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Foreword 
 

 

 

usMat research group was founded in the year of 2013, departing from my 

personal meeting with the researcher and fellow professor Carlos Almada. 

The interlocution generated gave great strength to the research that I had 

been developing since 2003 on Musical Texture, which revealed several points of 

contact with the research on Progressive Variation and Grundgestalt of my colleague. 

Then the master student and composer Daniel Moreira joined the group, working with 

the Contour theory, thus forming our first team. Later on, composer, researcher, and 

professor Liduino Pitombeira was integrated to the group and continued to develop his 

research on Systemic Modeling. 

Presently, with more than fifteen students, we have a live and consolidated work with 

strong participation in national and international congresses and publication of dozens 

of papers, related to the researches developed in the Undergraduate and Graduate 

Program in Music of the Federal University of Rio de Janeiro. 

Dialogue with other centers was a natural consequence. So, today we have an extensive 

network of collaboration, involving researchers from all regions of Brazil and from 

outside the country as well. 

In the year of 2016, when we held the first congress on Music and Mathematics in our 

country, we are immensely proud to present the first Brazilian electronic journal 

entirely dedicated to this field, involving first class researchers from Brazil and abroad. 

The selection of articles in this volume covers several strands of mathematical and 

musical thought, bringing contrasting and complementary visions of their integration. 

Mathematics has now become much more than a means of representation - it is a tool 

and inspiration for musical creation and analysis. 

In this way, we hope to contribute to the development of a theoretical, analytical, and 

creative thinking in Brazil and in the global communities.  

 

Pauxy Gentil-Nunes 

December 2016 
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Evolutionary Variation Applied to
the Composition of CTG, for

Woodwind Trio
Carlos de Lemos Almada

Universidade Federal do Rio de Janeiro
carlosalmada@musica.ufrj.br

Abstract: This paper integrates a broad research on musical variation. It specifically addresses an original
concept, namely "evolutionary variation" (EV), resulted from an association between Schoenbergian
principles of Grundgestalt and developing variation and some ideas from Genetics and Evolutionary
Biology. The application of this concept in a compositional system (Gr-S) aims at the production of a large
number of variants from a basic musical idea, covering a wide spectrum of similarity relationships. An
application of EV in the composition of CTG, for woodwind trio, is described in the second part of the paper.

Keywords: Musical and Biological Evolution. Grundgestalt and Developing Variation. Computer-Aided
Composition.

I. Introduction

The present study aims to highlight special similarities between musical variation and genetic
phenomena, which contributed to the elaboration of a new concept, evolutionary variation.
The study integrates a broad research project intended basically to systematical approaches

addressed to musical variation, under analytical and compositional perspectives. The research
is theoretically based on two correlated principles elaborated by the Austrian composer Arnold
Schoenberg, namely, developing variation and Grundgestalt (normally translated as "basic shape"),
both resulted from an organicist conception of musical creation. Considered by Leonard Meyer
as the most important extra-musical influence for the Romantic (especially Austro-German)
composers [1], the trend of Organicism was decisively intensified in middle of the 19th century
with the publication of works by Goethe (on the nature of plants) and, especially, Darwin, with his
theory of evolution of the species [2]. Traces of this organic origins were deeply established in the
Schoenbergian theory of Grundgestalt, as can be observed in his writings about this subject, being
specially evidenced by the use of metaphors, like "seed", "organic growth", "internal development"
and so on.1

In this research, the ties between music and biology are deliberately more tight and explicit.
Concepts like genomic/phenotypic levels, chromosomes, genealogy, ascendants/descendants, viruses,
among others, are not only part of the specific terminology, but also important components
of adopted premises. Recently, a new branch was initiated taking as model Darwin’s theories
(and specially their modern unfolding, produced in the fields of Genetics and the so-called Neo-
Darwinism [4], [5]). In this new approach, the concepts of "evolution" and "artificial selection"

1See, for example, [3].
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were transposed from the realm of vegetal and animal life to the domain of music, which resulted
in some prospective studies. One of them [6] describes an experiment for production of variants
from a simple theme, through successive application of "micro-mutations" along 20 generations
of descendants, with the help of a special computational software developed for the task. At
each generation of 6 transformed "children", the most apt for continuing the lineage was selected
becoming a"parent" for the next breeding (the adopted criteria for the selection were based on
objective musical parameters: melodic contour, harmony and rhythmic configuration). This
artificial selection strategy (similarly as that one used in farms for improving animal creation)
can be associated to the developing variation techniques, but under an original and instigate
perspective, since it promotes gradual divergences from the referential musical form according
to some "evolutionary pressure", i.e., "directions" determined by the selective criteria ultimately
adopted by the own composer. These findings constituted an important basis for the present study,
associated to the systematical composition of organic musical pieces.

II. The Gr-System

The main motivation for the development of the Gr-System ("Gr" for Grundgestalt) was to investigate
if it would be possible to produce music with a strict organic structure and in terms of maximal
economy (i.e., with the use of the least possible external material). As one can easily see, this
task would only be adequately accomplished with the aid of computational tools. Four programs
were then idealized and grouped in a complex named geneMus (gM),2 specifically destined to
the production of variations in different operational levels. After a long phase of design and
improvement, a more stable, versatile, and robust version of gM was recently consolidated. It is
formed by four sequential and complementary modules, each one destined to a specific function,
which are summarily described as it follows:3

• gM-01: produces abstracted variations (labeled in gM as "geno-theorems", or gTs) from a
musical basic cell (the Grundgestalt or, in the research’s terminology, the axiom [ax] of the
system, the given external element). Two kinds of abstractions (identified as "chromosomes")
are considered as referential in this process: the sequences of intervals (chromosome I)
and temporal durations (chromosome R) that form the axiom. An indefinite number
of generations of gTs (melodic and rhythmic) can be obtained through application of
transformational operations to both chromosomes. Sequences of operations (inversion,
augmentation, etc.) correspond in the system to "abstract" and progressive derivative
procedures, or developing variation of first order (DV1);
• gM-02: is responsible for forming concrete musical building blocks (named as pheno-

theorems, or pTs) through an exhaustively crossing-over of intervallic and rhythmic gTs
produced in gM-01. Some filters (designed as fitness functions) were implemented in
this module in order to select the "best" pTs (according the partiular intentions of the
composer) and conversely eliminate the "ill-formed" ones, contributing for reducing the risk
of overpopulation [8];

• gM-03: concatenates the selected pTs to form larger and more complex structures (similarly
as motives are joined in the construction of themes), which are labeled as axiom-groups
(axGrs). These constitute the referential forms for further derivation, performed in the next
module;

2The four gM modules were implemented in the computational platform Matlab.
3For more detailed information, see [7].
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• gM-04: yields generations of variants (theorem-groups, or thGrs) from the pre-produced
axGrs, through application of transformational operations (analogously as happens in gM-01,
but in this case involving concrete musical structures). This process is labeled as developing
variation of second order (DV2);

The structure of gM and the correlations and specific functions of its four modules are
summarized in Figure 1.
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Figure 1: Graphic representation of gM’s structure and of its four modules (adapted from [7, p. 44]).

The Gr-System depends on two important and correlated concepts: the coefficient of similarity
and the derivative curve. The coefficient of similarity (Cs) of a given variant measures the
"parenthood" degree between it and the referential form from which it ultimately derives,4 being
expressed as a real number between 0 (absolute contrast) and 1 (relation of identity).5

The derivative curve informs the fluctuations of Cs along the time. There are two types of
curves: for planning and analysis. The former is used in the pre-compositional stage, with the
finality to provide a broad idea of the intended derivative behavior of the musical material along
the sections of a planned piece. For this reason, the planning derivative curve has an aspect rather
of a sequence of rectangles than properly of a saw-like line. In turn, the analytical derivative curve
aims at precisely describing the fluctuations of similarity relations in a finished piece, taking into
account the involved voices at each beat.6

After concluding the production of the material (the abstract and concrete variants) and plotting
the planning derivative curve, the compositional phase is properly ready to begin. A specific
program, named organiComposer, was designed to aid the composer to structure a musical piece
based on decisions and choices conditioned by his/her constructive intentions.

4The referential forms adopted for Cs measurement are of two kinds: the chromosomes I / R (in the case of the abstract
derivation processes or, as above defined, DV1) and the axGrs (DV2). By definition, these forms are axiomatic in the
system and have Cs = 1.

5The algorithms for calculating the coefficient of similarity are basically described in [9].
6For examples of the both types of derivative curves, see Figures 3 and 14.
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Recently, a phase of practical tests for the system was initiated with the idealization of a
compositional project entitled Germinatas, a cycle of 16 pieces, each one with four movements and
specific instrumental formations (string quartet, piano, symphonic orchestra, etc.). Germinata I,
for woodwind trio (oboe, clarinet and bassoon), is the first concluded piece of this project. The
next part of the article is dedicated to examine the constructive processes employed in this work.
Firstly, some general comments about the basic formal-derivative structure of the entire cycle, then
a concise description of the production of the common material of Germinata I (i.e., the motivic
substrate that is shared by the four movements of the piece), and finally a more specific and
detailed exam of the last movement, entitled CTG.

III. The cycle Germinatas

The idealization of Germinatas was based on another link between the realms of music and
genetics, considering specifically the four nucleotides that form the DNA, Adenine (A), Cytosine
(C), Guanine (G) and Thymine (T). These elements were isomorphically associated to four profiles
of similarity relations (Table 1). It is noteworthy to add that this association was purely arbitrary,
with the only purpose of providing a useful means for structuring the pieces.

Table 1: Correlations between nucleotides and similarity profiles in the Germinatas, considering four types of similarity
relations measured in Cs values

nucleotide similarity relations max./min. values for Cs
A high similarity 1.00/.75
C medium similarity .74/.50
G low similarity .49/.25
T high contrast .24/.00

The internal organization of the movements in each of the 16 Germinatas also maps genetic
processes, corresponding to a codon. Codons are structural elements that form the genetic code of
a living form, consisting on nucleotide triplets (or three-letter "words") built by the combination
of the bases A, C, G, and T. Since there are 64 possible triplets (43), the four movements of each
one of the 16 Germinatas were structured as groups of four codons, in such a way that all the
combinations without repetitions will be considered. Figure 2 presents a list of the 64 codons (and,
isomorphically, the internal structures of the Germinatas’ movements).

Four sequences was selected for Germinata I (see Table 2). Based on this selection, four planning
derivative curves (one for each movement) were plotted (Figure 3). As previously stated, they
represent only broadly the intended profiles of similarity for the movements,7 but become an
important and efficient basis for orienting the choice of the motivic-thematic material during the
compositional phase.

IV. Production of common material for Germinata I

The composition in the Gr-System must begin with the choice of an axiom for becoming the
very referential form for subsequent derivation. It can be an original musical fragment or be
borrowed from an existent piece, as in the present case. For the axiom of Germinata I, intended to

7Since the primary aspect concerned in the graphs is the derivative behavior, the extensions of the three sections in each
movement were roughly arbitrated as third parts (33%) of the total.
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1 A A A

2 A A C

3 A A G

4 A A T

5 A C A

6 A G A

7 A T A

8 C A A

9 G A A

10 T A A

11 C C C

12 C C A

13 C C G

14 C C T

15 C A C

16 C G C

17 C T C

18 A C C

19 A G C

20 A T C

21 G G G

22 G G A

23 G G C

24 G G T

25 G A G

26 G C G

27 G T G

28 A G G

29 C G G

30 T G G

31 T T T

32 T T A

33 T T C

34 T T G

35 T A T

36 T C T

37 T G T

38 A T T

39 C T T

40 G T T

41 A C G

42 A G C

43 A C T

44 A G T

45 A T C

46 A T G

47 C A G

48 C A T

49 C G A

50 C G T

51 C T A

52 C T G

53 G A C

54 G A T

55 G C A

56 G C T

57 G T A

58 G T C

59 T A C

60 T A G

61 T C A

62 T C G

63 T G A

64 T G C

Figure 2: List of the 64 possible codons/sectional sequences.

Table 2: Four-movement structure of Germinata I (hs: high similarity; ms: medium similarity; ls: low similarity; hc:
high contrast)

movement corresponding codon similarity relations
I <ACG> [43] hs-ms-ls
II <TGA> [63] hc-ls-hs
III <CTA> [51] ms-hc-hs
IV <CTG> [52] ms-hc-ls

be allusive to Brazilian musical popular genres, it was selected the anacrusis of the well-known
choro Carinhoso, composed in 1917 by Pixinguinha and Braguinha (Figure 4).

The axiom (saved as a midi file) was then opened in gM-01, which abstracted its intervallic
and rhythmic configurations, transcribing them as numeric strings, labeled as chromosomes I and
R (Figure 5).

The derivative process was then ready to be initiated. Each chromosome was used as referential
form for parallel production of 42 melodic and 21 rhythmic gTs. Some of these outcomes are
shown in Figure 6.8

In gM-02 were then formed 882 pTs through mathematical combination of the 42 melodic and
21 rhythmic gTs. As previously stated, the pTs are basic concrete structures that approximately
function as motives in the system (Figure 7 presents six of them).

The next step (in gM-03) was to form the referential axGrs. It was decided that each movement
of Germinata I would be constructed based on a unique axGr (and, of course, their respective
derivations). Thus, four axGrs were created through combination and concatenation of different
pTs. This process involves three possible alternatives for each inserted pT: (1) transposition; (2)
metrical displacement; (3) suppression of final notes. Needless to say that the composer, based
on his own sense of form, must carefully consider the better combinations to do, selecting the

8For a detailed description of the functioning of gM-01, see [10].
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(a) (b)

(c) (d)

Figure 3: Germinata I: Planning derivative curves of the four movements: ACG (a); TGA (b); CTA (c); CTG (d).

Figure 4: Pixinguinha and Braguinha: Carinhoso (anacrusis), taked as axiom of Germinata I.

chromosome I

chromosome R

ax

<-2-2+4> (1 = semitone / + = up / - = down)

<1 2 1 4> (1 = 16th note)

Figure 5: Germinata I: axiom and chromosomes I and R.

components according to their melodic contour and rhythmic configurations and contextual
relations (as, for example, parallelism and contrast between segments). Figure 8 shows the
formation of axGr-5 (used as referential form for the fourth movement, CTG),9 identifying the pTs
used as its components and the corresponding transformations which were applied, based on the
three above mentioned options.

In gM-04 each axGr becomes a kind of patriarch of a lineage of variants, which are obtained
through developing variation of second order (DV2). More precisely, in this phase it is properly
initiated the process of evolutionary variation, as it will be detailed in the next sections, dedicated

9This apparent incongruence – i.e. the fourth movement’s axGr is numbered with "5" and not "4" (as one could logically
expect) – is due to the fact that, actually, there were produced for the piece in gM-03 six axGrs. Of these, only four were
selected for the movements, respectively: axGr-1, axGr-3, axGr-4 and axGr-5.
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...

