changing Markov model for transitions
between the selected coherent states. Figure 9 illustrates this for selected time points.
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Figure 9: Contour plots of the time development of the Hilbert space overlaps (53) in fifth-width space for antecedents
a = —6,...,9 quint (vertical) and consequents ¢ = —6,...,9 quint (horizontal) for t = 0,...,11.2 in
steps of At = 0.8. The respective values are represented by varying degrees of brightness, ranging from dark
blue, over blue, yellow, to white.
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Figure 9 shows a snapshot sequence of 12 squared Hilbert space overlaps (53) as Markov
transition probabilities from antecedent states centered at tone positions a (vertical) to consequent
states that are centered at positions ¢ (horizontal) along the fifth-width line. For ¢t = 0 depicted in
the first panel, there are obviously only self-transitions as the antecedent state has not evolved
at all. Already from a first glance at these contour plots it becomes clear that the choice of the
fifth-width as the configuration space is substantial to the resulting dynamics. Pairs with higher
Hilbert space overlaps tend to remain in connected regions of the transition landscape. Apart
from the perfect primes P1, fifth-related pairs are often privileged, in particular in the central
region around the pentatonic {C,G,D, A, E} at time t = 2.4. This observation indicates that
none of these momentary Markov model snapshots represents the kind of transition probabilities
which emerge from the empirical statistics of melodic corpora, where rather transitions between
neighbouring diatonic scale degrees are privileged over fifth progressions [21, 53]. It could be
interesting, though for a future study, to compare the quantum model to transition probabilities in
fundament progressions.

5. CoONCLUSION

In this study we have presented a novel mathematical approach of quantum statistical learning
[14, 37], namely the construction of a quantum Hamiltonian and its associated interaction potential
from classical statistical models of empirical data. Applied to particular tonal attraction data of
music psychology, the famous Krumhansl and Kessler [29] profiles, that are fitted by Gaussian
mixture models, we were able to derive a double-well perturbation potential [6, 22] for an
anharmonic quantum oscillator [36, 54, 11].

Solving the stationary Schrodinger equation by a finite-dimensional perturbation approxi-
mation [50], we have rendered the original KK profile of static tonal attraction as the stationary
ground state of the reconstructed schematic Hamiltonian. Additionally, the solutions of the
time-dependent Schrodinger equation allow the calculation of first-order Markov chain transition
probabilities [21, 53] as a model for dynamic tonal attraction.

Thus, our novel approach allows the principal unification of static and dynamic tonal attraction
in one underlying configuration space, namely the fifth-width line as a one-dimensional projection
of two-dimensional Regener [46] space. This is in contrast to previous tonal attraction models,
distinguishing between the fifth-width line for static attraction and the orthogonal scale-degree
line for melodic dynamic attraction as distinct configuration spaces [9, 13]. Future work will
reveal possible connections between these different representations, e.g. about the significance
of fundament progressions in Regener [46] space, or the separation of characteristic musical
time scales for certain types of transitions though a systematic study of the continuous family of
Markov-models (c.f. Fig. 9).

A practical application of the investigations of our study has recently been presented by
Gonzélez-Fernandez et al. [18]. In our quantum-theoretic interpretation of the concept of het-
erophony we think of the ensemble, i.e. a family of voices—or a family of tracks in a sequencer—,
as a configuration space, serving as the domain of definition for wave functions that change over
time. In a more generalized perspective, the unity of a melody can also be the unity of some
musical process with other parameters being the source of variation. The premise of this approach
is that quantum wave functions exemplify a unity thanks to the underlying schematic Hamilton
operator. An experimental environment QuTE has been implemented in Max/MSP [18].
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