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Abstract: We survey the all-interval chords of small order and the interval systems in which they are
situated. We begin with an examination of traditional all-interval chords in chromatic pitch-class spaces,
and extend the notion of their structure to their counterparts in David Lewin’s Generalized Interval
Systems. Mathematically, we observe that these chords belong to three categories of difference sets from the
field of combinatorics: (v, k, 1) planar difference sets, (v, k, 2) non-planar difference sets, and (v, k, 1, t)
almost difference sets. Further, we explore sets of all-interval chords in group-theoretical terms, where
such sets are obtained as orbits under the action of the normalizer of the interval group. This inquiry leads
to a catalog of the 11,438 all-interval chords of order k, where 2 6 k 6 8. We conclude with remarks
about future work and open questions.
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I. Introduction

The compactness and efficiency of all-interval chords have attracted the attention of composers
and music theorists since the early years of the twentieth century. Such structures, which
include one and only one of each interval in a given interval system, are rich compositional

resources, as well as topics of theoretical interest to students of interval systems themselves. In
particular, all-interval tetrachords in 12-tone chromatic space, represented in pitch-class set theory
by the prime forms [0, 1, 4, 6]12 and [0, 1, 3, 7]12, 1 have received widespread application in the
music of the major post-tonal composers. Among numerous notable examples, the first song
in Arnold Schoenberg’s Das Buch der hängenden Gärten, Op. 15, ”Unterm Schutz von dichten
Blättergründen,” ends with a chord, {3, 5, 8, 9}12, that is a member of set class [0, 1, 4, 6]12 (see
Figure 1). Likewise, the final song in Alban Berg’s Vier Gesänge, Op. 2, ”Warm die Lüfte,”
contains a passage (mm. 20-22) that consists exclusively of all-interval tetrachords, alternating
members of set classes [0, 1, 3, 7]12 and [0, 1, 4, 6]12 (Figure 2). Indeed, entire compositions are
constructed around all-interval tetrachords. For instance, Elliott Carter’s First and Second String
Quartets both incorporate these collections locally and structurally [1].

All-interval tetrachords also feature prominently in post-tonal theoretical writings. Each of
the standard pitch-class-set-theoretical texts, beginning with Howard Hanson’s 1960 Harmonic
Materials of Modern Music [2], incorporates description and examples of these structures. 2 Relevant

1As we consider sets of integers in a variety of moduli, we indicate the modulus as a subscript following a set. For
example, {0, 1, 4, 6}12 is the set of integers 0, 1, 4, and 6 (modulo 12).

2Hanson represents members of both set classes [0, 1, 4, 6]12 and [0, 1, 3, 7]12 not with pitch-class integers, but with his
notation for their ”interval analyses,” pmnsdt, the letters of which indicate singular projections of the following intervals:
perfect fifth (p), minor second (m), major second (n), minor third (s), major third (d), and tritone (t) [2, p. 22].
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Figure 1: Schoenberg, ”Unterm Schutz von dichten Blättergründen,” final chord.

Figure 2: Berg, ”Warm die Lüfte,” mm. 20-22 (voice-leading reduction).

discussions appear in Allen Forte’s The Structure of Atonal Music [3], John Rahn’s Basic Atonal
Theory [4], Robert Morris’s Composition with Pitch Classes [5], George Perle’s Twelve-Tone Tonality [6],
Stefan Kostka’s Materials and Techniques of Post Tonal Music [7], and Joseph Straus’s Introduction to
Post-Tonal Theory [8], among other sources. All-interval tetrachords have also been studied in terms
of their transformational properties [9], and for their role in our understanding of the Z-relation
[10].3

Treatments of all-interval chords in other chromatic spaces are comparatively rare in the
literature. One significant work that addresses all-interval chords of varying sizes in microtonal
systems is Carlton Gamer and Robin Wilson’s ”Microtones and projective planes” [11]. Gamer and
Wilson present all-interval trichords, tetrachords, and hexachords in 7-, 13-, and 31-tone chromatic
spaces, respectively, as difference sets, a concept from mathematical combinatorial theory. For
their purposes, they define ”a difference set (modulo n) to be a set of distinct integers c1, ..., ck
(modulo n) for which the differences ci − cj (for i 6= j) include each non-zero integer (modulo
n) exactly once” (p. 153). Mathematicians call such difference sets — wherein each difference
appears exactly once — planar difference sets [12]. Such sets are a special type of all-interval
chord: whereas every planar difference set is an all-interval chord, not every all-interval chord is a
planar difference set.

This article moves beyond an examination of all-interval chords in chromatic systems to one
of corresponding structures in David Lewin’s Generalized Interval Systems (GISs) [13]. Specifically,
it enumerates the isomorphism classes of all-interval k-chords of small order (i.e., those with
2 ≤ k ≤ 8). In addition to the all-interval chords found in cyclic interval groups, such as those

3Z-related pitch-class sets are those that possess the same interval vector, but which are not related by transposition
and/or inversion.
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above, we note their occurrence in certain non-cyclic abelian and non-abelian interval groups.
Among these chords, we find planar and non-planar difference sets, as well as almost difference
sets [14], a related concept that comes from combinatorics.