(a)

<-2-2+4> <1 2 1 4>

<-2+2-4>

<-3-2+3>

<-4+2-11>

chr. I <6 2 2 2>

<3 2 3 2>

<4 2 1 2>

...

(b)

chr. R

Figure 6: Germinata I: some melodic and rhythmic gTs obtained from chromosomes I (a) and R (b) through developing
variation of first order.

1 38 77

208 314 536

Figure 7: Germinata I: pTs numbers 1, 38, 77, 208, 314, and 536.

metrical displacement (.25)

t: transposition

md: metrical displacement

s: supression of final notes

t  <0>

md <0>

s  <0>

t  <+3>

md <.25>

s  <1>

c
v
c
v

supressed note

t  <-1>

md <0>

s  <0> t  <+4>

md <0>

s  <0>
c
v
c
v

t  <+2>

md <0>

s  <1>

axGr-5

pT’s:

18

290

25

83

38

supressed note

Figure 8: Germinata I: formation of axGr-5, through combination of pT’s numbers 18, 290, 25, 83, and 3.

to describe the construction of CTG.

V. The evolutionary space of CTG

A specific motivic-thematic material of a piece built in the Gr-System consists essentially on the set
formed by a given referential form (axGr-5, in the present case) and all the thGrs that derive from
it. This set corresponds to the evolutionary space (ES) of the piece.10 An ES is formed through a
special type of developing variation process, namely, evolutionary variation (EV), which results

10The idea of evolutionary space was inspired by Richard Dawkins’ concept of "genetic space" (see [4, pp. 81-91]).
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from gradual and cumulative mutations (frequently quite subtle, almost imperceptible) along
generations of variants. In a sense, EV can be compared (in a radically more compacted time-scale,
of course) to the process of formation of the animal and vegetal species. Although the amount
of modification between a given referential form and its immediate offspring is normally low,
under a broader perspective, considering the whole derivative process and its multiple branching,
divergence can reach extreme rates. In musical terms, this can provide a wide range of forms with
distinct degrees of similarity in relation to the basic theme.

It is important to add that not necessarily all the elements of an ES must be present in the piece.
Some of them may simply be created as intermediate stages in the formation of more meaningful
structures (according to some constructive intentions). In sum, the "area" covered by the ES of a
given piece depends directly on compositional needs and particular requirements, as it will be
later evident. An ES is formally expressed as:

ESp = {axGrn,*thGrn}, where ESp is the evolutionary space of the piece p,axGrn is the axiom-
group of number n, and *thGrn is the total of theorem-groups derived from axGrn.

An ESp is therefore formed in the module gM-04, dedicated to the production of thGrs from a
given axGr. In the specific case of CTG, its ES comprised 53 elements (axGr − 5plus52thGrs),
distributed into 7 main branches and 8 generations. A special function of gM-04 is used to produce
a graphic representation of the EV in the format of a genealogical tree. Figure 9 shows the
ES of CTG (ESCTG): the nodes correspond to the thGrs and the lines represent their respective
derivations. As can be observed, due to the fact that some thGrs are more "prolific" than others, it
is considerably difficult to obtain a complete and clear visualization of the precise branching in
some parts of the tree (as the cluster in the framed area in Figure 9a). In these cases, the program
allows to magnify the view of the section in question, as it is shown in Figure 9b.

(a)
(b)

Figure 9: GerminataI/CTG: ES as a genealogical tree (a); detailed view of the selected area (b). Nodes indicate variants
(thGr’s), their Gödel-vectors (see bellow) and coefficients of similaity are notated, respectively, in black and
red.

Each thGr receives a label corresponding to its lineage description, expressed as a vector,
named Gödel-vector (Gv),11 whose first element is the number of the considered axGr (5, in the
present case). The remain components describe the genealogical trajectory of the form. Be, for
example, the thGr, with Gv <5 1 1 2 3>. It corresponds to the following genealogical description
(the vector content must be read backwards): "third descendant of the second descendant of the

11To more information about the elaboration of the Gödel-vector, the origins of its formulation and the algorithms
involved in the genealogical description of variants in the system, see [11].
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first descendant of the first descendant of the fifth ‘patriarch’". Besides the Gv, the genealogical
tree also informs the Cs indexes of the involved thGr (the numbers in red in Figure 9a).

A thGr (generically named as a "child") results from application of at least one transformational
operation to a referential form (its "parent"). The operations can be intervallic (i.e. acting on
the parentâĂŹs chromosome I), rhythmic (chromosome R) or intervallic-rhythmic (indistinctly
applicable to the both structures). Table 3 presents a basic list of the available operations in gM-04.

Table 3: Formal description of the operations, considering chromosome of application and corresponding algorithm,
where <a> and <b> are, respectively, the numeric transcriptions of a "parent" and its "child", p is prime
number between 2 and 11 and q = 1.5, 2 or 3. )

operation chromosome algorithm
inversion (INV) I <b> =-1*<a>

multiplication (MUL) I <b> =p*<a>
augmentation (AUG) R <b> =q*<a>

diminution (DIM) R <b> =0.5*<a>
expansion (EXP) IR <b> =<a>+ p

contraction (CNT) IR <b> =<a>- p
retrogradation (RET) IR <an,...a1,a0 > = < a0,...an-1,an >

rotation (ROT) IR <b> =< a1, a2...an,a0 > = < a0,a1,...an-1,an >

There are two types of operational application: general and mutational. The former affects the
entire content of the "parent", while in the second type just one element — randomly selected by
the program — is modified.12 This case emulates genetic, intracellular mutation, promoting a very
gradual developmental process. The resulting child is always quite similar to its parent, but their
own children (and the children of these, and so long) will certainly contribute to increase more
and more the divergence, which, after some generations, causes a wide and varied spectrum of
correlate musical ideas. With the purpose of expanding the range of possibilities it is also possible
to combine two or more operations (general and/or mutational) in a single application. Figure 10
presents four of the innumerable alternatives for variant production from a hypothetical "parent".

The production of the thGrs that form ESCTG was conditioned not only by needs of variety and
contrast of the musical material, but also by the pre-established limits of similarity relationships,
determined in the planning derivative curve (see Figure 3). Since these limits constrain the average
Cs values (Csav) to be lower than 0.75 in all of the movement’s three sections, the production
of variants was directed to the selection of more divergent outcomes (which, in turn, would
also breed descendants with low similarity in relation to axGr-5). It is relevant to add that in
the Gr-System the selective process is always mediated by the composer’s sense of form, which
represents the ultimate and most decisive factor for the choice of the best (artistically speaking)
results among a multitude of alternatives at each phase of the process. Figure 11 presents a subset
of ESCGT, informing their respective genealogical labels and Cs indexes.

12Frequently a mutational operation produces an ill-formed variant (with extremely large melodic range, for example).
In this cases, the variant is simply discarded and, of course, leaves no descendants. It is noteworthy that such a situation is
quite similar to what happens in organic life, since most of mutations that occur in the genome of a being imply in none
advantage for it (if do not cause its death).

9
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PARENT

INV MUL EXP CNT RET ROT

AUG DIM EXP CNT RET ROT

INV MUL EXP CNT RET ROT

AUG DIM EXP CNT RET ROT

INV MUL EXP CNT RET ROT

AUG DIM EXP CNT RET ROT

INV MUL EXP CNT RET ROT

AUG DIM EXP CNT RET ROT

I -5 +7 -7 -1 -1 -1

R 2 2 6 2 2 2 4

I -5 +7 -7 -1 -1 -1

R 2 2 6 2 1 2 4

I +5 -7 +7 +1 +1 +1

R 2 2 6 2 3 2 4

I -2 -2 -2 -2 +2 -10

R 2 6 2 2 2 4 2

I +5 +7 -7 -1 -5 -11

R 3 2 6 2 2 2 4

CHILDREN

Figure 10: Four thGr’s ("children") derived from a hypothetical "parent" through application of single or combined
transformational operations. Above each form is its "genetic code" (chromosomes I/R). The darker rectangles
correspond to the modified characteristics. The black circles indicate mutational operation.

<5 1> [Cs =.56]

<5 7 1 1 2> [Cs =.49]

<5 7>

<5 7 1>

<5 7 1 1>

<5 1 1 1 2 1> [Cs =.50]

<5 1 1>

<5 1 1 1>

<5 1 1 1 2>

<5 2 1> [Cs =.59]

<5 3 2 2 2 1> [Cs =.09]

<5 3>

<5 3 2>

<5 3 2 2>

<5 2>

<5> [Cs = 1.00]

axGr-5

Figure 11: Germinata I/CTG: topological diagram presenting five thG’s derived from axGr-5 (genealogical label <5>)
with their respective Cs values: <5 1> (first generation), <5 2 1> (second generation), <5 7 1 1 2>
(fourth generation), <5 1 1 1 2 1> and <5 3 2 2 2 1> (fifth generation).
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VI. Composing CTG

In spite of its name, the program organiComposer (oC) was not designed with the purpose to
substitute for the intellectual and creative work of a human composer.13 Rather, it must simply
be used as a tool for aiding him/her to structure a piece constructed according to Gr-System’s
parameters. The elements and functions of the program are present in its user interface (Figure 12).

A

B

C

D
E

F

G

H

I

Figure 12: oC’s user interface: Information about localization: (A) section label (”A" in the present case) and positional
data (measure number, beat and beat fraction) for entering a MI; (B) Buttons for opening a midi file
corresponding to a MI and for inserting it in the coordinates established in A; (C) Buttons for selecting and
inserting accompaniment (gTs / viruses); (D) Field corresponding to the Cs index of an inserted MI; (E)
Information about the working voice (i.e., the voice selected for performing a selected MI): midi-channel
and interval of transposition; (F) Fields that show the minimum and maximum values predetermined by
the planning derivative curve and the Csav of the section; (G) Button for plotting the analytical derivative
curve (see Figure 14a); (H) Button for hearing and viewing (in a piano-roll diagram) what was composed
until that moment; (I)I. Menu tag for the compositional map (Figure 14b).

In essence, the work with oC does not differ much from a conventional compositional process.
At any instant the composer is faced with various decisions to make, concerning aspects like
coherence, balance, changes of mood, tempo, texture, and so long. The program merely aids the
user – literally – to compose (according to the Latin etymology of the verb: com+ponere, or put
together) selected melodic/harmonic elements in selected metrical points transposed to selected
pitch regions in the formation of selected textures.

13This program introduces a new and specific sense for the concept of "musical idea" (from now on referenced as MI). In
this context, MI is a generic label used for naming one of the four possible melodic-harmonic materials employed in oC.
Two of them are the forms components of the ES (axGr and thGrs), which constitute the most important elements for
the composition. The remaining forms are used as subsidiary material constituting the accompaniment in homophonic
textures, which can be formatted as consistent rhythmic figuration or chords: the melodic gTs (or MgTs produced in gM-01)
as well the viruses. A virus is an external element (i.e., not produced in the system) that the composer (with whatever
constructive reason) inserts in the piece (for example, a segment of the chromatic scale).

11
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The insertions of elements are preserved in a temporary midi file, which allows the composer, at
any moment, to verify the provisional results, edit the definitive score (including tempo indications
and dynamic, articulation and expression marks) and, of course, to make eventual adjusts and
corrections or even add ornamentation. In simpler terms, it provides a kind of in natura sketch to
be elaborated and refined. An illustration of this adaptive process is shown in Figure 13, with a
short passage of CGT in both versions.

(a)

(b)

ornamentation

rests (for transparency)

time signature adjustment (to 2/4)

Figure 13: Germinata I/CTG (mm.46-50): sketch-like version (a); final version (b).

Besides this evident practical aspect, the main and exclusive advantage of using oC for
composing in the system is the possibility of registering two graphic schemes: the analytical
derivative curve and the compositional map. These mutually complementary graphs provide a
precise structural overview of a composed piece in the Gr-System.

The analytical derivative curve of CGT is shown in Figure 14a. As it can be observed, in each
one of three sections, the Csav (represented by the red lines) was plotted within the pre-established
C’âĂŹs limits (the dotted horizontal lines) of the respective planning derivative curve (Figure 3d),
which therefore matches the similarity profile intended for the movement. The rectangles in the
compositional map (Figure 14b) represent the various MIs used in each instrument/channel (1
for the oboe, 2 for the clarinet and 3 for the bassoon). The shades of gray are associated to the
class of MI employed, from the darkest to white: axGr, thGr, MgT, and virus (observe that the
genealogical label and Cs are added in the two first cases).14 The combined visualization of both
graphs provides an interesting perspective of the correlations between form, texture and similarity
behavior.

14As it can be noted, in this movement there are only two brief uses of non-essential material (MgT and virus), both as
punctuation at the end of section T. Their Cs indexes are not considered in the calculus of the Csav.
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(a)

(b)

Figure 14: Germinata I/CTG: analytical derivative curve (a) and compositional map (b).

VII. Conclusions

This paper introduced the concept of evolutionary variation, associated to organic musical compo-
sition and to genetic processes, resulting from a new branch of a broad research project intended
to systematically study variation in music. This branch is dedicated to the elaboration of a system
(Gr-S) for organic and maximally economic composition aided by computational tools (gM and
oC). The application of this concept in the composition of the fourth movement of Germinata I
(CTG) yielded a large number of musical ideas within a wide spectrum of similarity in relation
to the basic material, forming what the CTG’s evolutionary space (ESCTG). From this repository
there were selected the musical ideas used to compose the piece, according to predetermined
similarity profiles, an original sort of structuring strategy.

In spite of the fact that some parts of the programs that integrate the system still require adjust-
ments and improvements, the results obtained in this study reveal its efficiency and flexibility.15

15Gr-S’ flexibility can be clearly evidenced if we consider the following points: (a) a given axiom inserted in gM-01 can
potentially yield an astronomic number of gTs; (b) The pTs produced through combination of gTs can be concatenated
in a virtually infinite number of manners (considering the available options of permutation, transposition, metrical
displacements and suppression of notes); (c) each one of the (infinite) possible axGrs thus formed can, in turn, produce
infinitely wide evolutionary spaces. It is very instigating to speculate that even if we stipulated a closed structural planning
and basic material (for example, the derivative curve of Figure 3d and ESCTG) for, say, 100 different composers, we would
certainly obtain 100 radically different pieces (although – and almost paradoxically – they would be closely related by their
common origins), since these would depend largely on the individual skills and the myriad of decisions taken during their
compositional processes.
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Due to the several artificial selection strategies implemented in the gMs modules, the composer
can control the entire derivative process, by selecting the variants according to his/her particular
constructive intentions. Moreover, the compositional process, performed with the algorithmic aid
of oC, is non-determinist and plainly dependent on the composer’s imagination, sense of form
and creativity.
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Abstract: The paper advances a pedagogical program that models small cyclic systems before teaching
the twelve-element chromatic system of atonal theory. The central properties, relations and protocols of
atonal theory (complementation, inclusion, invariance, transpositional equivalence, set classification and
labeling, maximal evenness) are introduced in the smallest cyclic system to which they apply. All cyclic
systems of 2 to 9 elements have at least one familiar musical application, modeling beat-class (rhythmic)
cycle, pentatonic and diatonic scales. By the time students have scaled up to a twelve-element universe,
they are technically prepared to explore it, and to appreciate its special properties. Along the way, they
have learned a model of meter, an otherwise under-theorized aspect of music pedagogy.

