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Abstract: This paper intends to demonstrate the different ways many of my compositional projects used
mathematical tools, from the pre-compositional stage through a final product done with sound synthesis.
These tools are of diverse nature, depending on the theoretical needs of the problem faced. In some cases,
the project employed discrete and combinatorial mathematics. In other cases, geometry was a useful tool
to visualize rhythmic manipulations. Irrational numbers were the basis of a non-conventional tuning
proposition. Continuous functions, like "sine", are at the core of digital sound synthesis and, in a
particular project, served to the design of a digital filter.
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I. Introduction

Many music compositions of the 20th Century have benefited a great deal from Mathemat-
ical, Physical or Technologica l knowledge and many continue to do so nowadays. We
will concentrate the approach of this paper in the contribution of three different branches

of Mathematics: Discrete and Combinatorial Mathematics, Euclidian Geometry and all kinds of
Continuous Functions Mathematics.

We may distinguish two main general compositional approaches used in this period. The
first one prolongs the validity of the very ancient idea of reducing the complexity of the musical
phenomenon to a symbolic representation called the "note" which embraces some of the predomi-
nant characteristics of sound to human perception: pitch, duration, dynamics and timbre. This
approach allowed the development of musical notation. It still represents, to most composers,
their daily tool for music conception and representation. The second approach, that had only
subsidiary relevance until the 19th Century, depends on the possibility of dealing with the internal
characteristics of the sound. Some, as [7], say that is music composed with the sound itself. Some,
as Landy [8], call it "organized sound" and do not even defend that we need to call them "music"

102

mailto:rcoelho@usp.br


MusMat: Brazilian Journal of Music and Mathematics • December 2016 • Vol. I, No. 1

anymore. Of course, we are talking of sound products in which the author intentionally explores
the internal qualities of the sound evolving in time. Therefore, they belong to the realm of sound
design, electronic, concrete, acousmatic or electroacoustic music, or whatever other name is used
to identify music to which the concept of "note" is, at most, of secondary importance.

The mathematical tools of discrete and combinatorial mathematics, and geometry, apply mostly
to music that continues to use traditional notation, while the mathematics of continuous functions
holds the conceptual basis for music that, besides employing technological means to generate
sound, treats the sound from inside out.

I might use compositions of most of the established composer and the major names of the
20th Century to demonstrate my point but I choose to use my own compositions in order to
state my personal view of how important I consider the influence of mathematical thinking
in my compositional trajectory. The selection of cases intends to illustrate the use of different
mathematical tools, notwithstanding that more than one may have contributed to develop each
particular compositional project.

II. Pitch numerical representation allowing a processual form

It may seem a problem of nostalgic self-indulgence to resort to one of my first attempts in
music composition to illustrate how the elementary idea of representing the chromatic scale with
numbers emerged to me. Indeed, the circumstance around this report is what makes it interesting.
It was the year of 1970 and I was seventeen years old. I had just started to attend college classes
and one of the required freshman courses was "Introduction to Computer Programming". The
instructor taught us the Fortran 1.0 computer language. We had to punch cards and stay on line
to run our codes on the only IBM mainframe computer available in the school, a device that filled
a large room. We could not enter the room, only glimpse through a door window. Besides the
scheduled homework, we were supposed to come up with real world problems that a computer
program might solve. The teacher used to say that the computer was a solution in search of
problems. I was already interested in music composition, following whatever reached me of the
European avant-garde music. This means that I had some information about basic concepts of
dodecaphonic and aleatory music.

During that year, among other projects, I devised the idea of composing automatically a short
piece of atonal music with the aid of a computer program. The name of resulting piece of music
was Three Episodes for piano. Its definitive version dates 1974. The first problem I had to face in that
project was how to represent the notes of the chromatic scale with numbers. My first attempt was
to assign ten pitches to the numbers 1 to 10, substituting 0 for 10 to deal only with single digits.
Therefore my numeric code was: 1 = C, 2 = C] , 3 = D, 4 = D] , 5= E, (...) through 9 = G] and
0 = A. As I was missing numeric representations for A] and B, I circumvented the problem with
a systematic rotation of the numeric correlation assignment to include all the pitches.