II. Intervals and Interval Vectors in Chromatic Spaces

In this section, we discuss intervals and interval vectors in chromatic spaces, and extend relevant
aspects to more general spaces in the following section. To define our concept of interval, it is
necessary first to establish the context in which we find intervals. We call such a context a space:
a universal set of musical objects, allowing that a path exists between any two members of the
space. The examples above situate their intervals in v-tone (modular) chromatic spaces,4 wherein
the musical objects are pitch classes. Here, the notion of an interval between two pitch classes is
construed as a distance, the number of chromatic steps as an integer modulo n. Intervals in such
spaces may be directed or non-directed. Typically, melodic intervals are indicated as being directed:
the distance from pitch class x to pitch class y. This type of interval is reckoned y− x (modulo v).
Harmonic intervals, on the other hand, are non-directed: the static distance between pitch classes
x and y. The non-directed interval between pitch classes x and y is customarily represented by the
lesser of y− x (modulo n) or its inverse, −(y− x) = x− y (modulo n). Throughout the remainder
of this study, we refer to non-directed intervals simply as ”intervals,” whereas we always retain
the qualifier ”directed” when referring to directed intervals.

We are interested in the total interval content and total directed-interval content of a subset of
a space. In the music-theoretical literature, one finds a distinction between tallies of a subset’s
interval content and those of its directed intervals. For subsets in 12-tone chromatic space, a tool
that counts the number of occurrences of each directed interval is Lewin’s 1960 interval vector
[15], which we call a directed-interval vector or DIV. It consists of a 12-member array, in which
the first coordinate lists the number of occurrences of directed intervals of length 0 (unisons); the
second coordinate, directed intervals of length 1; the third, length 2; and so on through length
11. For a subset D of size k, the sum of the vector’s coordinates is k2. For example, the DIV for
the final chord {3, 5, 8, 9}12 in ”Unterm Schutz von dichten Blättergründen” (from Figure 1) is
(411111211111): we find four unisons (e.g., between each pitch class and itself), two instances of
directed intervals of length 6 (from pitch class 3 to 9, and from 9 to 3), and one of each of the
remaining ten lengths, for a total of 42 = 16 directed intervals. DIVs can be adapted easily to
other v-tone chromatic spaces. Essentially, one uses a v-member array, wherein the first coordinate
lists the number of occurrences of directed intervals of length 0, the second coordinate directed
intervals of length 1, the third length 2, and so on through length v− 1. Again, for a subset of size
k, the sum of the vector’s coordinates is k2. For instance, the 32 = 9 directed intervals among the
members of {0, 1, 3}7 yield the DIV (3111111).

Tallies of non-directed interval content in subsets of 12-tone chromatic space are typically
represented using Allen Forte’s 1973 interval vector [3], also known as an interval-class vector
or ICV. The ICV is a 6-member array in which the respective coordinates list the number of
occurrences of each interval in a pitch-class set.5 For a subset of size k, the sum of the coordinates
in an ICV is the binomial coefficient (k

2) = (k(k− 1))/2. For example, the ICV for the {3, 5, 8, 9}12

4Henceforth in this study, we use the variable v for the size of a space rather than the more customary n. This
substitution is for consistency with our later incorporation of the standard notation (v, k, λ) for difference sets, in which v
is the size of the group.

5 It is significant to note that, whereas a DIV contains a coordinate (the first) that counts the number of unison intervals
in a pitch-class set, an ICV does not count unison intervals.
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tetrachord from Figure 1 is [111111].6 For v-tone chromatic spaces in general, the ICV is a

[
v
2
]-member array that shows the number of occurrences of each interval class in a pitch-class

set in order of ascending size from 1 to [
v
2
].7 As above, the sum of the vector’s coordinates for a

subset of size k is the binomial coefficient t(k
2). For example, in a chromatic space of size 7, we

find [
7
2
] = 3 interval classes. Accordingly, the ICV for the pitch class set {0, 1, 3}7 is [111]. An

important difference exists between Lewin’s and Forte’s vectors: whereas Lewin’s vector counts
the directed interval from pitch class x to pitch class y separately from the directed interval from y
to x, Forte’s vector counts the non-directed interval between pitch classes x and y only once. This
distinction between Lewin’s and Forte’s vectors leads to significant results in later sections.

III. Intervals and Interval Vectors in Generalized Interval Systems

In this study, we conceptualize intervals in the manner of David Lewin’s Generalized Musical
Intervals and Transformations (GMIT) [13]; more precisely, Lewin’s intervals agree with our notion of
directed intervals. In this sense, a directed interval is a member of a mathematical group that has a
simply transitive action on a space. Simple transitivity requires that (a) the action is transitive, i.e.,
each member of the space is related to every other member (and to itself) by some directed interval
in the group; and (b) the action is free, a consequence of which is that one and only one directed
interval relates a member of the space to any other member (or to itself). For instance, in each of
the examples in the previous section, the interval group is the group of integers modulo v, Zv,
which has a simply transitive action on the space S of v pitch classes. An interval exists between
any two pitch classes x and y in S, and we find one and only one directed interval from x to y : yx
(modulo v). Whereas we can generalize this situation to abstract cyclic groups and other types
of group structures, Lewin’s generalized intervals differ in significant ways from traditionally
defined directed intervals. In particular, they do not possess qualities of distance and direction
[16]. Instead, we are interested their functioning as ”characteristic motions” among the members
of a space [13, p. xxix].

GMIT does not address the notion of non-directed intervals. It is possible, however, to
generalize these intervals in a manner that is consistent with Lewin’s work. In particular, a
non-directed interval (or interval) is an equivalence class (interval class) that contains a directed
interval and its inverse. If a directed interval is equivalent to its inverse, such as is the case with
an involution, then the interval class that includes it is a singleton. For instance, the interval class
that includes x ∈ Z12, x 6= 6, also includes x (modulo 12), whereas the interval class that contains
the involution 6 ∈ Z12 consists of that element alone, as 6 ≡ −6 (modulo 12).