Keywords: Atonality. Musical set theory. Time cycles.

I. The Challenge of Teaching Atonal Theory

The theory of atonality focuses on the cyclic universe of twelve elements (C12) interpreted
as chromatic pitch classes, and on the properties of and relations among pitch-class sets in
that universe. It is a standard curricular offering at both undergraduate and post-graduate

levels in North America and elsewhere, is integrated into at least one comprehensive music-theory
textbook [1], and is the sole focus of several dedicated ones [2],[3]. Atonal theory is a challenge to
teach because of the unfamiliarity of atonal repertories, the level of abstraction, and the delay in
the payoff. Even for students interested in atonal repertories and comfortable with mathematical
modes of conception and representation, it takes some time before the techniques of atonal theory
help students to achieve satisfying analytic insights. For students who are math-phobic, or not
drawn to atonal repertories, or both, the curriculum can be frightening or alienating, at worst
provoking hostility that generalizes to the entire project of thinking conceptually about music.

One part of the challenge can be confronted by broadening the range of repertory. C12 can be
interpreted not only as a chromatic universe of pitch classes, but also as a twelve-beat cycle, which
might be realized as a bar of 12

8 , two bars of 6
8 , four bars of 3

4 , a bar of 4
4 with tripleted subdivisions,

and so forth [4]. Knowledge of C12 can be used to analyze the rhythms of readily accessible and
familiar repertories, such as West-African, Latino, global-popular, or minimalist music [5],[6],[7].
Students can learn such central topics as rotational equivalence, invariance, complementation,
inclusion, and set classification and labelling, each of which has direct and revealing beat-class

∗I would like to acknowledge Andrew Jones for supplying information relating to this paper.
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applications. Learning C12 in this environment, students acquire abstract knowledge ready for
transfer to the isomorphic universe of pitch classes, and to atonal and serial repertories. There is a
pedagogical advantage in staging the mathematical and musical challenge at different times. And
there is a residual benefit: as they travel along the road to atonal theory, students are exposed to a
theory of musical meter, which is otherwise neglected in the curriculum [8].

But this partial solution does not address the problem of abstraction. C12 is a complex
system, with 4,096 distinct combinations, including 66 distinct pairs of elements, 220 triplets,
and so forth. It is difficult to view such a system holistically, especially if one has not "scaled
up" to it through simpler systems. The application of C12 to time cycles suggests a solution.
There is only one chromatic universe of pitch classes, but there are many universes of beat
classes, some quite small, that are familiar to musicians from an early stage of development.
Larger-cardinality universes inherit the simple properties and relations of smaller ones, and
add more complex ones. An incremental pedagogical progression from smaller to larger cyclic
systems has some of the advantages of elementary mathematics curricula, such as the Japanese
model for teaching arithmetic to children, which is initially restricted to the subtizable numbers [9].

Not all small beat-class universes are equally familiar. Musicians in the west typically learn
systems based on 2 and 3 beats, their powers (4, 8, 9), and their composites (6,12), thus catching
every number in the range from 2 to 9, with the exception of 5 and 7. Fortuitously, it is exactly
these missing prime universes that form the most familiar small cyclic pitch-class systems, as
pentatonic and diatonic scales respectively. Unlike the beat-class and chromatic universes, the
elements of these scales are not distributed evenly. But they are even enough that we can disregard,
or "reduce out," the distinction between tone and semitone in the diatonic case, and tone and
minor third in the pentatonic one [10]. Indeed, musicians are accustomed to such reductions, as
when we assign scale degrees using natural numbers from 1 to 8.

II. Outlines of a Pedagogical Program

My pedagogical program progresses in three stages. In the first stage, which can be worked
through in about 30 minutes of class time, power sets of 0, 1, and 2 elements are briefly studied.
Basic relations such as null set, complementation, and cardinality are introduced, as are the basic
symbols of set theory. The second stage studies cyclic universes of 3, 4, and 5 elements, realized
respectively as triple and quadruple meter in the rhythmic domain, and pentatonic scales in the
pitch domain. Topics that can be introduced at this stage include modular arithmetic, rotational
(transpositional) equivalence, classification and labelling procedures, interval class, interval content,
set class, and invariance. The musical applications are not yet surprising. Students are learnng a
new language for properties and relations about which they long cultivated deep intuitions. They
may feel skeptical about being asked to pay money for a Howitzer in order to shoot a few sitting
ducks, when a much simpler implement will suffice. I find it useful to tell them, more than once,
that it is better to get to know your machinery in a simple environment than in the complex ones
that lie just around the bend.

As the size of the cycle increases, intuitions about its structure diminish at roughly the rate
that interest in its musical capacities grows. Thus conceptual and terminological grasp is not
overwhelmed at the same moment that students are struggling to gain some intuitive traction
on structures that are becoming exponentially more complex. C6 represents a pedagogical
watershed: just small enough to be graspable as a Gestalt, but large enough to introduce curious
features with unexpected musical ramifications. The universes from 6 to 9 all have distinctive
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Table 1: Pascal’s Triangle, interpreted as number of sets |d| in a |c|-universe.

c=
d=
0

1 2 3 4 5 6 7 8 9 10 11 12 2c =

0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64
7 1 7 21 35 35 21 7 1 128
8 1 8 28 56 70 56 28 8 1 256
9 1 9 36 84 126 126 84 36 9 1 512
10 1 10 45 120 210 252 210 120 45 10 1 1024
11 1 11 55 165 330 462 462 330 165 55 11 1 2048
12 1 12 66 220 495 792 924 792 495 220 66 12 1 4096

features that underlie familiar and compelling musical properties. These universes are large
enough that set-class enumeration and classification from scratch becomes a challenge, but small
enough that it remains tractable. But enumeration is no longer the central focus at this level.
That focus shifts toward the generation of larger sets by recursive stacking of a single interval.
Each universe has a unique personality, with special musical ramifications, that results from its
number of elements. Prime-numbered universes behave differently than composite ones, and
power-numbered universes behave different from those that have multiple prime factors.

Three variable are used throughout this study. c counts the number of elements of in the
cyclic universe, corresponding to the large-case variable in expressions such as "C12." d counts
the number of elements of a pitch-class set [11],[12]. Thus, for a C-major scale drawn from a
chromatic universe, c = 12 and d = 7, and for a C-major triad drawn from a diatonic one, c = 7,
d = 3. Finally, g is a generating interval, and corresponds to one of the [ c

2 ] interval classes that
exist within a universe of size c. Motion upward through the values of c corresponds to motion
downward through the rows of Pascal’s triangle, a skewed version of which is as Table 1. Each
entry in the table presents ( c

d ), the number of sets of cardinality d within a universe of c elements.
The two highest and two lowest values of d, shaded in the table, which I shall refer to as "exterior
cardinalities," are entirely predictable and are of little interest musically and mathematically. Our
attention will be focused exclusively on the unshaded cardinalities in the interior of each row,
once they begin to appear at c = 4. The final column gives the cardinality of the power set, 2c,
which sums the entries to its left.

III. Non-cyclic universes of 0 to 2 elements

Since c = 3 is the smallest cyclic universe, there is some sense in beginning there, but I have found
it profitable to work quickly through the trivially small, non-cyclic universes first, establishing the
most basic definitions (defined terms are here placed in italics). For c = 0, there is a single set
that is both null (∅) and universal (U). For c = 1, these functions partition into two distinct and
complementary sets of different cardinality. The formal definition of complementation (B = U \A
iff A ∪ B = U and A∩ B = ∅) gives occasion to introduce some fundamental terms and symbols
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of set theory. The power set of c = 2 is completed by augmenting ∅ and U = {A, B} with two
singleton sets {A} and {B}, related both by complementation and by cardinality equivalence.

IV. Cyclic universes of 3 to 5 elements

With c = 3 we arrive at a properly cyclic domain, and the next several universes will present
occasion to gradually introduce the most significant properties, relations, and representational pro-
tocols for musically realized cyclic spaces, including modular arithmetic, cyclic graphs, rotational
(transpositional) equivalence, set class, abstract complementation and inclusion, invariance , inter-
val class, interval vector, and interval generation. c = 3 has eight sets: ∅, U, three singletons, and
their three complements. Growth in the number of elements requires a more systematic labelling
protocol, and so integer labelling of elements is introduced, from 0 to c− 1. Using integers as labels
risks confusing the different "registers" in which numbers will be used – for labelling, counting,
and measuring – and it is important at this stage to exhort vigilance about these distinctions.

This is the appropriate universe in which to introduce modular arithmetic, cyclic graphs, and
transpositional equivalence. Figure 1a shows the cyclic graphs for the three sets for c = 3, d = 2,
using filled circles to indicate the presence of an element, and unfilled circles to indicate its absence
from the set. It can be readily seen that the sets are related by rotation. Figure 1b realizes the same
three sets as rhythms in 3/4 meter. A musician can just as easily intuit how rotation is realized in
this domain as in the graphic one.

(a)

(b)

(c) {01} {12} {02}

0 0 0

1112 2 2

Figure 1: Sets for c = 3, d = 2, represented in three different ways: (a) as cyclic graphs; (b) as repeating rhythms; (c)
as integers.

Finally,Figure 1c realizes the same three sets using integer notation. Here intuitions are less
stable. How can {02}, whose elements seem separated, have the same structure as {01} and {12},
whose elements are explicitly adjacent? By comparing these representations with the cyclic graphs
and rhythmic sets, students can gain their first foothold on the unfamiliar logic of modular
arithmetic. It is through comparisons of this sort that students begin to explore the ways that
graphic, arithmetic, and musical relations reciprocally model each, a process whose goal is to
allow their pre-loaded intuitions about each of these three domains to inform their understanding
of the other two.

c = 4 has sixteen sets, ten of which have exterior cardinalities that advance no new properties.
We focus on the six sets where c = 4, d = 2. For the first time, we encounter cardinality-equivalent
sets that are not equivalent by rotation (= transposition). These six sets represent two distinct
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pair-wise distances, or intervals, each corresponding to a transposition class, or T-class, which
can be provisionally labelled as step (or adjacent pair) and leap (or diametric pair). The musical
distinction between these two classes is represented by Figure 2, from Mozart, where each measure
has four �beats, which can be labelled in order from 0 to 3. In the first measures, the beats are
partitioned into complementary step-related pairs, {12} and {03}. Beginning at bar 5, beats are
partitioned into complementary leap-related pairs, {02} and {13}.

Figure 2: From Mozart’s Variations on "Ah, vous dirai-je, Maman." Measures 1 - 4 partition U4 as {03} and {12},
representing step class [01] Measures 5 - 7 partition U4 as {02} and {13}, representing leap class [02].

The six dyads in C4 contains four steps but only two leaps, a curious circumstance that
opens the door to the important topic of rotational invariance. Musicians easily intuit, from
examining Figure 2, that there are more possible step-pairs than leap-pairs, since each leap-pair is
indistinguishable from its two-unit rotation (or transposition). The invariance is easy to see in a
cyclic graph, but more of a challenge to see when the same sets are represented using modulo-4
integers. It is in mastering challenges of this sort that students who have difficulty adjusting to
modular arithmetic gain further traction.

The introduction of T-classes in C4 through the step/leap distinction gives an occasion to
confront one of the perpetually confusing aspects of atonal set theory, the distinction between
literal sets and abstract set classes. The project of set classification requires attaching labels to the
classes, for book-keeping purposes. In 1973, Allen Forte assigned each set class a two-value label
whose second value was an arbitrary number [13], but many atonal pedagogies now prefer prime
forms, a procedure for selecting a member of the class to represent the class as a whole. Although
this protocol eliminates the arbitrary relation between label and referent, there is still a pedagogical
challenge: the same label evidently refers to objects at two different levels of abstraction. For
example, in the usual chromatic/atonal interpretation of C12, {037} references a C minor triad,
and [037] references the class of twelve minor triads. Unless the distinction between curly and
square brackets is emphasized, considerable confusion arises. The step/leap distinction in c = 4
provides a pretext for introducing the prime-form protocol in an environment that is intuitive and
contained: [01] and [02] are introduced as alternate labels for step and leap classes, respectively.

c = 5 has thirty-two sets, still small enough to explore and comprehend as a single Gestalt.
Twenty of these sets are of intermediate cardinality: ten pairs (c = 5, d = 2), and their ten
complements (c = 5, d = 3). Each cardinality class has two distinct rotation classes: steps and
leaps for c = 5, d = 2, and their complements for c = 5, d = 3. The fact that 10 is a multiple of
5 further suggests that there are no transpositional invariances, a result of 5’s status as a prime
number.

I use c = 5 to introduce two significant concepts that are portable to larger cardinality universes.
The first concept is total interval content, a property of set classes that is catalogued by interval
vectors. Cataloguing the single interval of a two-element set is trivial work, but there is a payoff:
cataloguing the three intervals of a c = 5, d = 3 set, and comparing that vector to that of its
c = 5, d = 2 complement, exposes the intervallic affinities between complement-related sets, and
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leads to the introduction of a simple form of the complement algorithm. In addition to the gains
realized by introducing complement relations in a small universe, there is also a pedagogical
benefit to introducing the complement algorithm in a universe whose cardinality is odd. Because
no interval divides the universe as the tritone does in C12, there are no invariances to complicate
the complement/interval algorithm.