I keep to this day a print out of the output, but unfortunately, the code itself was lost. It reads
like that:

4 1 7 8 3 0 9 5 2 6
5 8 5 1 3 9 4 7 8 0
3 3 6 4 2 3 1 5 8 5
6 9 0 6 5 4 6 3 3 8

etc.............................................................

The idea of the program was to calculate the numbers of each new line adding the adjacent
numbers of the previous line. For instance, the second line is based on the first: 4 + 1 = 5,
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1 + 7 = 8, until the last, which should turn around to the beginning and retrieve the first element,
6 + 4 = 10, however making 10 = 0. Insofar, when the sum exceeded 10, the program kept only
the last digit. For instance, 9 + 5 = 14, but 14 was replaced by 4.

Soon I realized that I did not need to restrain myself to single digits. I could operate the same
reduction used for numbers above 10, using the concept of base 12. For a new programming
attempt, I chose a more practical correlation that begun with the association C = 0, as practiced
nowadays. Therefore, a second program using the principle of mode 12, processing a new sequence
of twelve numbers without repetition, yielded the following result:

10 4 1 7 8 3 0 9 5 2 6 11
2 5 8 3 11 3 9 2 7 8 5 9
7 1 11 2 2 0 11 9 3 1 2 11
8 0 1 4 2 11 8 0 4 3 1 6
etc....................................................................................

These attempts of 1970 precede the publication of Forte’s pioneer book on musical set theory
[4]. Took me almost two decades to acknowledge the development of a set theory of music in
other part of the world. For sure, I had assumed that it might be happening, so intuitive the
approach seemed to me. The only problem was that, at that time, before the internet, information
reached Brazil much slower than today.

The more interesting aspect of that first attempt was how it allowed the generation of pitch
data by numeric manipulation. One cannot add pitches, unless numbers replace them. The
purpose was to build a machine that makes music using a process that only stops when it reaches
a certain condition, for instance, the completion of one hundred loop cycles. At that time, I was
only vaguely aware of the concept of "music as process" and the major trend it represented. Still
years later, when critics commented the first performance of the piece, referring to it as piece of
serial music, I thought they were mistaken because I did not follow the rules of serial music. For
me, then, serial music was dodecaphonic music with its principles extended to others parameters.
I realized that the pitch generation of that piece was somehow unpredictable and therefore closer
to stochastic music. One thing particularly pleased me: the process allowed pitch repetition, a
negative imperative to Schoenberg. All I knew at that time, concerning serial music, followed the
teachings of Krenek (1940). We knew very little details about the explosion of the series promoted
by Boulez and Stockhausen techniques, but the ear guided me to obtain similar results, although
the technique used was somehow original.

Figure 1: Coelho de Souza’s Three Episodes for piano, mov. 3, m. 14-16.

Even though Figure 1 does not show an analysis of the pitch generation, it illustrates the style
of the music produced by the numerical process above described.

As a corollary to this line of reasoning, we may question what would be the meaning of
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negative numbers in this context. In fact, the model is consistent because the chromatic scale
supports a symmetrical reflection:

... -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

... G A[ A B[ B C C] D D] E F F] G

On the other hand, what happens with actual pitch frequencies? For instance, consider
A0 = 27.50Hz as the low A in the scale above. Calculating the descending pitches according to
the tempered tuning, we obtain:

A(0) = 27,50 Hz
A[(0) = 25,96 Hz
G(0) = 24,50 Hz
G[(0) = 23,12 Hz
F(0) = 21,82 Hz
E(0) = 20,60 Hz
E[(0) = 19,44 Hz
D(0) = 18,35 Hz
D[(0) = 17,32 Hz
C(−1) = 16,35 Hz
B(−1) = 15,43 Hz
B[(−1) = 14,56 Hz
A(−1) = 13,74 Hz