As many of our subsequent examples involve non-abelian groups, our notation for intervals and
directed intervals follows that of group elements in multiplicative groups (rather than the additive
notation used with abelian groups). In compositions of such group elements, we incorporate right
orthography (i.e., the product gh, where g, h ∈ G, means ”do g first, then do h”). The composition
gg is notated g2, the inverse of an element g is indicated as g−1, etc. Because a generalized directed
interval g does not possess the quality of distance, we cannot merely label its interval class with

6We use different bracket styles to distinguish between directed-interval vectors and interval-class vectors. For the
former, we use parentheses, whereas we use square brackets for the latter.

7We use the floor function, [
v
2
], in tabulating the number of interval classes in a cyclic group, on account of the

variance in the number involutions in cyclic groups of even and odd orders. A standard result in group theory shows that
even-order cyclic groups always have one involution, (e.g., 6 in Z12), whereas odd-order cyclic groups have none. As we
will see below, the number of involutions helps determine the number of interval classes in a group.
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the interval class’s shorter constituent, g or g−1 (as is the custom in chromatic spaces). Hence, we
designate the interval class that contains g and its inverse as g±1 (Accordingly, if h = g−1, then
h±1 = g±1.)

In this study, we are concerned at times with subsets of spaces, and at other times with subsets
of interval groups themselves. In particular, in GIS theory, it is sometimes more convenient to
refer to elements of an interval group rather than those of a space. As a result of its simply
transitive action, an isomorphism exists between an interval group and the space on which it
acts. Technically, the space S on which a group G acts simply transitively is called a G-torsor
[17] S is isomorphic to G, except that no point in S corresponds a priori to the identity element
of G. However, once such an association is chosen — as in assigning the pitch class C to the
identity element 0 ∈ Z12 — the bijection of the remaining members in S to group elements in G
is determined by right multiplication (for non-abelian groups; by addition for abelian groups).8

We may therefore identify subsets of the space (i.e., chords) with subsets of the group (and vice
versa). For instance, in the chromatic-space examples above, both the interval group of order v
and the space of v pitch classes can be modeled with the integers modulo v, Zv. Having assigned
the pitch class C to 0 as an origin in 12-tone chromatic space, we can interpret the members of a
pitch-class set, such as [0, 1, 4, 6]12, equally as pitch classes or as directed intervals from the origin.

Directed-interval vectors can be adapted to Lewin’s GISs by replacing tallies of directed
intervals of varying lengths with those of individual group elements, as long as it is made clear
which coordinate in the vector represents the number of occurrences of which group element.
As above, for an interval group of order v, the DIV has v coordinates, which sum to v2. As with
Lewin’s interval vector, Forte’s interval-class vector can also be adapted for use with interval
groups in GISs. Again, it is necessary to establish which coordinate of the vector counts the
occurrences of which interval class. For an interval group G, the number of coordinates in an ICV
can be determined by the following formula, where w is the number of involutions in G, and |G]|
is the size of the set of non-identity elements in G.9

w + |G]|
2

As above, the sum of the ICV’s coordinates for a set of size k equals the binomial coefficient (k
2).

IV. All-Interval Chords

An all-interval chord is a subset of a space that possesses among its members at least one of
every interval in the interval group that acts on that space [3]. Put another way, an all-interval
chord is one which contains no 0s in its ICV (or, in the case of all-directed-interval chords, in
its DIV). As we observe in §1, however, composers and music theorists have traditionally been
interested in a special category of all-interval chords: those that contain one and only one of each
non-unison interval, as such chords have the highest degree of intervallic efficiency. In these

8One may also use left multiplication, yielding (for non-abelian groups) a G-torsor that is anti-isomorphic to the
one determined by right multiplication. We incorporate right multiplication here for consistency with our use of right
orthography.

9Using results from character theory [18], we determine the number w of involutions in a finite group G via the
following:

w = Σχw(χ)χ(1)

where χ runs through the complex characters of G, and w(χ) is the Frobenius-Shur indicator of χ. Consequently, w
is always either 0 or odd. That fact, together with the classical result that a group of odd order contains no involutions,
means that w + |G]| is always divisible by 2.
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chords, the full set of available intervals is present in as small a subset as possible. Henceforth,
when we refer to all-interval chords and all-directed-interval chords, we indicate chords with this
particular property. A significant relationship exists between all-directed-interval chords and all-
interval chords: any all-directed-interval chord is also all-interval, but the reverse is not necessarily
true. For instance, a trichord with the prime form [0, 1, 3, 7]7 possesses the DIV (3111111); it
is accordingly an all-directed-interval chord. Its ICV, [111], indicates that this trichord is also
all-interval. In contrast, a trichord with the prime form [0, 1, 3, 7]6 is not an all-directed-interval
chord in the specific sense described above. Its DIV is (311211), which contains a 2, not a 1, in its
fourth coordinate; nevertheless, it is all-interval, as is evident from its ICV: [111].