Because c = 5 is a prime universe, it is also a good place to introduce intervallic generators (g),
marking a shift from a static conception of a cyclic universe to a dynamic one, a space to navigate
through time. Each set in c = 5 is generable either by step (g =1) or leaps (g = 2). Both values of g
generate all sets of exterior cardinality. It is the intermediate cardinalities that are distinguishable
by their generators: g = 1 generates steps of class [01] and their complements of class [012], and
g = 2 generates leaps [02] and their complements [013].

c = 5 is musically realized as a pentatonic scale, whose intervals come in two chromatic sizes:
"steps" are major seconds and minor thirds, and "leaps" are perfect fourths and a major third.
Following John Clough [10], these chromatic distinctions are overlapped, and the pentatonic space
is treated as if it were perfectly rather than maximally even. Step-generation involves a sequential
pass through the scale, <C, D, E, G, A> ; leap-generation involves skipping scalar notes, <C, E,
A, D, G>. There are dozens of pentatonic pieces that can be used as analytical illustrations of this
universe, as compiled e.g in [14].

V. Cyclic Universes with 6 to 9 elements

As the half-way point between zero and twelve, C6 is the universe in which curious features
with unexpected musical ramifications begin to arise. It is also the point where the size of the
power set begins to get too large to control. The intermediate cardinalities consist of 15 pairs,
15 pair-complements, and 20 triplets. None of these numbers are multiples of c, indicating the
presence of rotational invariances at each cardinality. There are three T-invariant diametric leaps
[03] to go with the six steps [01] and six skips [02], and two T-invariant skip-generated triplets
[024] to go with the the six step-generated clusters [012] and twelve ungenerated sets [013] and
[014], which are discussed below.

Since six is the smallest number with two divisors, C6 is the smallest universe to have two
distinct perfectly even sets. Realized as rhythms, these two perfectly even sets model the two
meters available in a bar with six beats. Setting the beat to an eighth note, [03] suggests a bar of 6

8
meter, and [024] a bar of 3

4 meter with duple subdivisions. The successive juxtaposition of these
meters models the Baroque pre-cadential hemiolas, and their superposition as [03] ∪ [024] = [0234]
underlies the metric tug of a waltz, as well as the 3-against-2 cross-rhythms of West African and
Afro-Caribbean repertories.

The complementary T-classes [013] and [014] introduce many new features that do not arise in
smaller-cardinality universes. Neither set is inversionally symmetric; instead, the two classes are
abstractly related to each other by inversion. Accordingly they have identical interval vectors: one
instance of each interval, from which we see that C6 is the smallest universe that hosts non-trivial
all-interval sets. The flatness of their interval vector is related to their ungenerability, as note
above.

This is a good moment to make a systematic study on inversion (= reflection), showing how
members of [013] and [014] invert into each other around a variety of axes. As in atonal pitch-class
theory, questions of perceptibility immediately arise: can one hear inversionally related sets as
"the same thing?" A study of Figure 3, from a Beethoven quartet, furnishes an opportunity to
experience their perceptual non-equivalence. The cello and viola together sound beat classes
{0, 3, 4}, which is a member of T-class [013]. The violin sounds the complementary beat classes,
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Figure 3: Beethoven, String Quartet no. 8, Op. 59 no. 2, Allegretto, bars 1 - 8. The violin attacks from mm. 2 - 7 are
class [014]; the complementary attacks in the remaining parts are class [013].

{1, 2, 5}, representing T-class [014]. For most listeners, these two beat-class sets project different
meters. In general, when two adjacent time points are attacked but their immediately surrounding
time points are tacit, listeners hear a phenomenal accent on the later attack of the pair[15]. The
consequence is that set {1, 2, 5} reduces to {2, 5}, a member of [03] that bisects the measure, causing
the violin to be heard in a displaced 6

8 meter. By contrast, set 0, 3, 4 reduces to 0 4, which is filled
out as 0, 2, 4 and thus the accompanying instruments project an undisplaced 3

4 meter. In bar 8, all
instruments articulate a [024] set, resolving the metric conflict at the cadence.

Both non-unit generators in C6 are divisors, and hence idempotent after several generations.
There are also three generators in the prime universe of c = 7, but here each one retains its
potency to generate the universe. These three generators have particular roles to play in the
context of European diatonic tonality, the repertory at the core of most music-theory curricula:
they respectively organize melody, harmony, and harmonic progression.

The three cyclic graphs of Figure 4 show the action of these generators on the diatonic collection.
The unit generator (g = 1) forms scalar fragments, which are the basis of melodies. g = 2 generates
tonal harmonies, the [024] diatonic triads and [0135] diatonic seventh chords. g = 3 generates
the diatonic cycle of fifths, and thus its generated sets are the basis of progressions between
successive harmonies. Most intermediate-cardinality set classes are generated by exactly one of
these intervals, and thus can be seen to perform one of the three jobs. The ungenerated sets belong
to the four inversionally asymmetric classes, [013], [023], [0124], and [0234], whose intervals have
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Figure 4: Three generators on C7. (a) g = 1 produces a scale; (b)g = 2 produces chords such as triads (filled circles)
and seventh chords (open circles). (c) g = 3 produces a cycle of fifths, connecting tonics to their dominants
and subdominants.

uniform multiplicities.
C7 is also an appropriate universe for introducing inclusion, maximal evenness (ME) and Q-

relations. Inclusion follows naturally from a study of interval generation, since the sets from
a single generator form an inclusion network. The ME property is held by fifths, triads, and
seventh chords, the building blocks of classical tonality. The Q relation (my term) formalizes the
parsimonious voice-leading relation between sets and set classes of equal cardinality [16]. All of
these topics will have significant interpretations in the C12 chromatic universe.

c = 8 and c = 9 can be studied in order, but also in tandem, as both are powers of small
primes. They are the smallest universes that have both divisor and non-unit prime generators [5],
and the interaction of these two generator-classes is rich with dynamic potential in the context of
metric cycles. The divisor generators for these universes (for c = 8, g = (2, 4); for c = 9, g = 3)
underlie the isochronous meters of the Western European tradition ( 2

4 , 4
4 , and 9

8 meter respectively).
Non-unit prime intervals (c = 8, d = 3 and c = 9, d = 2) generate the non-isochronous meters [17]
of vernacular repertories [5]. The rhytmic dialectic of concert and vernacular traditions is artfully
exploited in a number of repertories beginning in the middle of the 19th century. In 4

4 meter,
Western pure-duple isochrony is juxtaposed with the Afro-Caribbean tresillo (Gottschalk, Joplin
[18]) or paradiddle (Reich [19]). A similar juxtaposition is available in 9

8 meter, where pure-triple
isochrony is juxtaposed with characteristic Balkan (aksak) rhythms (Bartók [20], Brubeck [18]).

VI. Scaling up to C12

In the course I have developed for undergraduate music majors at Yale University, the progression
to nine elements takes about six 75-minute classes, or three weeks of a thirteen-week semester.
Since 10 and 11 have no familiar applications, in fourth week I begin the study of atonality proper,
introducing the C12 chromatic pitch-class universe. Students are by now familiar with all of
the foundational terms, concepts, and protocols of atonal theory. They can quickly generate a
table of the 19 trichord classes, indicate which ones are inversionally symmetric, which two are
inversionally paired, and recognize the special properties of the augmented triad; place trichord
classes into a Q-relation network [16]; quickly assign trichords to prime forms; and identify
abstract inclusion and complement relations with largercardinality sets.

Students also are in a position to appreciate what is special about living in a musical universe
that has exactly twelve elements, and how different their world would be if that number were
incrementally smaller or larger. Students who have studied the interaction of divisor generators
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3 x 2 in C6 are primed to understand the C12 as a cross-product of augmented triads and
diminished-seventh chords, and to appreciate the ways that atonal composers compound these
generated cycles to create interactions between hexatonic, whole-tone, and octatonic scales [21].
Because they have studied how prime and divisor generators interact in C8 and C9, they are in
a position to understand how diatonic and chromatic-cluster sets can be placed into opposition
with divisor-generated ones in C12. Because they have studied transpositional invariance and
maximal evenness in small-cardinality universes, they can identify sets with those properties in
C12, and recognize their musical significance. There are also significant applications of C12 in
the beat-class domain. For example, the relations of the divisor-generated perfectly even sets
underlies the interaction of ( 12

8 , 3
4 , and 3

2 meters, as different ways to structure the interaction of
incommensurate divisor generators [22],[23].

Along the way to C12, students have picked up intimate knowledge of pentatonic, diatonic,
and time-cycle universes, and this knowledge has its own value to musicians. Much of the music
that they perform, listen to, improvise, or compose is both diatonic and deeply metric. Students
who have pursued this pedagogical path to atonality will have, along the way, acquired a mode
that helps them explore the relationship between music with those ubiquitous properties, musical
systems in which they participate, and the properties of the abstract universes that those systems
instantiate.
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Abstract: Carbon dynamics influence human physiology, culture and social patterns. Along centuries,
linguists had been sufficiently discussed how breathing and cardiovascular performance set preconditions
for word segmentation, phrasing, repetition, iteration, variation and expressiveness. Less attention had
been paid to this influence as reflected in music, due to the belief that music can be "purely instrumental",
and therefore far away from speech. However music, dance, respiration and verbal language share common
evolutionary grounds, as well as important physiological features and constraints related to the organic
properties of carbon and to its role in biological evolution. In this context, this contribution interprets
chemical proportions in bioorganic compounds as analogies of their musical parallels, with consequences
to music theory. Mathematical evidence is suggested for sketching a carbon hypothesis of music. From
this perspective, music is more a feature and a consequence of chemical and biological constraints (not
exclusive of humans), than a product "purely social" or "uniquely cultural".

Keywords: Carbon. 1/f Noise. Zipf. Music Language Self-similarity.

I. A finding of quantitative linguistics

Little known outside his technical domain, Luděk Hřebíček’s (1934 - ) research on speech
self-similarity is a major contribution to quantitative linguistics including developments
on semantic attractors, grammar structures as graphs and networks, and word-phrasing

length variation as self-similar dynamics (particularly in [24, 25]). Making part of a new paradigm
in language investigation, these theoretical devices fit strikingly well with their corresponding
analogies in music, even when musical semantics and syntax preserve important differences in
respect to verbal language.1

Hřebíček published his article "Fractals in Language" (1994) as a first attempt to explain the
Menzerath-Altmann law, with relevance to the theory of phrase extension, in pursuit of a theory of
sentence aggregates in natural language. This law applies to the discrete probability distribution
in the frequency of data which can be syllables, words or phrases in a text, and is closely related to
Frumkina’s Law, a probabilistic model for the occurrence of linguistic units in text passages [21].

Linguist Reveka M. Frumkina (1931-) systematically investigated the distribution of words
in text blocks of fixed length. Later, also the recurrence of syntactic structures and functions
was analysed with similar results in [27]. Applying this probabilistic law in random samples of

1For a discussion on musical semantics and syntax, see the work of Raymond Monelle, David Lidov, Eero Tarasti, Kofi
Agawu, and Lidia Goehr, among other semioticians involved with music theory. Their specialised developments are not
referred to in this contribution.
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texts and voice recordings, provides us with a useful tool for determining authenticity of styles
in literature, but also, in very distinct contexts, for the identification of patterns in ecolects and
idiolects (i.e. contextualised pragmatic variations of speech). An equivalent technique in music
and sound analysis has had major applications in automata for the identification of musical style
and authorship (e.g. [16]).

Music and speech diverge in a complexity of variables and outputs, however it suffices to
compare intervals of duration, intonation, emphasis and repetition, in order to obtain useful
information that ultimately can be interpreted in terms of rhythm, pitch, amplitude, timbre
and texture. In fact, most samples of speech and music can be characterised as "melodies"
containing these features; therein the interest that Hřebíček’s approach may receive in musicology:
whether in linguistics an "aggregate" denotes a group of sentences in a text containing a length-
variating word or lexical unit (Hřebíček 1997:104), the analogous concept in music may reflect the
structure of motive-phrase variation, and so forth the variation of melodic components (i.e. how a
melody performance is enriched by second or third-level complexity, with variations of rhythm,
pitch, amplitude, timbre and texture). Contrapuntal densities can also be conceived as relatively
simultaneous melodies, because, as Julián Carrillo (1948/1967:152) thought: "counterpoint is the
amalgam of melodies with same or different rhythms". In strict sense, musical counterpoint can
be described by a set of rules acting under an aggregates law.

Complementarily, the Menzerath-Altmann law states that the longer an aggregate in a number
of sentences, the shorter its sentences in their number of words; this implies a tendency to
concentrate the periodic recurrences in the structure of a phrase, towards a compact group of
structural units (something familiar to musicians thinking of motivic commonplaces). Although
this concept is not verbatim mirrored in counterpoint theory, actually the variety of contrapuntal
"species" portraits the historical intuition around this law (in its background, a power law in a
thermodynamic context),2 from first species to florid counterpoint. Furthermore, Schenkerian
schematism also captures—in its fashion—the level of the most "compact group of structural units",
over which successive structured layers arise. Then a musicological version of the Menzerath-
Altmann law would state that, the longer a melody is obtained by a set of rules, there will also be
a greater tendency to segmentation.

At this point, musicology and linguistics embodies the shape of a garden of connecting
paths, since different theoretical approaches, proper of each discipline, start to unveil a single
phenomenology. Thus, Hřebíček’s theory of speech self-similarity may be traced by its connections
with the Zipf’s law of language harmonicity (in terms of physical, compositional trends), with
the law of least effort (ethological empiricism that emphasizes constant power laws in biological
behavioural economy), and with the balance between noise and syntax correctness in Markovian
systems as probabilistic-statistic collections of codes under postulates of information theory.

Zipf’s law is an empirical law employed in probability and statistics, which reflects an approach
to a probabilistic distribution applicable to a variety of samples in many different fields including
physics, biology and social sciences. The law, originally proposed by linguist George K. Zipf
(1902-1950), states that in a generalized sample of verbal expressions, the most frequent word
will occur approximately twice as often as the second most frequent word, which occurs twice as
often as the fourth most frequent word, and so on (see [63, 64]). In the end only a few words are
used very frequently, whilst most of the words are little used (an experience common to conscious
processing of a new language acquisition, comparable to a musical repertoire learning process).
This principle is summarized in the formula

Pi ∼ P1/i,
2See [50] for a general introduction to the concept of power law.
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where Pi is the probability of selecting an object i, and P1 is the probability which a first term of
a series has to appear in a repertoire of objects. Given that the successive probabilities are positive
and ordered (p1 ≥ p2 ≥ ...), and for all i, pi ≤ 1/i, it is suggested that a second term occurs
approximately 1/2 as often as the first term does, whilst the third term occurs approximately 1/3
as often as the first one, and so on. From this law it is also conjectured that the most common
words tend to be shorter, and that when they tend to be too short, then they are replaced by longer
words [52, p. 27].