Therefore, the pitches plunge into a sub-sonic frequency realm, asymptotically tending to zero.
There are no negative frequencies and even if we forcefully assign a negative value to the frequency
of a pitch, in physical terms this will be the same sound of the equivalent positive frequency with
a 180 degrees inverted phase. Therefore, this physical reality impairs the dualistic principle used
by Hugo Riemann to justify his Theory of Functional Harmony because its postulate requires the
existence of an inverted harmonic series. He missed that we can draw pitches in a linear scale that
supports negative numeric values, but these pitches map frequencies into a logarithm curve that
asymptotically approaches zero, never assuming negative values or any symmetrical shape.

III. Tuning with the Golden Section

From my first compositional project, I jump now to my most recent project that is an opera named
The Machine of Pascal in Pernaguá. For this project, I have also rescued from my memory the
generative operations described above and used them to compose some of the scenes. This is also
a reason to mention the procedure in this report. Unfortunately, I could not find a short good
example of the method taken from the opera therefore I resorted to that old but clearer example.

Going now to the point, one of the main scenes of the drama depicts an hypothetical ability
of Pascal’s machine to produce music. The story is set in the 18th Century but, obviously, the
Pascal’s machine is a metaphor of today’s computer. The music associated with the machine has
characteristics that go beyond human motor control or limits of instrumental performance. One
of such aspects is the microtonal tuning used by the computer-generated music of this scene. It
implements a scale division inspired by the golden section.
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The purpose of this tuning model is to obtain inharmonic relations between pitches. As the
basic generative proportion is an irrational number, we do not expect to obtain any of the harmonic
relations, known since Pythagoras, based on integer numbers.

ϕ = (1 + 51/2)/2 = 1.6180339887 . . . (1)

In this construction, we also applied two principles very fond to mathematical reasoning: the
principle of symmetry and the principle of self-similarity. Applying symmetry, reflecting the
division around the middle point, we obtain a first step of the division:

0.618034 0.381966 

0.618034 0.381966 

f                              1.319f         1.618f                          2f 

The following steps are recursive applications of the golden ratio, dividing each remaining
segment into three parts that replicate self-similarly the scheme above. For a matter of clarity, we
present the results in a vertical table instead of horizontally, as above.

The first column of Table 1 shows a linear division of the octave applying a nested golden
ratio proportion. The next column shows the linear increments: adding the values of the first and
second columns, we obtain the next line of the first column. However, we know that the human
hearing is not linear, but logarithmic. The next column shows a similar division of the octave
with logarithmic scaling. The fourth column shows the logarithmic increments: multiplying the
values of the third and fourth columns, we obtain the next line of the third column. The fifth
column depicts the tempered division of the octave. Of course, there is no perfect equivalence
with, neither the first, nor the third column, but we emphasize in bold italic that the values of the
tempered fourth and fifth degrees are very close of those in the golden rate division column. The
small discrepancy of values is not only a matter of accuracy. We tried to proof a mathematical
equivalence and performed a more precise evaluation of the results too. We find out that values are
indeed not equal, but only a coincidence up to a certain degree of precision. However, we cannot
perceive the difference between these pitches because they are within the JND (just noticeable
difference) limit.

The marks on sixth column show the nesting branches. Centered "x"s indicate the first division
step. A left positioned "x" shows the second branch e right positioned "x" the third interaction.
The last column applies the results to the interval A2-A3. Notice that we obtain a microtonal
scale divided in 25 intervals. There are three kinds of intervals that on the second column are
identified by the increments 0.022. 0.034 e 0.056. Notice that the sum of the first two equals the
third. Therefore. for practical purposes. we might reduce the division to 21 intervals of only two
sizes.