Given the isomorphism from a G-torsor to the interval group G, we can define all-interval
chords and all-directed-interval chords not only as subsets of a space, but as subsets of an interval
group. In this connection, we examine various concepts from the theory of difference sets in the
field of combinatorics. Most generally a difference set is a subset D = (v, k, ) of a group G, where
v is the order of G, k is the size of D, and every non-identity element of G appears exactly λ times
as compositions of elements gh−1, where g, h ∈ D. Such subsets possess the quality of having
a flat directed-interval distribution (i.e., all coordinates of non-unison directed intervals in their
DIVs are equal to λ). For instance, let G = {P, I, R, RI} be the group of basic twelve-tone row
operations (prime [identity], inversion, retrograde, and retrograde-inversion), isomorphic to the
Klein four-group, Z2

2. The trichordal subset D = P, I, R of G is a (4, 3, 2) difference set. G is of
order 4; D is a three-element subset of G; and each non-identity element of G appears exactly
twice as a product gh−1 of elements g and h in D : PI−1 = IP−1 = I, PR−1 = RP−1 = R, and
IR−1 = RI−1 = RI, as is evident in the trichord’s DIV (3222).

All-directed-interval chords are a particular category of difference set. A planar difference set
is one in which λ = 1 (i.e., each non-unison directed interval appears exactly once). The k = 4
subset {0, 1, 3, 9}13 of Z13 serves as an example; its DIV, (4111111111111), demonstrates the unary
directed-interval distribution that distinguishes it as a planar difference set. A conjecture in the
field of combinatorics [12, p. 421] states that if λ = 1, then k− 1 must be the power of a prime.
That is, there are no planar difference sets of sizes 6, 10, 12. . . .

The familiar all-interval tetrachords of pitch-class set theory, {0, 1, 4, 6}12 and {0, 1, 3, 7}12, are
not planar difference sets. In fact, they are not difference sets. As indicated by their shared
DIV, (411111211111), these tetrachords do not possess flat directed-interval distributions. Rather,
they are examples of almost difference sets. An almost difference set is a subset D = (v, k, λ, t)
of G, where v and k are defined as above; t non-identity elements of G appear exactly λ times
as compositions of elements gh−1, where g, h ∈ D; and the remaining v − 1− t non-identity
elements of G appear λ + 1 times as gh−1 compositions. Hence, {0, 1, 4, 6}12 and {0, 1, 3, 7}12 are
examples of (12, 4, 1, 10) almost difference sets. Their DIVs possess ten coordinates that equal 1,
and 12− 1− 10 = 1 coordinate that equals 1 + 1 = 2: the difference 6 (modulo 12).

Whereas planar difference sets are always all-directed-interval, and therefore also all-interval,
non-planar difference sets and almost difference sets are never all-directed-interval. Furthermore,
they are all-interval only if the following two circumstances are met. First, they must have
1 ≤ λ ≤ 2; and, second, any element in G (i.e., directed interval) with λ = 2 must be an involution.
For example, the trichord {P, I, R} above is an example of a (4, 3, 2) non-planar difference set.
Every gh−1 composition has λ = 2 and is also an involution. Similarly, {0, 1, 4, 6}12 and {0, 1, 3, 7}12
are (12, 4, 1, 10) almost difference sets, in which the gh−1 compositions in either set with λ = 2 are
involutions, i.e., 6 (modulo 12). As we see below, these three categories of difference sets, planar
and non-planar difference sets and almost difference sets, account for every all-interval chord (up
to isomorphism) of small order (i.e., 2 ≤ k ≤ 8).
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V. Interval Groups and All-Interval Chords

A significant relationship exists between the number of intervals in a group G and the potential for
its having all-interval subsets. A subset D of size k in G has a triangular number, (k

2), of unordered
dyads that can be labeled with intervals. Therefore, if D is to include one and only one occurrence
of every interval in G, then G must have exactly (k

2) intervals. For instance, a tetrachord contains
(4

2) = 6 unordered dyads that can be labeled with intervals. For it to be an all-interval tetrachord,
the group that contains these intervals must also have six interval classes, as does Z12. Two factors
determine how many intervals are in a group: the order of the group itself (minus the identity)
and the number of involutions that it contains. As we observe above in §3, the number of intervals
is equal to the sum of number of involutions in the group plus half the number of elements of
order > 2. If this number equals (k

2) for some k, the group may potentially contain all-interval
k-chords. As we demonstrate below, however, this condition is necessary — but not sufficient —
for the existence of all-interval chords.

It is possible for a group to have (k
2) intervals, and not to contain any all-interval k-chords. For

example, the dicyclic group of order 12, Dic12 = 〈x, y|x6 = y4 = 1, x3 = y2, y−1xy = x−1〉, contains
(4

2) = 6 intervals, the same as Z12, but it has no all-interval tetrachords. Dic12 has a cyclic subgroup
of 6, generated by an element x, which yields three intervals: x±1, x±2, and x±3 (an involution).
The remaining six elements of Dic12 are all of order 4, yielding three additional interval classes.
Moreover, for any of these elements y of order 4, y2 is equal to the single involution within the
cyclic subgroup, x3. Nevertheless, the existence of an all-interval tetrachord fails. It requires one
interval labeled as x±3, such as the interval between x0 (the identity element) and x3, and one
occurrence of y. However, the interval between x0 and y and the interval between y and x3 are the
same, i.e., y(x0)−1 = x3y−1 = y, resulting in more than one occurrence of that interval.