[42, p. 238-249] description of Zipf’s law, focused on the idea of efficiency in terms of an
ability to "emphasize some choices at the expense of others", has a special significance for music,
assuming that many musical strategies for consistency are based on a same kind of efficiency. As
a matter of fact, the structuring form of Zipf’s equation, as the series

1 ∼ 1, 2 ∼ 1/2, 3 ∼ 1/3, 4 ∼ 1/4, 5 ∼ 1/5...

constitutes a self-referential sequence, analogue to the aliquot division of an acoustic system,
with a fundamental frequency and its natural harmonics. Such a self-referentiality can also
be interpreted as a sequence with statistical self-similarity, i.e. not necessarily with "obvious"
superficial self-similarity.

Acoustic (i.e. molecular) patterns in biology involve patterns of activation-inhibition, or
perturbation-absorption, as happens in the mechanical vibrations of a string or a membrane. In a
diversity of layers, these patterns tend to synchronization and consequent self-similarity, as it can
be noticed in phenomena such as the intricate network of changing figures in a surface of water
shaped by the wind; or in the Chladni figures of fine sand upon a plate periodically vibrating; but
also in respiration and cardiac pulsation in individuals, and in a variety of practices coordinated
among groups of individuals. The rhythms shaping these patterns cannot be explained uniquely
as a linear physical interaction, because of the relative autonomy of physical sources participating
within a same environment, as noted in [43]. Therefore the application of nonlinear methods
– sometimes in cooperation with the linear ones - may be useful for systematic musicology, as
explained below.

II. Music and speech as bioacoustic patterns

From evolutionary physiological and structural views, respiration is of first importance for the
foundations of music and speech. As a physical pattern, respiration has a constant, quasi-periodic
relationship with the brain’s oxygenation, and thus, with the rhythm of mental functions and
mind-performative processing. Accordingly, it is not surprising that cardiorespiratory quasi-
periodicity synchronises with brain performance and the nervous system’s functions involved
with music and speech outputs.

Respiration has at least three analogous – although importantly differentiated-scalar levels,
closely associated among them: (1) cardiopulmonary carbon dioxide release and absorption of
oxygen from external environment, (2) cellular respiration which, by degrading glucose with O2
participation, allows organisms to obtain energy, and (3) carbon self-structuring at DNA-bases
sequences’ recursion. Conversely, the electric features of carbon and carbon oxidation have a
capital role building protein blocks, making up the sequences of the genetic code and self-repair of
tissues and limbs. This major role of carbon also affects the endorhythmic coordination of organs,
including motor and cognitive functions.

At each of these levels of cycles of energetic-chemical interaction, these cycles match at least two
different systems; for example, the cardiopulmonary cycle is coupled to the muscular/locomotor
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cycle, but also to the cycle of involved brain/modular performance (in its turn, a system of electro-
chemical couplings). Abundant literature [7, 8, 9, 23, 43, 51] reports natural synchronization of
physical cycles in many animal species and in quite varied biological processes. The mathematical
modelling of these coupled cycles usually employs the circle mapping representing quasi-periodicity
of the organic cycles. Quasi-periodicity ratio in coupled cycles fall into the so-called mode locking
patterns in the circle, helpful for measuring synchronization [43] (a concept somehow familiar to
musicians, but in contexts of tuning, harmonic structure and physical empathy).

Mode locking in human cardiorespiratory patterns crucially include ratios 1/1, 1/2, 2/3, or 1/4,
mentioned in [9 and 23]. Then it is not just casual that ratios 1/1, 1/2, 2/3 (i.e. triplet implication),
4/4, 2/4, 3/4 and 6/8 are commonplaces in music; particularly in dance music and its derivations.
Since human body is nearly symmetric, and dance is usually a group practice reflecting human
symmetry in a given space, dance steps are mirrors of bodily ratios such as the mentioned ones.
Ancient Pythagoreans did notice that these simple symmetries easily coincide with small ratios
they identified as "harmony" in acoustic phenomena; thus they discovered a natural harmony
represented by a succession of rational numbers, where the smallest ratios were considered as
more pleasant or "more harmonic", and conversely higher ratios would correspond to less pleasant
and "less harmonic" musical sounds. Now we may add that prime numbers progressively larger
would also progressively produce a feeling of sound unprocessing, a concept that Barlow (2001,
p. 6-8) labels as "indigestibility of primes". Table 1 suggests this ratio progression, from higher
symmetry and easier predictability, to levels increasingly embedding sub-symmetries and bigger
prime factors, which may be enriched by introducing probabilistic variation of inner accentuation
(in metric patterns) and intervallic chord composition – both musical concepts in Riemannian sense
[48].

Songs and other vocal repertoire may reflect an interplay between bodily symmetries, such as
the mentioned dance metres, and Pythagorean ratios. Congruently, vocal repertoire intuitively
identifies simple ratios with the Zipf’s law series described above, as the vocal functions and
recurrences also follow the law of least effort. In fact, the use of the so-called "harmonic series"
1/1, 1/2, 1/3, 1/4, 1/5, 1/6..., when applied to tuning voices and instrumental practice, cannot
ignore the Weber-Fechner law on the relationship between the physical magnitude of a stimulus
and its perceived value. The effect of this law makes that, in musical experience, the harmonic
series cannot mean a simple succession of abstract ratios, but instead may involve a deployment
of epistemic-cognitive deviation reflected in experiential varied interpretation. Table 1 illustrates
this correspondence among the simplest tuning intervals and the most used musical metres,
suggesting a Weber-Fechner complexity for the human interpretation of progressively smaller
intervals, gradually increasing anti-intuition, i.e. gradually going beyond the arrow in the lower
row of the table (a progression that Figure 1 suggests in more detail).

Moreover, if we interpret the harmonic series as a probabilistic arrangement, we may say
that – using the simplest example in tonal classical harmony – there is a total probability of 1/1
for a fundamental pitch, to be the ubiquitous signature in a tonal piece. Then we would have a
probability of 1/2 for the second tonal hierarchy (commonly the so-called interval of perfect fifth),
and 1/3 for the probability of a third interval (the interval of third), and so forth. Although this
may be interesting for some aspects of tonal theory, it is evident that musical practice does not
consist uniquely on arranging ranks of pitch-span probability according to the hierarchies of a
rigid structure. This is why Barlow (2001, p. 4) theorizes on probability as a function of musical
priority; nevertheless, one may ask what "musical priority" is exactly, as it directly concerns to form
and style from the very foundations of music. Barlow (ibid., p. 2-3) proposes that – for the sake of
simplification, let the metrical one be an illustrative example – musical priority is distinguishing a
diversity of probabilistic weights in a given metre: "In the case of ametric music, all the pulses are
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equally probable [...] But if you want to make the music more and more metric, you have to then
decide how probable or how important the individual pulses ought to be. This assumes there
might be a correlation between their importance and their probability" (op. cit., p. 2).

For the Riemannian theory of musical metre and phraseology, the correlation between the
diversity of musical weights and the extension of musical phrases and periods was already
a big concern. In fact, Riemann (1903, p. 200-201) conceives musical metre as an analogy (i.e.
proportionality) of musical harmony, since "it is clear that, as the proportions of a measurement
grow, the answering member is increasingly likely to lead to an ever more noticeable resting
point." Altogether with this notion, Riemann introduces probability ("likelihood") for estimating the
weight and extension of musical notes, motifs, phrases and periods, in a fashion analogous to the
linguistic concept of "aggregate" used by Hřebíček (1994, 1997). Thus tension and extension (the
latter identified by [59, p. 337] as "complementary cadences" in a Neo-Riemannian context), as
well as the function of what Riemann calls resting points, are aspects of a whole system common
to speech and music practices, where a diversity of parameters are frequently correlated; therein
the importance of measurement, contrast and punctuation, both in lyrical and musical traditions
where balance between periodicity and aperiodicity has a capital structural and semiotic function.
As a matter of fact, the Riemannian theory is an elaboration upon Koch’s Versuch einer Anleitung
zur Composition (1793), a work of enormous influence throughout 19th and 20th centuries, which
emphasizes the analogies of basic unit transformation, periodicity, and structure in speech and music,
as well as the intuition of symmetry, for verbal and musical composition and diversification.

In contrast to diversity, speech and music also necessarily seek for structural and functional
economy. Since early times of systematic musicology (see [13, 44, 34, 35]), information theory
receives particular attention for being helpful as a method estimating the balance between noise
and code; between randomness and meaning within a musical system. Once again, we may invoke
the relationship between probability and priority, as possible, often desirable, equilibration in
tension and extension of periodic-aperiodic systems.

Whether the economy of the code and the gradual sophistication of the "message" are biological
characteristics starting from chemical organic self-assembling, the ordering function of the code also
gradually leads to structural coherence manifested as self-similarity within in a vast range of
diversities. Self-similarity can be understood, then, as a mechanism preserving information at low
cost (see [39, p. 209-210])). In music, a basic example of this is the geometric-arithmetic relationship
3/2↔ 12/8 (see Table 1) which contains both the whole and the half-step of the diatonic system
(i.e. its diazeuctic feature), and simultaneously allows the tonal system cycles, also represented in
a two-dimensional periodic space by the Tonnetz, the Euler-Riemannian honeycomb lattice that
characterizes tonal functions. The recurrence of this structural relationship, including all balances
between periodic-aperiodic repetitions and extensions within a given grammar, guaranties the
efficient economy of music as an information system, nonetheless continuously productive (i.e.
poietic, both in biological and cultural senses). For organic chemistry this is not a new kind of
systematic relationship; on the contrary, the cycles of periodic-aperiodic relationships lie at the
bottom of chemical self-organisation, as noticed by crystallographers since the ending of 19th
century.

III. Towards a carbon hypothesis of music and speech

The philosophical association between cardiorespiration and harmony delves into the darkness of
antiquity. Plato’s harmonic concept of cardiorespiration in his Timaeus (70 b-d) is just one example
within an endless collection of historical sources. However this issue comes into clarity in relatively
recent days. By mid-20th century, Carrillo wrote that "the vibrations our heart produces are of
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Table 1: Columns from left to right: musical ratios ordered by numerator size, starting at 1/1; decimal expansion of the
same ratios, and their conventional denominations in Western music; correspondence to the harmonic series
(acoustics); and, in the rightmost column, common metrical signatures in music and dance, e.g. from the
single-beat bar 1/1 to the 12/8, common in distinct cultures albeit with different inner accentuation. Notice the
12/8 ratio closes the first cycle of music self- structuring towards 3/2, connecting the diapente (perfect fifth)
with the diapason (octave), allowing the circle of fifths and expressing the diazeuctic feature of the diatonic
set that embeds the chromatic scale. Complex metrics and harmony arise progressively going downwards in
this conceptually endless table (continuation is suggested by an arrow and ellipsis for each column), which
mathematical ordering is suggested further in Figure 1.

ratio decimal
expansion

harmonic interval
(tonal degree)

harmonic
equivalence

music & dance
metre signature

1/1 1 generator (fundamental or tonic) 1/1 1/1, 4/4, 2/2, 8/8

2/1 2 diapason (octave) 2/1 4/2, 8/4

3/2 1.5 diapason (perfect fifth, dominant) 1/2 2/4, 6/4, 4/8

4/3 1.333... diatessaron (perfect fourth,
subdominant)

1/3 1/3 : 4/4 (triplet)

5/3 1.666... major sixth (submediant) 2/3 1/4 : 3/4 (quadruplet)

5/4 1.25 fifth harmonic (major third, mediant) 1/4 1/4, 2/8

6/5 1.2 minor third 1/5 1/5 : 4/4 (quintuplet)

7/4 1.75 seventh harmonic (subminor seventh) (1/2 + 1/4) 3/4, 6/8

7/6 1.1666... septimal minor third 1/6 1/6 : 4/4 (sextuplet)

8/7 1.142857... major second (supertonic) 1/7 1/7 : 4/4 (septuplet)

9/8 1.125 major tone (epogdoon) 1/8 9/8

10/9 1.111... minor tone (lesser tone) 1/9 1/9 : 4/4 (nontuplet)

11/8 1.375 eleventh harmonic (tritone) (1/4 + 1/8) 3/8

12/8 1.5
diazeuctic feature of the
diatonic/chromatic proportion
(12/8 : 3/2) and fifths cyclical,feature

1/2 12/8

13/8 1.625 thirteenth harmonic (tridecimal

neutral sixth)
(1/2 + 1/8) 5/8

15/8 1.875 major seventh (subtonic

or leading tone)
(1/2 + 1/4 + 1/8) 7/8

↓ ... ... ... ...
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musical nature as they fall within the human acoustic thresholds and within the ratios of musical
sounds [...] and they are the cause of empathy or lack of it, between human beings and animals
of all species" [12, p. 167-169, 409] (my translation and emphases). In a parallel investigation,
quick developing cardiology soon discovered and registered the "harmonic" patterns of cardiac
behaviour, as extremely useful signs for understanding the heart as a dynamical system (see
[5, 6, 7, 9, 14, 20, 23, 28, 32, 45, 49]).

In human cardiorespiratory performance, according to [32, p. 1] "the heart can act as a
pacemaker for respiration". This is a mechanism of synchronization that in physical terms signifies
that heart and lungs, and the whole cardiovascular system tend to adjust pressure and electric
potentials within a same harmonic system with constant variation and re-adjustment. [32, p. 5]
proposes a diversity of tunings — although not exactly using this term — of cardiovascular human
synchronization that behaves as a system of harmonic couplings (in its physical sense). Whether
brain oxygenation strongly depends on this process of synchronization, [29] provides arguments
to hypothesize that Hebbian synaptic plasticity (the adaptation of neurons in the brain during
memorising, learning and comparing processes) shares the same kind of proportionality. In
few words, music would be an expression of empathy and coordination of a complex selfness, a
connection and articulation of endorhythms and exorhythms oriented by carbon signals at different
levels: from organic chemical bonds, to cellular coordination, and then to cardiorespiration that
provides rhythmic assortment of oxygen and hydrogen to the brain and the emerging mind.

Carbon has an exceptional role in biochemistry: leading and performing electrochemical
bonds and structures with the nitrogenous bases in RNA and DNA; with its structural-energetic
self-organisation constructing organs and organisms; and with its central participation in cardio-
vascularity, respiration and brain-nervous system operation. At the genetic level, each nucleotide
consists of three components: a five-carbon monosaccharide (pentose) called ribose, a phosphate
group, and a nitrogenous base. At the muscular and locomotor systems, CO2 release comes from
the breakdown of glucose — as said before. As well, besides carbon dioxide and water, aerobic
respiration produces Adenosine Triphosphate (ATP), the molecular unit of currency in metabolism
and the intracellular energy transfers, which has remarkable molecular plasticity thanks to its
multi-faceted topological features including carbonic bonds (see [60]). Besides [14, p. 6] describes
how tyrosine-protein kinase (an enzyme encoded by the Abelson-related human gene, localised in
stress fibers and cardiocyte disks) does stimulate rhythmic pulsation of the cardiac system:

Receptor tyrosine kinase protein phosphorylation plays a crucial role in a wide
variety of cellular processes that control signal transduction [in the cardiac system].
Protein phosphorylation is a rapidly reversible process that regulates the intracellular
signaling in response to a specific stress [...] Signaling by activated tyrosine kinase
receptor protein is initiated by the phosphorylation of cytoplasmic proteins, which in
turn potentiate the intracellular signaling cascade.