These frequencies can be considered the fundamental of a complex note but also harmonic
partials of inharmonic sounds. They can disperse in many octaves or concentrate in clusters. A
digital synthesis program can implement any kind of pitch combination and their relative weight.
That is what we have done in the above-mentioned opera scene.
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Table 1

linear
proportion

linear
increment

logarithmic
proportion

logarithmic
increment

tempered
d = 2 1/12

fractal
nesting

pitches for
A2 = 110.0

1.000 f + 0.056 1.000 f x 1.0396 1.000 f x 110.0 Hz

1.056 f + 0.034 1.040 f x 1.0238 x 114.4 Hz

1.090 f + 0.056 1.064 f x 1.0396 1.059 f x 117.0 Hz

1.146 f + 0.034 1.106 f x 1.0238 x 121.7 Hz

1.180 f + 0.022 1.113 f x 1.0154 1.122 f x 122.4 Hz*

1.202 f + 0.034 1.150 f x 1.0238 x 126.5 Hz

1.236 f + 0.056 1.178 f x 1.0396 1.189 f x 129.6 Hz

1.292 f + 0.034 1.224 f x 1.0238 x 134.6 Hz

1.326 f + 0.056 1.253 f x 1.0396 1.260 f x 137.8 Hz

1.382 f + 0.034 1.303 f x 1.0238 x 143.3 Hz

1.416 f + 0.022 1.334 f x 1.0154 1.335 f x 146.7 Hz

1.438 f + 0.034 1.355 f x 1.0238 x 149.1 Hz*

1.472 f + 0.056 1.387 f x 1.0396 1.414 f x 152.6 Hz

1.528 f + 0.034 1.442 f x 1.0238 x 158.6 Hz

1.562 f + 0.022 1.476 f x 1.0154 x 162.4 Hz*

1.584 f + 0.034 1.499 f x 1.0238 1.498 f x 164.9 Hz

1.618 f + 0.056 1.534 f x 1.0396 x 168.7 Hz

1.674 f + 0.034 1.595 f x 1.0238 1.587 f x 175.5 Hz

1.708 f + 0.056 1.633 f x 1.0396 x 179.6 Hz

1.764 f + 0.034 1.698 f x 1.0238 1.681 f x 186.8 Hz

1.798 f + 0.022 1.738 f x 1.0154 x 191.2 Hz*

1.820 f + 0.034 1.765 f x 1.0238 1.782 f x 194.2 Hz

1.854 f + 0.056 1.807 f x 1.0396 x 198.8 Hz

1.910 f + 0.034 1.879 f x 1.0238 1.888 f x 206.7 Hz

1.944 f + 0.056 1.923 f x 1.0396 x 211.5 Hz

2.000 f - 2.000 f - 2.000 f x 220.0 Hz
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IV. A process of fractal rhythmic diminution

The above mentioned section of the opera also uses another mathematical procedure that departs
from a rhythmic motive based on seven beats, irregularly divided with four kinds of durations: a
half note, two quarter notes, a dotted quarter note and three eight notes, assembled in a sequence
that produces syncopation, as displayed in the first line of Figure 2.

Figure 2: Fractal rhythmic diminution (Coelho de Souza’s The Machine of Pascal in Pernaguá).

Each line represents a new level of self-similar diminution of the original line. In the second
level, within the duration of a half note, a tuplet of seven eight notes (replacing four notes)
reproduces the rhythmic proportions of the original measure. Pitches are the same seven pitches
but on a different permutation. The process continues towards three more levels of diminution,
two of them displayed in Figure 2. The last one, not shown in Figure 2, replaces the three eight
notes by a 7:8 diminution. This musical process was inspired by a visual graphic, proposed by
Peano. to generate the design of a snowflake, as we can see in Figure 3. Although not identical,
these two processes of fractal self-similar diminution exhibit certain common features.