In terms of a musical representation, Dic12 is isomorphic to a particular transposition/skew-
inversion group.10 This group has a cyclic subgroup that consists of the six transposition operators
with even indices (i.e., Tm, m is even), and the remaining six elements of order 4 are skew-inversions
with odd indices (i.e., Sn, n is odd). Table 1 lists the cycles of the eleven non-identity elements of
this group as they act on the set of twelve chromatic pitch classes. As any all-interval tetrachord
in this group requires a tritone, let us select arbitrarily the tritone {1, 7} from the odd whole-tone
collection. Further, such a tetrachord would also require at least one pitch class from the even
whole-tone collection; we choose 6. From the cycles in the table, however, we see that the interval
between 1 and 6 and the interval between 6 and 7 are the same, S±1

1 , which is not allowed in
an all-interval chord. As this situation occurs for any combination of a tritone from one parity’s
whole-tone collection and a single pitch class from the opposite parity’s whole-tone collection, the
existence of an all-interval tetrachord fails.

Certain limits exist on the size of groups that may include all-interval k-chords. The smallest
groups that can potentially accommodate an all-interval k-chord are elementary abelian 2-groups,
Zn

2 , wherein every non-identity element is an involution. These groups contain a Mersenne
number, 2n − 1, of non-unison intervals. For example, the group of basic twelve-tone row
operations is isomorphic to Z2

2 , and it contains an all-interval trichord, e.g., P, I, RI. However,
instances in which a triangular number (k

2) equals some Mersenne number 2n − 1 are rare.
10Whereas an inversion is a reflection in pitch-class space, i.e., an operation of order 2, a skew-inversion is a pseudo-

reflection of order 4 (i.e., a reflection of order > 2; see [19]). Under a skew-inversion, pitch classes of one parity, even or
odd, map as normal inversions to their counterparts of the other parity, but when they reflect back to those in the original
parity, they return a tritone away. Hence, four iterations of the cycle are required before returning to the original pitch
classes. For instance, the operation on pitch classes 5x + y (modulo 12), is a skew-inversion for any odd y. Skew-inversions
are similar to skew-Wechsels of neo-Riemannian theory (a category of contextual inversions), which are discussed in more
detail in [20].
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Table 1: Non-trivial cycles of elements in the transposition/skew-inversion group G ' Dic12.

T2 := (0, 2, 4, 6, 9, 10)(1, 3, 5, 7, 9, 11) T10 := (0, 10, 8, 6, 4, 2)(1, 11, 9, 7, 5, 3)
T4 := (0, 4, 8)(1, 5, 9)(2, 6, 10)(3, 7, 11) T8 := (0, 8, 4)(1, 9, 5)(2, 10, 6)(3, 11, 7)
T6 := (0, 6)(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)
S1 := (0, 1, 6, 7)(2, 11, 8, 5)(3, 4, 9, 10) S7 := (0, 7, 6, 1)(2, 5, 8, 11)(3, 10, 9, 4)
S3 := (0, 3, 6, 9)(1, 8, 7, 2)(4, 11, 10, 5) S9 := (0, 9, 6, 3)(1, 2, 7, 8)(4, 5, 10, 11)
S5 := (0, 5, 6, 11)(1, 10, 7, 4)(2, 3, 8, 9) S11 := (0, 11, 6, 5)(1, 4, 7, 10)(2, 9, 8, 3)

Nevertheless, of the three known examples, two values of 2 ≤ k ≤ 8 satisfy this condition, 3 and 6:
(3

2) = 22 − 1, and (6
2) = 24 − 1.11 In contrast, the largest groups that can potentially accommodate

an all-interval k-chord contain no involutions. As groups of odd order contain no involutions, at
least one isomorphism class — the cyclic group — exists for each odd order (and some odd orders
contain additional isomorphism classes of groups). For instance, Z7 is the largest group to have
all-interval trichords. It contains three intervals, none of which is an involution. However, it is
useful to note again that the existence of a group with (k

2) intervals — whether large, small, or in
between — does not guarantee the existence of all-interval subsets.

VI. Sets of All-Interval Chords

Aside from Z2, which contains a single all-interval chord, {0, 1}, interval groups that contain
one all-interval chord also contain additional all-interval chords.12 The set classes [0, 1, 4, 6]12 and
[0, 1, 3, 7]12 in Z12 — orbits of these tetrachords under the action of the dihedral transposition and
inversion group — are familiar examples of sets of all-interval chords. Each orbit is of size 24:
twelve all-interval tetrachords that relate to one another by transposition, and twelve more that
relate to those by inversion. As no other tetrachords in Z12 exist with the ICV (111111), these
forty-eight forms constitute the full set of all-interval chords contained in this interval system.

The members of set-classes [0, 1, 4, 6]12 are related to those of [0, 1, 3, 7]12 by neither transposition
nor inversion (and vice versa), and yet the members of both set-classes have the same intervallic
content. Hence, we observe that these set classes are Z-related [3]. Their members also relate to one
another’s by the multiplicative operations M and MI: pitch-class multiplication by 5 and 7 (modulo
12), respectively [21]. This situation occurs in all cyclic interval groups: if D is an all-interval
subset of Zn, then the affine transformations of D, Dx + a = {dx + a|d ∈ D, x ∈ Zn co-prime to
n, a ∈ Zn}, are also all-interval.13 The reasoning is straightforward: affine transformations do
not preserve distances, but they preserve ratios of distances. Accordingly, if D contains the set of
all distances in the finite space Zn, a transformation that preserves the ratios of these distances
results in a permutation on the set of distances.