A tyrosine kinase (TK, a subclass of protein kinase; from Greek kinein, "to move") is then an
enzyme that can transfer a phosphate group from ATP, produced in respiration, to a protein in
a cell. TK and ATP are closely related in cardiovascular and respiratory processes where the
phosphorylation of pentose sugar molecules (carbon atom ribose) directly participates in DNA
synthesis and cellular oxygenation [20]. In this context, TK operates as a chemical on-off switch of
cellular functions related to the patterns of activation-inhibition involved in motor and cognitive
human functions with quasi-periodic behaviour [20, 23, 32].

[56] believes that DNA frequencies can be traced as chemical noise, and mentions that "in-
dividual base positions in DNA sequences’ [...] measurements demonstrate the ubiquity of low
frequency 1/ f β and long-range fractal correlations as well as prominent short-range periodicities."
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[56, p. 7]. In this fashion, [56] associates 1/ f noise (called "carbon noise" in electric circuits context),
to "large averages over classifications in the Genetic Bank data bank [including] primate, inver-
tebrate, plant [...] [with] systematic changes in spectral exponent β with evolutionary category."
Sumarising, [55, 56] interpret the symbolic autocorrelation function for measuring DNA, in terms
of low frequency 1/ f noise. The musicological meaning of this "noise" is exhaustively studied in
[39].3

i. Empirical evidence and theoretical expansion

Observing dynamics in carbon quasi-periodic cycles, analogous to physical dynamics modelling,
we may assume that this model is useful to investigate a wide range of biological quasi-periodicity.
From this analogous systematization, the circle mapping of a locally-constant rational rotation
number that produces Arnold tongues (see Figure 1) emulates quasi-periodicity in physiological
transduction (i.e. couplings of electric and mechanical systems) as happen in cardiorespiration
and nervous dynamics.

Vaughn (1990) is probably the first author to report emergent physiological harmonic syn-
chronization in a human being singing a melody. This and further research on the same topic
employ time series analysis in order to estimate and describe emotional complexity in musical
performance and self-perception. The obtained results illuminate the structure of physiological
quasi-periodicity. [6, 29, 45] confirm the adequacy of this approach that connects cardiorespiration,
and nervous-cerebral dynamics, with the analysis of speech and music employing the circle map
and the Arnold tongues as a set of associated analogies.

The circle map exhibits certain regions of its parameters where it is locked to the driving
frequency (phase-locking or mode-locking in the jargon of electronic circuits) in periodically forced
nonlinear oscillators. The Arnold tongues is a resonance zone emanating out from rational
numbers in a two-dimensional parameter space [46, p. 130-131, 217]. Within the Arnold tongues,
the orbits of the circle map are periodic and they are called mode (or frequency)- locked solutions [47,
p. 135], a feature useful for mapping rational periodic — and therefore musical — intervals.

Figure 1 (equation originally published in [3]) displays Arnold tongues obtained by iterating
the function shown upper left in the diagram. Between the tongues asymptotically sprouting from
K = 0, the dynamics are quasi-periodic, and the frequency ratio is irrational. As K increases, the
Arnold tongues broadens, finally leading to an overlap between two tongues, and the system
can display chaos ([2, p. 65], [51, p. 122]). However, as the tongues’ broadness decreases in the
lower part of the diagram, the rotational values of the function change until mapping the set of
rational numbers (lower limit). Notice that a zoom-in between any of these intervals will display
subsequent harmonic hierarchies nested among the infinite rational intervals contained within the
tongues’ limit. At this limit we find precise analogies with rational numbers as intervals of classical
music from distinct harmonic regimes.4 The distribution of these musical intervals is neither
successively continuous, nor perfectly symmetric, but harmonically segmented in hierarchies;
thus, for example, the interval 3/5 (perfect fifth) has a higher structural hierarchy than 4/3 (major
fourth), and the latter has a higher hierarchy than 5/4 (major third), and so on, in a sense plotting
a generalised musical harmony.

The lower part of the diagram in Figure 1 suggests a quasi-musical harmonic proportionality
for biochemistry, with the ratio hydrogen-carbon as "generator interval" or first-order harmony,

3The relationship of 1/ f noise reported from DNA autocorrelation, is a sequel from [57, 58], after the primitive “carbon
noise” originally reported by [10]. Actually, the circle map equations (such as in Figure 1) also models the phase-locked
loop in electronics, as typically happen in carbon circuits [22, 37, 53]. 1/ f noise wavelets and signals, in scalar invariance,
are related by their generalized self-similarity.

4For a more in-detail explanation of the Arnold tongues in the context of musicology, see [39, p. 354-371].
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and potassium as a following hierarchy, before phosphorus, sulfur, nitrogen, oxygen, and lower
harmonic hierarchies laddered in smaller intervals. These hierarchies are "visible" across the
comparison between the tongues’ areas, i.e. the blank areas between the sigmoid lines in the
diagram. Table 2 includes corresponding values for this comparative harmony between music and
biochemistry, displaying the magnitudes of atomic Larmor frequencies (the angular frequency
of atoms). Since hydrogen has a Larmor frequency (Lf) of approximately (radians converted to)
42.5761 MHz, this measurement can be symbolised as a musical diatonic pitch high E (i.e. E + 1/3

of a tone). Congruently, whether carbon has Lf of 10.7058 MHz, then it also can be symbolised as
a pitch high E + 1/3, although two octaves below the frequency of hydrogen. Thus, the H-C interval
(i.e. generator-first subharmonic) should define a proportional arrangement with the following
elements participating in biochemistry, as suggested in Figure 2.

The study of proportionality in organic chemistry is a consolidated field at least since Jacob
Berzelius’ (1779-1848) times. But what is relevant for the present study is rather the affinity
between models of harmony: one in musical practice, another one in cardiorespiratory quasi-
periodicity, and the mentioned one in biochemistry; all of them hypothetically leaded by the H-C
interval, as suggested in Figure 1–2 and Table 2.

According to these diagrams, which compare musical and biochemical harmony, the interval
between generator H-C, and its major seventh, iron, has an interesting congruence with the diazeuctic
feature of the diatonic/chromatic proportion (12/8 : 3/2), and the fifths cycle. In simple words,
the relationship (H-C : Fe) locks the cycle of biochemical harmony in a an arrangement similar to
musical ratios 12/8 : 3/2 : 2/1. These proportions are equally related to the optimization of the
topological features of both, music and biochemistry. Optimal two-dimensional geometry can
be measured in graphene carbon hexagonal lattice, analogous to the Euler-Riemann lattice of
tonal classic harmony, the Tonnetz (see Figure 3). Unlike most of chemical elements tending to
perform linear bonds with other elements, carbon may perform complex periodic compositions
with special properties, including graphene periodic tiling and variations upon this regular tiling
in two dimensions and emerging complexity in three dimensions, as in fullerene manifolds topology.
Analogous self-organization economy in music includes circle mapping in the torus of phases (a
product of circles is a torus), as employed by [31, p. 105], and later by [1] and [62], among other
recent research exploring the Fourier space in a musical context.

Bell Telephone Laboratories reported, in 1938, an "objectionable" and "burning" noise that
"results in resistance, volume efficiency and carbon noise characteristics which [...] are essentially
independent of [their] angular position." Along the 20th century’s second third, this noise became
to be known as 1/ f "fractional noise" expressed on a log-log scale, usually measured in electric
circuits. In recent years, 1/ f circuit noise has been reduced by the employment of silicon dielectric
materials, and is investigated in low-temperatures carbon dispensed semiconductors [36], although
this line of research and its applications still in experimental stage

The two typical crystal structures of carbon in two dimensions: graphite simple hexagonal, and
face-centred diamond-cubic, are analogous to tonal music self-structuring: the graphite simple-
hexagonal in relation to the Tonnetz, and the cubic one as described by [19]. Three dimension
analogies of carbon are also meaningful in music. This conception may accept forced coupling as
physical emulation of harmonic fields, as studied in dynamical systems applied to music, as well
as harmonic segmentation (graphene zigzags) and self-containment as occurs in fullerenes [see [15,
pp. 48-50]], providing a more complete analogy with music.
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Table 2: Mathematical and musical values of biochemical harmony. Columns from left to right: musical ratios ordered
by numerator size, starting at 1; next column lists corresponding classical denominations of musical intervals,
followed by their analogies to elements participating in biochemistry, including their atomic Larmor frequencies
(*converted from radians to megahertz), and an approximation to diatonic intervals, in the rightmost column.

ratio harmonic
interval

associated chemical
element

Larmor frequency*
(x106Hz)

Approach to
diatonic orbit

1/1 generator Hydrogen 42.5761706239 E↑1/3

2/1 diapason’ Carbon 10.7058112488 E↑1/3

3/2 diapente (fifth) Potassium 1.98680993149 B↑1/3

5/3 major sixth Phosporus 17.235193094 C]

5/4 major third Sulfur 3.2681491128 G]

6/5 minor third Nitrogen 3.07672499835 G

8/5 minor sixth Selenium 8.1199364118 C

9/7 septimal major third Lithium 6.265495351128 G↑1/4

10/9 minor whole tone Calcium 2.86540299085 F]

11/10 neutral second Oxygen 5.7717722319 F]

12/7 septimal major sixth Silicon 8.4587326212 C↑1/4

15/8 major seventh Iron 40.06158770288 D]↑1/4

36/35 quarter perfect tone Zinc 2.663870321 E↑1/4

64/63 Archytas’ comma Magnesium 2.606304759 E↑1/8

↓ ... ... ... ...
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Figure 2: Left: Harmonic profile of the main elements participating in biochemistry (those included in Table 2, above),
ordered as musical harmonic intervals. The highest peak represents the hydrogen-carbon "generator" interval
in Lf scale 0-45 (×106 Hz). Iron, with position 12, is represented both by its major seventh (broken lines)
and minor second values respect to hydrogen. The complete length of the graph in its horizontal extension
represents the interval of the biochemical octave. Right: A more complete picture of the elements following
the periodic table’s order (from left to right), where peaks represent Larmor frequencies (Lf) of atomic isotopes
ranking from Hydrogen (1H) to Uranium (235U). The highest peak in leftmost area in the graph represents Lf
of 3H, Tritium, extremely rare on Earth. The next higher peak, at position 14, is iron (symbol Fe in Figure 1).

Figure 3: Left: a hexagon lattice of tonal harmony can be rolled to form a torus, nesting and connecting the cycles of
tonal functions [31, p. 105]. The torus is useful to map the space of musical intervals of optimal cardinality
12, in all of their possible harmonic relations and cyclical concatenation (diatonicity). Right: a hexagon lattice
of graphite can be rolled to form a carbon tube with electrical conduction. Other shapes of carbon in two and
three dimensions (including cube and truncated icosahedron) are also analogous to musical harmony.
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IV. Discussion

The harmonic distribution of intervals in the Arnold tongues follows a Farey tree consisting
of a self-structured sequence of ordered proportions. A Farey sequence of order n is "the set
of irreducible fractions between 0 and 1 with denominators less than n, arranged in increasing
order" [33, p. 22]. We may theorize that human utterances and music following Zipf’s law may be
described as a set of environmental resonances; more precisely thermodynamic systems dissipating
energy through a fluid medium (the air itself), 5 following a Farey tree self-hierarchisation. 6

Harmonisation is a generalised feature of music in any cultural practice, not only in the
most noticeable way as multiparametric proportionality of intervals (resonance), but as phase
synchronization in acoustics and psychoacoustics. Acoustic synchronization, as explained in [43,
p. xviii], is due to reciprocal influence and adaptation of mechanical systems to their interactions:

Our surroundings are full of oscillating objects: violins in an orchestra, chemical
systems exhibiting oscillatory variation of the concentration of reagents, a neural center
that controls the contraction of the human heart and the heart itself [...] All these and
many others systems have a common feature: they produce rhythms. Usually these
objects are not isolated from their environment, but interact with other objects, in other
words they are open systems. [...] This interaction can be very weak, sometimes hardly
perceptible, but nevertheless it often causes qualitative transition: an object adjusts its
rhythm in conformity with the rhythms of other objects.

Psychoacoustic synchronization is a complex, multi-layered and transductive phenomenon (i.e.
that involves and correlates chemical, electrical and mechanical synchronization). Distinct systems
can be analogous among them, replicating resonance patterns from their smaller layers to larger
ones. Actually, societies can massively synchronize-mostly unaware-within a variety of physio-
psychological phenomena [43, pp. xvii, 129]. Long term influence of this synchronization is hard
to track in culture, nevertheless music seems to map resonance and synchronization over historical
periods and trends. Accordingly, vast samples of music and speech from different contexts share
features of spontaneous measurement and recurrence due to common physiological grounds and
environmental conditions. Cardiorespiration, metabolism, nervous and cellular cycles, within their
own feedback loops, express and transform the self-sustained and self-oscillatory characteristics
of biochemical bonds.

The "preceptive rules" of musical traditions — somehow equivalent to syntax in speech —
would be rather a cultural formalisation of "spontaneous" practices resulting from the evolution
of systems within a specific context in resonance with common biochemical and physiological
bases. This is a key concept for developing a hypothesis on the role of carbon in living organisms
evolution, with its electrochemical features as precondition for the individual-context relationship
where music and language arise.

Within this framework, caution is in order to avoid oversimplification, so it is crucially
important to notice emerging stages and degrees of complexity, from the alluded carbon atomic
correlations, to carbon-related functions among coordinated individuals and societies. Dynamical
systems modelling of music does not look uniquely for specific objects, but particularly for systems

5For a physical modelling of this phenomenon in fluid mechanics, see [30, p. 44].
6A remarkable antecedent of this concept is Charles S. Peirce’s (1839–1914) hierarchical structure of rational intervals,

homologous to the Stern-Brocot tree (a comprehensive Farey binary sequence), in order to formulate a generalised
sequentiation for the structure of human thought [41, pp. 277-280]. More recently composer and theorist Ervin Wilson
(1928 - ) adopted this model to construct a harmonic system on the grounds of the natural harmony first put forward by
Novaro. Wilson (1994) emphasizes this musical model by its comparison with "growing systems [. . . ] from crystals to
living organisms" [61].
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of relations. In this sense, dynamical systems "predicts that the perceived dynamics of tonal
organization arise from the physics of non-linear resonance. Thus, non-linear resonance may
provide the neural substrate for a substantive musical universal, [...] offering a direct link to
neurophysiology" [29, p. 209]. We may add, a direct link from music to physiology and biochemistry.