The main differences results from the asymmetrical internal structure of the first musical level,
which induces, by self-similarity, a quite chaotic rhythm, as the process continues through the
other levels. The snowflake design, on the other hand, appears to be much more regular. In
fact, we listen to that fragment of music almost as a random sequence of events, like a Brownian
movement, although, in a deeper level of perception, we realize that there is a coherent structure
resulting from the multi-level rhythmic self-replication.
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Figure 3: Snowflake curve depicted as a process of fractal diminution ([11, p. 190]).

V. A particular set property

The principle of permutation is another tool of combinatorial mathematics that I have used since
1984 when I composed Rébus for piano solo. Applying it to pitches yields trivial results but
applying it to intervals allows us to study an interesting similarity relation that is not part of
the standard Set Theory proposed by Allen Forte [4]. Forte devised a property related to the
interval content of sets that he calls the Z relation. This property measures the similarity of two
sets based on the identity of their interval vector, which counts the number of occurrence of each
interval between the pitches of the set. Forte was able find some pieces in which the segmented
sets exhibit the Z relation, but they are very likely to have occurred by chance, not intentionally by
the composer.

The relation that I have proposed is different from the Z relation, as I demonstrated in an
article [2]. It starts with the CORD vector, proposed by Soderberg [10], that lists the intervals of a
set class. Going a step further, I have proposed a PCORD set that rearranges the intervals of the
CORD vector to normal order, or actually, without any additional transformation, to its prime
form.

This proposition differs from Forte’s Z relation because it aims to be not only an analytical
tool, but also a generative model. Based in a single PCORD, we can generate sets of different set
classes. These sets have a second degree of structural similarity although to standard set theory
they seem to be unrelated.

If we segment this music grouping the pitches of each measure in the treble clef and the bass
clef. and reduce these sets to their prime form. the result will be:

Measures 1− 2:
Treble clef: {C].F].D.A].G]} → set class (01468)
Bass clef: {B.C.D].F.A} → set class (02368)
Measures 3-4:
Treble clef: {B[.A.G.D[.E[} → set class (02368)
Bass clef: {E.G].F].C.B} → set class (01468)
Measures 5-6:
Treble clef: {D.F.C.A[.E[} → set class (02358)
Bass clef: {G.A.C].E.F]} → set class (02358)
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Figure 4: Fragment (reduced) from Coelho de Souza’s Concerto for Percussion (w. in progress).

At a first approach. it seems that three different unrelated set classes have been used in these
six measures of the piece: (01468), (02368) and (02358). If we calculate the CORD vector of these
sets classes. reorder them to their prime form to calculate PCORD form. we obtain:

(01468) → [[1322]] → ((1223))
(02368) → [[2132]] → ((1223))
(02358) → [[2123]] → ((1223))

Therefore. we realize that this entire passage has been generated from a single PCORD. namely
((1223)). In the above mentioned article [2]. we listed all the set classes that are related by PCORD
similarity. for each cardinality. In Table 2 we reproduce only the list of cardinality 5 because the
sets used in the music of Figure 4 all the sets as based on five pitches. As expected in the column
of PCORD ((1223)) we find the three set classes used in that fragment: 5-30 (01468), 5-25 (02358)
and 5-28 (02368).

VI. Geometric representation of rhythm

The music of Figure 4 allow us to approach another mathematical tool that can be used to generate
or analyze music: the depiction of rhythm by geometry means. This is particularly efficient when
the rhythm presents cyclic features. That is the case of the music of Figure 4. We may calculate the
rhythms based on the smallest division value. in this case sixteenths:

Measures 1-2 (right hand): 3 - 3 - 3 - 3 - 4
Measures 3-4 (left hand): 2 - 3 - 3 - 3 - 4 - 1
Measures 5-6 (right hand): 1 - 3 - 3 - 4 - 3 - 2
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Table 2: List of PCORD x Set Classes with Cardinality 5

PCORD ((1111)) ((1112)) ((1113)) ((1114)) ((1122)) ((1123))