The set of affine transformations on Zn form a group, Aff(Zn), the action of which on D
yields a set of Z-related all-interval subsets. In general, Aff(Zn) is equivalent to the normalizer
of Zn in the symmetric group on Zn : NSym(Zn)Zn.14 This correspondence allows us to carry the

11The next smallest value of k to satisfy this condition is 91, as (91
2 ) = 212 − 1 = 4095. No further examples of reasonable

size exist (and it is possible that no further examples exist at all).
12We might also say that the trivial group Z1 contain one all-interval chord, {0}, consisting of a single pitch class. It has

one and only one occurrence of the sole interval in that group, the unison. However, we do not include this example, as
we are concerned in this study only with non-unison intervals.

13The affine group Aff(Zn) is the set of all transformations xy + z (modulo n), where y, z ∈ Zn, and x ∈ Zn is co-prime
to n.

14The normalizer of a group G in another group H is the subgroup of elements in H that preserve G under conjugation.
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Table 2: An all-interval pentachord D in the interval system G ' S3 ×Z3.

Sonority 1 Sonority 2 Sonority 3 Sonority 4 Sonority 5

High C5
3 B5

3 C5
3 C6

3 A6
4

Middle B5
3 C5

3 A5
3 B6

3 C6
4

Low A5
3 A5

3 B5
3 A6

3 B6
4

notion of affine transformations to other types of interval groups. If G is a group that acts simply
transitively on a space S, then the normalizer of G in the symmetric group on S, NSym(S)G, serves
as an analog for the affine group. As the action of Aff(Zn) on D yields a set of all-interval subsets
in Zn, including Z-related subsets, the action of NSym(S)G on D yields a set of all-interval subsets
in any S, including GISZ-related subsets.15 For all cases except one (as we discuss in §7), this
action produces the full set of all-interval chords of small order for any interval system.

An example of a set of all-interval chords can be found in the following interval system. Define
a 9-note sonority that is separated into three distinct registers: high, middle, and low. Put an A
major triad in one register, a B major triad in a second register, and a C major triad in the third. In
any one sonority, all three triads must appear in the same position: root position [53], first inversion
[63], or second inversion [64]. The space S of all possible configurations of such sonorities is of
size eighteen: six permutations of the triads in three registers, and three positions in which the
triads may appear. The interval group G that has a natural action on the space of these eighteen
sonorities is isomorphic to the direct product of the symmetric group of degree 3 by the cyclic
group of order 3, S3×Z3 (of order 18). This interval system has (5

2) = 10 interval classes: seven
interval classes of invertible elements and three involutions. Moreover, it allows for all-interval
5-member subsets. For instance, the subset D of five sonorities that appear in Table 2 contains
one and only one of each interval in this group.

The symmetric group Sym(S) on the space S of these sonorities is of size
18! = 6, 402, 373, 705, 728, 000. Within this symmetric group, 216 operations normalize G. The orbit
of D under NSym(S)G is of size 108 (hence, each element of this orbit is stabilized by 216/108 = 2
members of the normalizer). These 108 pentachords constitute the full set of all-interval subsets
for this interval system. We do not find GISZ-relations in this set particular of all-interval chords.
All 108 pentachords in the orbit of D under the action of the normalizer are also in the orbit of D
under the respective actions of the group of GIS-transposition and GIS-inversion operations and
the group of interval-preserving operations.

VII. All-Interval Chords of Small Order (2 ≤ k ≤ 8)

In this section, we catalog all the interval groups (up to isomorphism) that contain all-interval
chords of orders 2 ≤ k ≤ 8. For each chord size, we include remarks about the groups that
produce all-interval chords, including the number of such chords that they contain and the types
of difference sets that those chords exemplify, whether the groups are abelian or non-abelian, and
other relevant information.

That is, NH G = h ∈ H|h−1Gh = G.
15The GISZ relation is Lewin’s adaption of the Z relation to the theory of Generalized Interval Systems. Sets that are

GISZ-related to one another are related by neither GIS transposition nor GIS inversion (nor, in the non-abelian case, by
members of the group of interval-preserving transformations) [22]
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Bichords. The smallest all-interval chords include only one (non-unison) interval; hence, they
are of size k = 2. Accordingly, the interval groups that contain these bichords must themselves
have only one interval class. The smallest isomorphism class of such groups is the cyclic group of
order 2, Z2. In this group, the single non-identity element is an involution. Z2 includes only one
all-interval chord, the smallest non-empty set of all-interval chords for any group. This bichord
is an example of a (2,2,2) non-planar difference set. The largest group with one interval class is
the cyclic group of order 3, Z3, which possesses no involutions. Z3 contains three all-interval
chords. As this group has no involutions, these all-interval chords are also all-directed-interval
chords. The all-interval bichords in Z3 are examples of (3,2,1) planar difference sets, the smallest
non-trivial class of these structures. Both the above groups are abelian.

Trichords. Groups with all-interval trichords must contain three interval classes. Three
isomorphism classes of groups have the appropriate number: the Klein four-group, Z2

2 ; the cyclic
group of order 6, Z6; and the cyclic group of order 7, Z7. All three possess all-interval trichords.
The three non-identity elements of Z2

2 are all involutions, making it the smallest group to have
all-interval trichords, as well as the smallest non-cyclic group to contain all-interval chords of
any size. The four all-interval trichords in Z2

2 are examples of (4,3,2) non-planar difference sets.
Z6 contains two interval classes of invertible elements and one involution. Its twelve all-interval
trichords are examples of (6,3,1,4) almost difference sets; as such, it is the smallest group to include
all-interval chords with this type of structure. In contrast, Z7 contains no involutions. Its fourteen
all-interval trichords are examples of (7,3,1) planar difference sets; hence, they are also all-directed
interval. As with the bichords, the three groups that contain all-interval trichords are abelian.