Although direct analogy between chemical and acoustic intervals cannot be exact, because the
former may be of atomic, and the latter of molecular nature, a generalised analogy is preserved in the
context of biochemistry; namely, the leading and self-organizing resonance of the hydrogen-carbon
interval, towards emergent multi-scalar complexity. Even when a huge amount of identical hydro-
gens may interact with other atomic forces spinning around their z-axis in different frequencies,
loss of phase coherence and fall out of synchrony do not happen, since in many synchronizing
interactions "phase differences don’t have time to accumulate, so our signal [may] stay nice and
strong despite the changing frequencies" ([17, pp. 115-116], within a biomolecular context).

Of course, many questions remain unanswered from this first-approach theorizing on a
biochemical harmony. How a first, primary hydrogen did establish its current electromagnetic
behaviour, is a question that also seems to implicate an intricate relationship in the universe’s
emergence of carbon. A question that goes much further from the initial purpose of the present
study. Even "clear" assumptions from modelling a biochemical harmony entails very intriguing
"findings". Two examples of this, in the context of Table 2, are:

1. Weather the iron ratio (15/8) is responsible of magnetising the tonal octave, as it produces a
harmonic loop successively leading to a self-similar return to the H-C generator interval
(1/1:2/1), then producing the spiral of tonal harmony, so invoked by scholars since Aristoxenus
commentators up to Athanasius Kircher, and materialised in its modern physical modelling
by Augusto Novaro [38].

2. Weather arsenic appears as an exact diminished fifth "in conflict" with the harmoni c
hydrogen-carbon interval. In music theory this could be easily identified as the tritone
"classical conflict" or 64/45 interval, disputing tonal orientation with perfect 3/2 consonant
interval (see both intervals vicinity in Figure 1).

Furthermore, the Arnold tongues interpretation of musical harmony is useful not only as a set of
classical proportionality, but particularly in terms of music as an open system. Then probability, a
concept repeated in the initial pages of this contribution, does mean a guideline conducted by
harmonic attractors (i.e. higher hierarchies in the Arnold tongues), which also generates intervallic
possibilities in a discontinuous-dense set (the tongues’ lower limit). Under this approach, a
consistent theory of music is pending, from standard probability to fuzzy logic and uncertainty
analogous to quantum circles as explained in [18], related to factual musical performance.

V. Conclusions

Whether the electronic behaviour of carbon sets preconditions for dynamical systems in terms
of cycles of bioacoustic recurrence, such behaviour may have an effect in emergent patterns
through human biology and socialisation, without disregarding cultural "development". This
would explain, at least in part, how phase synchronization is expressed in music, speech and
culture, as carbon-based correlated phenomena.

The carbon hypothesis of music (CHM) allows us to propose a dynamical and organic definition of
music, as the set of psychoacoustic analogies of the human body, both individually and collectively,
where the physical context dialogues with components of our evolutionary and actual existence.
Besides, CHM also may be helpful to understand why music is a so common practice — if not
obsessive — in human societies, independently of epochs and cultural contexts.
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Music inherits and reflects psycho-physiological synchronization, where cardiorespiration
acts as a leading force, with implications for the rhythms of brain/mind emerging complexity.
In this sense, cyclical electric patterns of biochemical networks in quasi-periodic couplings, are
statistically self-similar in respect to the quasi-periodic cycles of music. Such self-similarity is
structurally related to the functional participation of carbon structures in psychoacoustic systems
from the middle ear to the most complex brain electrical processing; but also to a smaller scale of
carbon noise. This is how [55, p. 58] find 1/ f∼1 noise ubiquity as a statistic footprint of carbonic
self-similarity in speech (under Zipf’s law) and music (e.g. in Riemannian aggregates), and
later detect 1/ f β noise in DNA sequences, following "long-range fractal correlations as well as
prominent short-range periodicities" [56, p. 7].

CHM allows us to answer the question of the evolutionary motivation for vocalisation in humans,
transforming cycles of exhalation in potential socio-acoustic codification. Instrumental and
progressively abstract music would originated from this, following the law of least effort and Weber-
Fechner constraints. Then vocalization and music are literally an expression of the aerobic-carbonic
biological dynamics.

Nevertheless, not only speech and musical vocalisation are expressive or communicational phe-
nomena shaped by the law of least effort: since the carbon aerobic relationship strongly contributes
to shape the brain/mind rhythms of communication and emerging analogies, such relationship
also should involve symbolic and acoustic, verbal, non-verbal, and spatial epistemics (for instance,
dance, walking, gesturing, and wider range proxemics). Human individual and collective bod-
ies hear and respirate, and thus we are physically synchronized (as understood in [43]) with our
communities and with the rhythms of our own culture and environment.

Finally we conclude that a new conception of music is needed in order to reflect the symmetrical
pace from the conventional idea of music as a result of "high developed societies and culture",
to the basic idea of music as the plural manifestation of a biochemical harmony in many other
organisms than humans, including plants, fungi and bacteria. This post-anthropocentric definition
of music should also stimulate other conceptual decentralisation processes in current musicology.
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Abstract: We survey the all-interval chords of small order and the interval systems in which they are
situated. We begin with an examination of traditional all-interval chords in chromatic pitch-class spaces,
and extend the notion of their structure to their counterparts in David Lewin’s Generalized Interval
Systems. Mathematically, we observe that these chords belong to three categories of difference sets from the
field of combinatorics: (v, k, 1) planar difference sets, (v, k, 2) non-planar difference sets, and (v, k, 1, t)
almost difference sets. Further, we explore sets of all-interval chords in group-theoretical terms, where
such sets are obtained as orbits under the action of the normalizer of the interval group. This inquiry leads
to a catalog of the 11,438 all-interval chords of order k, where 2 6 k 6 8. We conclude with remarks
about future work and open questions.

Keywords: All-interval Chords. Generalized Interval Systems. Group Theory. Difference Sets.

I. Introduction

The compactness and efficiency of all-interval chords have attracted the attention of composers
and music theorists since the early years of the twentieth century. Such structures, which
include one and only one of each interval in a given interval system, are rich compositional

resources, as well as topics of theoretical interest to students of interval systems themselves. In
particular, all-interval tetrachords in 12-tone chromatic space, represented in pitch-class set theory
by the prime forms [0, 1, 4, 6]12 and [0, 1, 3, 7]12, 1 have received widespread application in the
music of the major post-tonal composers. Among numerous notable examples, the first song
in Arnold Schoenberg’s Das Buch der hängenden Gärten, Op. 15, ”Unterm Schutz von dichten
Blättergründen,” ends with a chord, {3, 5, 8, 9}12, that is a member of set class [0, 1, 4, 6]12 (see
Figure 1). Likewise, the final song in Alban Berg’s Vier Gesänge, Op. 2, ”Warm die Lüfte,”
contains a passage (mm. 20-22) that consists exclusively of all-interval tetrachords, alternating
members of set classes [0, 1, 3, 7]12 and [0, 1, 4, 6]12 (Figure 2). Indeed, entire compositions are
constructed around all-interval tetrachords. For instance, Elliott Carter’s First and Second String
Quartets both incorporate these collections locally and structurally [1].

All-interval tetrachords also feature prominently in post-tonal theoretical writings. Each of
the standard pitch-class-set-theoretical texts, beginning with Howard Hanson’s 1960 Harmonic
Materials of Modern Music [2], incorporates description and examples of these structures. 2 Relevant

1As we consider sets of integers in a variety of moduli, we indicate the modulus as a subscript following a set. For
example, {0, 1, 4, 6}12 is the set of integers 0, 1, 4, and 6 (modulo 12).

2Hanson represents members of both set classes [0, 1, 4, 6]12 and [0, 1, 3, 7]12 not with pitch-class integers, but with his
notation for their ”interval analyses,” pmnsdt, the letters of which indicate singular projections of the following intervals:
perfect fifth (p), minor second (m), major second (n), minor third (s), major third (d), and tritone (t) [2, p. 22].
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Figure 1: Schoenberg, ”Unterm Schutz von dichten Blättergründen,” final chord.

Figure 2: Berg, ”Warm die Lüfte,” mm. 20-22 (voice-leading reduction).

discussions appear in Allen Forte’s The Structure of Atonal Music [3], John Rahn’s Basic Atonal
Theory [4], Robert Morris’s Composition with Pitch Classes [5], George Perle’s Twelve-Tone Tonality [6],
Stefan Kostka’s Materials and Techniques of Post Tonal Music [7], and Joseph Straus’s Introduction to
Post-Tonal Theory [8], among other sources. All-interval tetrachords have also been studied in terms
of their transformational properties [9], and for their role in our understanding of the Z-relation
[10].3

Treatments of all-interval chords in other chromatic spaces are comparatively rare in the
literature. One significant work that addresses all-interval chords of varying sizes in microtonal
systems is Carlton Gamer and Robin Wilson’s ”Microtones and projective planes” [11]. Gamer and
Wilson present all-interval trichords, tetrachords, and hexachords in 7-, 13-, and 31-tone chromatic
spaces, respectively, as difference sets, a concept from mathematical combinatorial theory. For
their purposes, they define ”a difference set (modulo n) to be a set of distinct integers c1, ..., ck
(modulo n) for which the differences ci − cj (for i 6= j) include each non-zero integer (modulo
n) exactly once” (p. 153). Mathematicians call such difference sets — wherein each difference
appears exactly once — planar difference sets [12]. Such sets are a special type of all-interval
chord: whereas every planar difference set is an all-interval chord, not every all-interval chord is a
planar difference set.

This article moves beyond an examination of all-interval chords in chromatic systems to one
of corresponding structures in David Lewin’s Generalized Interval Systems (GISs) [13]. Specifically,
it enumerates the isomorphism classes of all-interval k-chords of small order (i.e., those with
2 ≤ k ≤ 8). In addition to the all-interval chords found in cyclic interval groups, such as those

3Z-related pitch-class sets are those that possess the same interval vector, but which are not related by transposition
and/or inversion.
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above, we note their occurrence in certain non-cyclic abelian and non-abelian interval groups.
Among these chords, we find planar and non-planar difference sets, as well as almost difference
sets [14], a related concept that comes from combinatorics.

II. Intervals and Interval Vectors in Chromatic Spaces

In this section, we discuss intervals and interval vectors in chromatic spaces, and extend relevant
aspects to more general spaces in the following section. To define our concept of interval, it is
necessary first to establish the context in which we find intervals. We call such a context a space:
a universal set of musical objects, allowing that a path exists between any two members of the
space. The examples above situate their intervals in v-tone (modular) chromatic spaces,4 wherein
the musical objects are pitch classes. Here, the notion of an interval between two pitch classes is
construed as a distance, the number of chromatic steps as an integer modulo n. Intervals in such
spaces may be directed or non-directed. Typically, melodic intervals are indicated as being directed:
the distance from pitch class x to pitch class y. This type of interval is reckoned y− x (modulo v).
Harmonic intervals, on the other hand, are non-directed: the static distance between pitch classes
x and y. The non-directed interval between pitch classes x and y is customarily represented by the
lesser of y− x (modulo n) or its inverse, −(y− x) = x− y (modulo n). Throughout the remainder
of this study, we refer to non-directed intervals simply as ”intervals,” whereas we always retain
the qualifier ”directed” when referring to directed intervals.

We are interested in the total interval content and total directed-interval content of a subset of
a space. In the music-theoretical literature, one finds a distinction between tallies of a subset’s
interval content and those of its directed intervals. For subsets in 12-tone chromatic space, a tool
that counts the number of occurrences of each directed interval is Lewin’s 1960 interval vector
[15], which we call a directed-interval vector or DIV. It consists of a 12-member array, in which
the first coordinate lists the number of occurrences of directed intervals of length 0 (unisons); the
second coordinate, directed intervals of length 1; the third, length 2; and so on through length
11. For a subset D of size k, the sum of the vector’s coordinates is k2. For example, the DIV for
the final chord {3, 5, 8, 9}12 in ”Unterm Schutz von dichten Blättergründen” (from Figure 1) is
(411111211111): we find four unisons (e.g., between each pitch class and itself), two instances of
directed intervals of length 6 (from pitch class 3 to 9, and from 9 to 3), and one of each of the
remaining ten lengths, for a total of 42 = 16 directed intervals. DIVs can be adapted easily to
other v-tone chromatic spaces. Essentially, one uses a v-member array, wherein the first coordinate
lists the number of occurrences of directed intervals of length 0, the second coordinate directed
intervals of length 1, the third length 2, and so on through length v− 1. Again, for a subset of size
k, the sum of the vector’s coordinates is k2. For instance, the 32 = 9 directed intervals among the
members of {0, 1, 3}7 yield the DIV (3111111).

Tallies of non-directed interval content in subsets of 12-tone chromatic space are typically
represented using Allen Forte’s 1973 interval vector [3], also known as an interval-class vector
or ICV. The ICV is a 6-member array in which the respective coordinates list the number of
occurrences of each interval in a pitch-class set.5 For a subset of size k, the sum of the coordinates
in an ICV is the binomial coefficient (k

2) = (k(k− 1))/2. For example, the ICV for the {3, 5, 8, 9}12

4Henceforth in this study, we use the variable v for the size of a space rather than the more customary n. This
substitution is for consistency with our later incorporation of the standard notation (v, k, λ) for difference sets, in which v
is the size of the group.

5 It is significant to note that, whereas a DIV contains a coordinate (the first) that counts the number of unison intervals
in a pitch-class set, an ICV does not count unison intervals.
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tetrachord from Figure 1 is [111111].6 For v-tone chromatic spaces in general, the ICV is a

[
v
2
]-member array that shows the number of occurrences of each interval class in a pitch-class

set in order of ascending size from 1 to [
v
2
].7 As above, the sum of the vector’s coordinates for a

subset of size k is the binomial coefficient t(k
2). For example, in a chromatic space of size 7, we

find [
7
2
] = 3 interval classes. Accordingly, the ICV for the pitch class set {0, 1, 3}7 is [111]. An

important difference exists between Lewin’s and Forte’s vectors: whereas Lewin’s vector counts
the directed interval from pitch class x to pitch class y separately from the directed interval from y
to x, Forte’s vector counts the non-directed interval between pitch classes x and y only once. This
distinction between Lewin’s and Forte’s vectors leads to significant results in later sections.