Set Classes 5-1 (01234) 5-2 (01235) 5-4 (01236) 5-5 (01237) 5-9 (01246) 5-Z36 (01247)
5-3 (01245) 5-6 (01256) 5-7 (01267) 5-10 (01346) 5-14 (01257)

5-Z12 (01356) 5-16 (01347)
5-8 (02346) 5-19 (01367)

5-Z18 (01457)
5-11 (02347)

((1124) ((1133)) ((1222)) ((1223)) ((1233)) ((2222)) ((2223))

5-13 (01248) 5-Z38 (01258) 5-24 (01357) 5-27 (01358) 5-31 (01369) 5-33 (02468) 5-34 (02469)
5-15 (01268) 5-21 (01458) 5-23 (02357) 5-29 (01368) 5-32 (01469) 5-35 (02479)

5-Z17 (01348) 5-22 (01478) 5-30 (01468)
5-20 (01568) 5-Z37 (03458) 5-25 (02358)

5-28 (02368)
5-26 (02458)

Although a certain degree of similarity in these rhythmic patterns induce us to suspect the
existence of some hidden consistency. the numerical strings do not allow an immediate realization
of some intentional process. On the other hand. it is clear to the ear that there are cyclic rhythmic
patterns driving the discourse. When we represent these three rhythmic patterns in a circle.
assigning striking points to sixteen possible positions, we obtain a much clearer visualization of
the displacement procedure (Figure 5)

3

4

3

4

3

3

3

Figure 5: Rhythm pattern of measures 1-2.

This representation allows us to realize that there is only one rhythmic pattern altogether
in the passage. Actually a single pattern is rotated at +45◦ and −115◦. as shown in Figures 6
and 7. so we have it starting at a different point of 16 points grid cycle at each two bars. A
similar linear representation is possible and in that instance. instead of rotation. the procedure to
consider is displacement. Another instance of geometric representation is the well know method
of representing the twelve pitches in a circle. as the hours in a clock. This is a standard procedure
of the set class theory. found in any textbook on the subject. Although we have used this kind
of representation to illustrate principles of symmetry in my own compositions. we chose to
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3

4

3

4

3 3

3

Figure 6: Rhythm pattern of measures 3-4.

3

4

3

4

3

3

3

Figure 7: Rhythm pattern of measures 5-6.

illustrate the use of geometry as a tool for music composition. using cyclic rhythms because it
is a less known problem. although some recent releases like [12] are quickly becoming popular.
Another reason is that for rhythm the number of points represented in the circle is variable.
and not a fixed clock face. We might also bring about the subject of geometry representation
used in the neo-Riemannian theory. especially the Riemannian Tonnetz (see [5]). besides other
achievements like those proposed by [13]. I did not show these devices because I have not used
them in my music. In this paper. I voluntarily limited myself to tools that I have employed in
my own compositions to demonstrate how mathematical tools can be helpful for establishing a
pre-compositional background for building a personal style.

VII. A mathematical filter used to transform a sound signal

So far. we have examined cases where the mathematical tools described belong to chapters of
discrete and combinatorial mathematics (see [6]) or geometry. I have promised to approach also
examples of the mathematics of continuous functions. Indeed. I might collect a bunch of examples
from my compositions and. fortunately. the mathematical foundation of them certainly belong in
one of the two volumes of the all-encompassing book on the subject written by Gareth Loy [9].
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Nevertheless. since I am trying to demonstrate that my fellow composers can easily understand
these mathematical tools. I will restrain myself to only one example because the mathematics
involved in the continuous functions usually depends on the knowledge of calculus and other
high-level mathematics.

The following Csound program. besides the usual opcodes offered as presets by the program.
uses a transformation of the wave signal applying directly to it a sine function multiplication. We
highlight that line of the code with boldface. As we know sine waves are continuous functions.
and according to Fourier’s theorem. we can analyze any sound wave as a sum of harmonic sine
waves. if we found the appropriate variables. In this case. however. the sine wave works as a kind
of mathematical filter.