Tetrachords. For a group to accommodate all-interval tetrachords, it must have six interval
classes. Four groups satisfy this requirement: the dihedral group of order 8, D8; the cyclic group
of order 12, Z12; the dicyclic group of order 12, Dic12; and the cyclic group of order 13, Z13.
However, only three of these groups possess all-interval tetrachords: D8, Z12, and Z13. (In §5,
we examine the reasons why Dic12 fails to produce all-interval tetrachords.) D8 is distinguished
as being the smallest non-abelian group to contain all-interval chords of any size. Its sixteen
all-interval tetrachords are examples of (8,4,1,2) almost difference sets. Z12 contains the canonical
examples of the forty-eight all-interval tetrachords of pitch-class set theory, instances of (12,4,1,10)
almost difference sets. Z13 has fifty-two all-interval tetrachords. As Z13 contains no involutions,
these planar difference sets are also examples of all-directed-interval chords. These latter two
groups are abelian.

Pentachords. As the size of the all-interval chords increases, the number of interval groups
with appropriate numbers of interval classes that fail to produce all-interval chords also increases.
All-interval pentachords require groups with ten interval classes. Whereas seven groups meet
this condition, only four have all-interval pentachords: the semidihedral group of order 16, SD16
(also known as the quasidihedral group of order 16); the direct product of S3 and Z3, S3 ×Z3;
the semidirect product of Z7 by Z3, Z7 o Z3; and the cyclic group of order 21, Z21. SD16 has
128 all-interval pentachords, which are (16,5,1,10) almost difference sets, and the 108 all-interval
pentachords in S3 ×Z3 are (18,5,1,14) almost difference sets. Both these groups are non-abelian.

In the subsections above with 2 ≤ k < 5, we note the existence of almost difference sets in
the cyclic group of order (k− 1)2 + (k− 1) and planar difference sets in the cyclic group of order
(k− 1)2 + (k− 1) + 1. With k > 5, this circumstance no longer holds. Specifically, we cease to
find examples of all-interval k-chords in the cyclic group of order (k− 1)2 + (k− 1). Whereas Z21
contains forty-two all-interval pentachords as (21,5,1) planar difference sets (hence, they are also
all-directed-interval chords), no all-interval chords exist in Z20. The rationale for this situation is
related to the non-existence of perfect Golomb rulers with five or more marks.16 We find another

16A Golomb ruler with k marks and length L has a different measurement between any two marks. A perfect Golomb
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first occurrence with k = 5: the existence of a non-abelian group of order v = (k− 1)2+ (k− 1) + 1
that contains all-interval chords, Zv/3 o Z3. Such a non-abelian group exists for every k ≡ 2
(modulo 3), where k > 5 [12, Theorem 18.68]. Like the cyclic group of order 21, Z7 o Z3 contains
no involutions. Hence, the 294 all-interval pentachords in this group are (21,5,1) planar difference
sets (and they are also all-directed-interval chords), the same type of structure as those in Z21.

Hexachords. A hexachord has fifteen intervals; therefore, a group that contains all-interval
hexachords must have that number of interval classes. Eight such groups exist, but only five of
these groups contain all-interval chords: the direct product of four copies of the cyclic group of
order 2, Z4

2; the direct product of the alternating group of degree 4 and the cyclic group of order 2,
A4 ×Z2; the direct product of Z3

2 and the cyclic group of order 3, Z3
2 ×Z3; the direct product

of cyclic groups of order 14 and order 2, Z13 ×Z2; and the cyclic group of order 31, Z31. Of
these five groups, only A4 ×Z2 is non-abelian. As with the sets of groups that contain all-interval
bichords and trichords, we find all-interval hexachords in the smallest and largest possible groups
to have the appropriate number of interval classes. Z4

2 , in which all fifteen interval classes are
involutions, is the smallest such group. Its 448 all-interval hexachords are examples of (16, 6, 2)
non-planar difference sets. In contrast, Z31 contains no involutions. It contains 310 all-interval
hexachords as (31, 6, 1) planar difference sets (i.e., all-directed-interval hexachords).

Two groups of order 24 exist with all-interval hexachords: one abelian with 1344 all-interval
hexachords, Z3

2 ×Z3; and one non-abelian with 192 all-interval hexachords, A4 ×Z2. As both
these groups have seven involutions, all 1536 of these hexachords are instances of (24,6,1,16)
almost difference sets. In the group Z14 ×Z2 of order 28, we find more than one orbit of all-
interval hexachords under the action of the normalizer of the group. Consequently, the GISZ
relations among these hexachords do not derive from operations that are analogous to affine
transformations. It is the only group with all-interval chords of size 2 6 k 6 8 to have this property.
Its 728 all-interval hexachords partition into three orbits: one orbit of size fifty-six, and two of size
336. All of these hexachords are examples of (28, 6, 1, 24) almost difference sets.

Heptachords. Of the sixteen groups with twenty-one interval classes, as required for all-
interval heptachords, only one has this type of subset. Interestingly, it is not the cyclic group
of order (k− 1)2 + (k− 1) + 1 = 43. As this number is prime, the cyclic group Z43 is the only
isomorphism class of groups of that order. Further, it has no involutions, suggesting that it contains
planar difference sets. However, we recall from §4 that k− 1 must be the power of a prime to yield
planar difference sets (and in this case, 7− 1 = 6 is smallest integer that is not the power of a
prime). Instead, the one isomorphism class of groups to produce all-interval heptachords is the
extraspecial group 2(1 + 4) of minus type. This order-32 group is the central product of a dihedral
group of order 8 and a quaternion group of order 8 that intersect in a central order-2 subgroup
(i.e., all thirty-two members of the group commute with the members of this subgroup) [24]. The
512 all-interval heptachords found in this non-abelian group are all instances of (32,7,1,20) almost
difference sets.

Octachords. As with the pentachords, 8 ≡ 2 (modulo 3); hence, we find a non-abelian group of
order 57, Z19 ×Z3 , along with the cyclic group Z57. In fact, of the ten groups with twenty-eight
interval classes, only these two produce all-interval octachords. Z57 contains 684 all-interval
octachords, and Z19 o Z3 has 6498. All 7182 are examples of (57,8,1) planar difference sets (i.e.,
all-directed-interval octachords).

ruler is one in which every distance from 1 to L appears as such a difference [23]
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VIII. Conclusions and Future Work

In total, we find 11,438 all-interval chords of sizes 2 6 k 6 8 in twenty interval systems. The groups
that these interval systems incorporate include abelian groups that are cyclic (Z2, Z3, Z6, Z7, Z12,
Z13, Z21, Z31, and Z57) and non-cyclic (Z2

2, Z4
2, Z3

2 ×Z3, and Z14 ×Z2), as well as non-abelian
groups (D8, SD16, S3 × Z3, A4 × Z2, Z7 o Z3, 2(1+4) [the central product of D8 and Q8], and
Z19 o Z3). Moreover, the all-interval chords themselves are of three general types: three classes
of non-planar difference sets, seven classes of almost difference sets, and six classes of planar
difference sets. The chords of the first two types are merely all-interval, whereas those of the third
type also meet the stricter requirement of being all-directed-interval. The full sets of all-interval
chords in these interval systems also vary in size and in terms of their GISZ-relations. Their sizes
range from one chord (Z2) to 6498 chords (Z19 o Z3). None of the sets with k < 4 have Z− or
GISZ-related members. Nineteen of the twenty sets are single orbits of all-interval chords under
the action of the normalizer of the interval group. The GISZ relations among the chords in these
sets derive from affine or affine-like transformations. The one remaining set — that of all-interval
hexachords in Z14 ×Z2 — is comprised of members in three such orbits. The GISZ relations
among all-interval hexachords within different orbits of the normalizer of this group obtain from
other, more obscure origins.

Within this diversity, we find some common threads that are of particular relevance to musical
structure. First, abstract mathematical groups correspond to groups of symmetries. Whereas
the generalized intervals we discuss here do not necessarily possess qualities of distance and
direction, they do relate to symmetries. Further, the groups of symmetries to which these twenty
interval systems correspond either contain simple symmetries themselves or are products (direct or
semi-direct) of smaller groups that are composed of simple symmetries. Basic symmetries — such
as translations, rotations, and reflections — surround us and shape our experience; they are found
throughout nature, and they are commonplace in many human endeavors, including the visual
arts, architecture, and music [25]. The cyclic groups Zn agree with rotations of regular n-gons.
These types of symmetries are used to model a variety of musical structures, including pitch-class
transpositions and rhythmic translations in metric spaces. The dihedral groups D2n add reflections
to these rotational symmetries. In music, such reflections correspond to pitch-class inversions
and rhythmic retrogrades. The Klein 4-group Z2

2 corresponds to a subgroup of symmetries of a
square, or 2-cube. As we discuss in §4, these symmetries are those of the serial operations prime,
inversion, retrograde, and retrograde-inversion. The larger elementary abelian 2-groups Zn

2 are
isomorphic to particular subgroups of n-cube symmetries. These symmetries model nth roots of
inversion and retrograde [26]. Similar associations exist for the other small groups that constitute
these interval systems.

In addition to the interval systems, the all-interval chords they contain also have special
musical significance. Their defining structure facilitates two important compositional processes:
summation and deconstruction/development. The Schoenberg Lieder from Figure 1 illustrates
the former process. This work — one of his first atonal compositions — is representative of the
”emancipation of dissonance” that characterizes his atonal style. Rather than organizing pitch-
class intervals in this song in terms of a hierarchy that is based on consonance and dissonance,
Schoenberg treats all intervals equally. Thus, the final sonority of this piece, an all-interval
tetrachord, serves as an economical summary of the song’s intervallic content. The process of
deconstruction/development is evident in the first two string quartets of Elliott Carter. Carter
systematically deconstructs the all-interval tetrachords in these works into their constituent parts,
exploring and developing each of the intervals in turn and in combination. Additional aspects
of all-interval chords lend themselves to further musical interpretation. For instance, certain
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transformational processes, such as the one in Figure 2, are possible because of the unique
construction of these types of chords.

From a theoretical perspective, the completion of an existence theorem is perhaps the most
significant open question. As we note in §5, an interval system cannot contain all-interval k-
chords unless it has exactly (k

2) interval classes. Satisfying this condition is necessary, but not
sufficient, for the existence of all-interval chords. Does a single, unifying requirement exist that
proves sufficiently the existence (or lack of existence) of all-interval chords in a given interval
system? Much future work remains in the study of all-interval chords. The small-order structures
investigated here can serve as departure points for new compositional designs and analytical
investigations, and similar work may also be applied to larger-order all-interval chords.
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