This Csound experiment is based on a standard two-stack frequency modulation design. but
with the above mentioned transformation. we tried in this project. to perform a filtering that
somehow works like the waveshaping technique. however done with a brute-force mathematical
function instead of the usual tables. Most of the Csound opcodes are based in continuous functions
but the composer does not have to deal directly with them. For more information on computer
music synthesis see [3] and on Csound programming see [1].

;“EXPERIMENT 1.orc"
;instrument with time variable timbre

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 1
idur = p3
iamp = p4
ipitcar = p5
iratefreq = p6
iindex = p7

;transient for the attack
ifrtr = cpspch(ipitcar)
ikftr = .975
imfrtr = ikftr*ifrtr
kamptr1 expon iamp.idur.0.1
kamptr2 oscili kamptr1.imfrtr.2.0
aout1 oscili kamptr2.ifrtr.2.0

;filter units
kamp = 1
ifrcar = cpspch(ipitcar)
ifrmod = ifrcar*iratefreq
idev = iindex*ifrmod
kamp2 linen kamp..50*idur.idur..50*idur
amod oscili idev.ifrmod.1.0
afreq = (ifrcar)+(amod)
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aosc oscili kamp2.afreq.1.0
afilt1 = sin(aosc*3.14159/2) ;ïČ§ sine filter
again = ((1/(aosc+1.5))-1.2)*1.25
kvar line 0.idur.1
aout2 = ((afilt1*kvar)+(again*(1-kvar)))*2*iamp
kenv linen 1..05*idur.idur..05*idur
aout2 = aout2*kenv

;triangle
ktrian linen 0.5*iamp..01*idur.idur..95*idur
aout3 oscili ktrian.ifcar.2
aout4 = (aout1+aout2+aout3)*.75
outs aout4. aout4
endin

;test score “EXPERIMENT 1.score"
f01 0 512 10 1
f02 0 512 10 1 0 .1111 0 .04 0 .0204 0 .01234 0 .00826

;a sequence of notes with harmonic relations of modulation

;instr start dur amp pitch fm/fc I=d/fm
i01 0 6 10000 8.09 1 3
i01 3 6 10000 8.03 2 3
i01 6 6 10000 7.11 2 4
i01 9 6 10000 7.05 1.5 3
i01 12 6 10000 8.06 1.5 4

;a sequence of notes with inharmonic relations of modulation
;instr start dur amp pitch fm/fc I=d/fm

i01 0 1 10000 8.09 1.54 3.04
i01 2 1 10000 7.11 1.55 4.05
i01 4 1 10000 8.03 2.56 3.06
i01 6 1 10000 7.06 2.57 4.07
i01 8 1 10000 7.09 1.25 5.08
i01 10 1 10000 8.01 1.414 3.14
e

VIII. Conclusions

We tried to demonstrate. describing a varied set of examples assembled from my own composition
projects. how mathematical tools can be useful to shape a style. from the pre-compositional
stages through a final sound synthesis stage. In some cases. these tools use discrete mathematics.
for instance. in set theory that employs note representation by numbers. or in combinatorial
mathematics applied to algorithmic composition based in set manipulation. We can also resort
to irrational numbers to implement non-conventional tunings other than tempered or traditional
tunings based on integer proportions.
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On the other hand. the universe of continuous functions is at the base of human hearing. as far
as logarithmic functions explain the perception of pitch and sound dynamics. However. when we
jump into the world of direct manipulation of the sound. the mathematics of Fourier transforms.
Hilbert transform. convolution. filters (simple. FIR. IIR or Z transf). resonance. acoustic systems
modeling (with finite differential equations). and also techniques of sound synthesis (like AM. FM.
vocal synthesis. physical modeling. etc). dynamic spectra (Gabor. short time Fourier transform).
sound vocoder. and so on. are matters in which the deep understanding of their mathematical
foundations enhance the use of their capabilities.
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