III. Intervals and Interval Vectors in Generalized Interval Systems

In this study, we conceptualize intervals in the manner of David Lewin’s Generalized Musical
Intervals and Transformations (GMIT) [13]; more precisely, Lewin’s intervals agree with our notion of
directed intervals. In this sense, a directed interval is a member of a mathematical group that has a
simply transitive action on a space. Simple transitivity requires that (a) the action is transitive, i.e.,
each member of the space is related to every other member (and to itself) by some directed interval
in the group; and (b) the action is free, a consequence of which is that one and only one directed
interval relates a member of the space to any other member (or to itself). For instance, in each of
the examples in the previous section, the interval group is the group of integers modulo v, Zv,
which has a simply transitive action on the space S of v pitch classes. An interval exists between
any two pitch classes x and y in S, and we find one and only one directed interval from x to y : yx
(modulo v). Whereas we can generalize this situation to abstract cyclic groups and other types
of group structures, Lewin’s generalized intervals differ in significant ways from traditionally
defined directed intervals. In particular, they do not possess qualities of distance and direction
[16]. Instead, we are interested their functioning as ”characteristic motions” among the members
of a space [13, p. xxix].

GMIT does not address the notion of non-directed intervals. It is possible, however, to
generalize these intervals in a manner that is consistent with Lewin’s work. In particular, a
non-directed interval (or interval) is an equivalence class (interval class) that contains a directed
interval and its inverse. If a directed interval is equivalent to its inverse, such as is the case with
an involution, then the interval class that includes it is a singleton. For instance, the interval class
that includes x ∈ Z12, x 6= 6, also includes x (modulo 12), whereas the interval class that contains
the involution 6 ∈ Z12 consists of that element alone, as 6 ≡ −6 (modulo 12).

As many of our subsequent examples involve non-abelian groups, our notation for intervals and
directed intervals follows that of group elements in multiplicative groups (rather than the additive
notation used with abelian groups). In compositions of such group elements, we incorporate right
orthography (i.e., the product gh, where g, h ∈ G, means ”do g first, then do h”). The composition
gg is notated g2, the inverse of an element g is indicated as g−1, etc. Because a generalized directed
interval g does not possess the quality of distance, we cannot merely label its interval class with

6We use different bracket styles to distinguish between directed-interval vectors and interval-class vectors. For the
former, we use parentheses, whereas we use square brackets for the latter.

7We use the floor function, [
v
2
], in tabulating the number of interval classes in a cyclic group, on account of the

variance in the number involutions in cyclic groups of even and odd orders. A standard result in group theory shows that
even-order cyclic groups always have one involution, (e.g., 6 in Z12), whereas odd-order cyclic groups have none. As we
will see below, the number of involutions helps determine the number of interval classes in a group.
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the interval class’s shorter constituent, g or g−1 (as is the custom in chromatic spaces). Hence, we
designate the interval class that contains g and its inverse as g±1 (Accordingly, if h = g−1, then
h±1 = g±1.)

In this study, we are concerned at times with subsets of spaces, and at other times with subsets
of interval groups themselves. In particular, in GIS theory, it is sometimes more convenient to
refer to elements of an interval group rather than those of a space. As a result of its simply
transitive action, an isomorphism exists between an interval group and the space on which it
acts. Technically, the space S on which a group G acts simply transitively is called a G-torsor
[17] S is isomorphic to G, except that no point in S corresponds a priori to the identity element
of G. However, once such an association is chosen — as in assigning the pitch class C to the
identity element 0 ∈ Z12 — the bijection of the remaining members in S to group elements in G
is determined by right multiplication (for non-abelian groups; by addition for abelian groups).8

We may therefore identify subsets of the space (i.e., chords) with subsets of the group (and vice
versa). For instance, in the chromatic-space examples above, both the interval group of order v
and the space of v pitch classes can be modeled with the integers modulo v, Zv. Having assigned
the pitch class C to 0 as an origin in 12-tone chromatic space, we can interpret the members of a
pitch-class set, such as [0, 1, 4, 6]12, equally as pitch classes or as directed intervals from the origin.

Directed-interval vectors can be adapted to Lewin’s GISs by replacing tallies of directed
intervals of varying lengths with those of individual group elements, as long as it is made clear
which coordinate in the vector represents the number of occurrences of which group element.
As above, for an interval group of order v, the DIV has v coordinates, which sum to v2. As with
Lewin’s interval vector, Forte’s interval-class vector can also be adapted for use with interval
groups in GISs. Again, it is necessary to establish which coordinate of the vector counts the
occurrences of which interval class. For an interval group G, the number of coordinates in an ICV
can be determined by the following formula, where w is the number of involutions in G, and |G]|
is the size of the set of non-identity elements in G.9

w + |G]|
2

As above, the sum of the ICV’s coordinates for a set of size k equals the binomial coefficient (k
2).

IV. All-Interval Chords

An all-interval chord is a subset of a space that possesses among its members at least one of
every interval in the interval group that acts on that space [3]. Put another way, an all-interval
chord is one which contains no 0s in its ICV (or, in the case of all-directed-interval chords, in
its DIV). As we observe in §1, however, composers and music theorists have traditionally been
interested in a special category of all-interval chords: those that contain one and only one of each
non-unison interval, as such chords have the highest degree of intervallic efficiency. In these

8One may also use left multiplication, yielding (for non-abelian groups) a G-torsor that is anti-isomorphic to the
one determined by right multiplication. We incorporate right multiplication here for consistency with our use of right
orthography.

9Using results from character theory [18], we determine the number w of involutions in a finite group G via the
following:

w = Σχw(χ)χ(1)

where χ runs through the complex characters of G, and w(χ) is the Frobenius-Shur indicator of χ. Consequently, w
is always either 0 or odd. That fact, together with the classical result that a group of odd order contains no involutions,
means that w + |G]| is always divisible by 2.
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chords, the full set of available intervals is present in as small a subset as possible. Henceforth,
when we refer to all-interval chords and all-directed-interval chords, we indicate chords with this
particular property. A significant relationship exists between all-directed-interval chords and all-
interval chords: any all-directed-interval chord is also all-interval, but the reverse is not necessarily
true. For instance, a trichord with the prime form [0, 1, 3, 7]7 possesses the DIV (3111111); it
is accordingly an all-directed-interval chord. Its ICV, [111], indicates that this trichord is also
all-interval. In contrast, a trichord with the prime form [0, 1, 3, 7]6 is not an all-directed-interval
chord in the specific sense described above. Its DIV is (311211), which contains a 2, not a 1, in its
fourth coordinate; nevertheless, it is all-interval, as is evident from its ICV: [111].

Given the isomorphism from a G-torsor to the interval group G, we can define all-interval
chords and all-directed-interval chords not only as subsets of a space, but as subsets of an interval
group. In this connection, we examine various concepts from the theory of difference sets in the
field of combinatorics. Most generally a difference set is a subset D = (v, k, ) of a group G, where
v is the order of G, k is the size of D, and every non-identity element of G appears exactly λ times
as compositions of elements gh−1, where g, h ∈ D. Such subsets possess the quality of having
a flat directed-interval distribution (i.e., all coordinates of non-unison directed intervals in their
DIVs are equal to λ). For instance, let G = {P, I, R, RI} be the group of basic twelve-tone row
operations (prime [identity], inversion, retrograde, and retrograde-inversion), isomorphic to the
Klein four-group, Z2

2. The trichordal subset D = P, I, R of G is a (4, 3, 2) difference set. G is of
order 4; D is a three-element subset of G; and each non-identity element of G appears exactly
twice as a product gh−1 of elements g and h in D : PI−1 = IP−1 = I, PR−1 = RP−1 = R, and
IR−1 = RI−1 = RI, as is evident in the trichord’s DIV (3222).

All-directed-interval chords are a particular category of difference set. A planar difference set
is one in which λ = 1 (i.e., each non-unison directed interval appears exactly once). The k = 4
subset {0, 1, 3, 9}13 of Z13 serves as an example; its DIV, (4111111111111), demonstrates the unary
directed-interval distribution that distinguishes it as a planar difference set. A conjecture in the
field of combinatorics [12, p. 421] states that if λ = 1, then k− 1 must be the power of a prime.
That is, there are no planar difference sets of sizes 6, 10, 12. . . .

The familiar all-interval tetrachords of pitch-class set theory, {0, 1, 4, 6}12 and {0, 1, 3, 7}12, are
not planar difference sets. In fact, they are not difference sets. As indicated by their shared
DIV, (411111211111), these tetrachords do not possess flat directed-interval distributions. Rather,
they are examples of almost difference sets. An almost difference set is a subset D = (v, k, λ, t)
of G, where v and k are defined as above; t non-identity elements of G appear exactly λ times
as compositions of elements gh−1, where g, h ∈ D; and the remaining v − 1− t non-identity
elements of G appear λ + 1 times as gh−1 compositions. Hence, {0, 1, 4, 6}12 and {0, 1, 3, 7}12 are
examples of (12, 4, 1, 10) almost difference sets. Their DIVs possess ten coordinates that equal 1,
and 12− 1− 10 = 1 coordinate that equals 1 + 1 = 2: the difference 6 (modulo 12).

Whereas planar difference sets are always all-directed-interval, and therefore also all-interval,
non-planar difference sets and almost difference sets are never all-directed-interval. Furthermore,
they are all-interval only if the following two circumstances are met. First, they must have
1 ≤ λ ≤ 2; and, second, any element in G (i.e., directed interval) with λ = 2 must be an involution.
For example, the trichord {P, I, R} above is an example of a (4, 3, 2) non-planar difference set.
Every gh−1 composition has λ = 2 and is also an involution. Similarly, {0, 1, 4, 6}12 and {0, 1, 3, 7}12
are (12, 4, 1, 10) almost difference sets, in which the gh−1 compositions in either set with λ = 2 are
involutions, i.e., 6 (modulo 12). As we see below, these three categories of difference sets, planar
and non-planar difference sets and almost difference sets, account for every all-interval chord (up
to isomorphism) of small order (i.e., 2 ≤ k ≤ 8).
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V. Interval Groups and All-Interval Chords

A significant relationship exists between the number of intervals in a group G and the potential for
its having all-interval subsets. A subset D of size k in G has a triangular number, (k

2), of unordered
dyads that can be labeled with intervals. Therefore, if D is to include one and only one occurrence
of every interval in G, then G must have exactly (k

2) intervals. For instance, a tetrachord contains
(4

2) = 6 unordered dyads that can be labeled with intervals. For it to be an all-interval tetrachord,
the group that contains these intervals must also have six interval classes, as does Z12. Two factors
determine how many intervals are in a group: the order of the group itself (minus the identity)
and the number of involutions that it contains. As we observe above in §3, the number of intervals
is equal to the sum of number of involutions in the group plus half the number of elements of
order > 2. If this number equals (k

2) for some k, the group may potentially contain all-interval
k-chords. As we demonstrate below, however, this condition is necessary — but not sufficient —
for the existence of all-interval chords.

It is possible for a group to have (k
2) intervals, and not to contain any all-interval k-chords. For

example, the dicyclic group of order 12, Dic12 = 〈x, y|x6 = y4 = 1, x3 = y2, y−1xy = x−1〉, contains
(4

2) = 6 intervals, the same as Z12, but it has no all-interval tetrachords. Dic12 has a cyclic subgroup
of 6, generated by an element x, which yields three intervals: x±1, x±2, and x±3 (an involution).
The remaining six elements of Dic12 are all of order 4, yielding three additional interval classes.
Moreover, for any of these elements y of order 4, y2 is equal to the single involution within the
cyclic subgroup, x3. Nevertheless, the existence of an all-interval tetrachord fails. It requires one
interval labeled as x±3, such as the interval between x0 (the identity element) and x3, and one
occurrence of y. However, the interval between x0 and y and the interval between y and x3 are the
same, i.e., y(x0)−1 = x3y−1 = y, resulting in more than one occurrence of that interval.

In terms of a musical representation, Dic12 is isomorphic to a particular transposition/skew-
inversion group.10 This group has a cyclic subgroup that consists of the six transposition operators
with even indices (i.e., Tm, m is even), and the remaining six elements of order 4 are skew-inversions
with odd indices (i.e., Sn, n is odd). Table 1 lists the cycles of the eleven non-identity elements of
this group as they act on the set of twelve chromatic pitch classes. As any all-interval tetrachord
in this group requires a tritone, let us select arbitrarily the tritone {1, 7} from the odd whole-tone
collection. Further, such a tetrachord would also require at least one pitch class from the even
whole-tone collection; we choose 6. From the cycles in the table, however, we see that the interval
between 1 and 6 and the interval between 6 and 7 are the same, S±1

1 , which is not allowed in
an all-interval chord. As this situation occurs for any combination of a tritone from one parity’s
whole-tone collection and a single pitch class from the opposite parity’s whole-tone collection, the
existence of an all-interval tetrachord fails.

Certain limits exist on the size of groups that may include all-interval k-chords. The smallest
groups that can potentially accommodate an all-interval k-chord are elementary abelian 2-groups,
Zn

2 , wherein every non-identity element is an involution. These groups contain a Mersenne
number, 2n − 1, of non-unison intervals. For example, the group of basic twelve-tone row
operations is isomorphic to Z2

2 , and it contains an all-interval trichord, e.g., P, I, RI. However,
instances in which a triangular number (k

2) equals some Mersenne number 2n − 1 are rare.
10Whereas an inversion is a reflection in pitch-class space, i.e., an operation of order 2, a skew-inversion is a pseudo-

reflection of order 4 (i.e., a reflection of order > 2; see [19]). Under a skew-inversion, pitch classes of one parity, even or
odd, map as normal inversions to their counterparts of the other parity, but when they reflect back to those in the original
parity, they return a tritone away. Hence, four iterations of the cycle are required before returning to the original pitch
classes. For instance, the operation on pitch classes 5x + y (modulo 12), is a skew-inversion for any odd y. Skew-inversions
are similar to skew-Wechsels of neo-Riemannian theory (a category of contextual inversions), which are discussed in more
detail in [20].
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Table 1: Non-trivial cycles of elements in the transposition/skew-inversion group G ' Dic12.

T2 := (0, 2, 4, 6, 9, 10)(1, 3, 5, 7, 9, 11) T10 := (0, 10, 8, 6, 4, 2)(1, 11, 9, 7, 5, 3)
T4 := (0, 4, 8)(1, 5, 9)(2, 6, 10)(3, 7, 11) T8 := (0, 8, 4)(1, 9, 5)(2, 10, 6)(3, 11, 7)
T6 := (0, 6)(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)
S1 := (0, 1, 6, 7)(2, 11, 8, 5)(3, 4, 9, 10) S7 := (0, 7, 6, 1)(2, 5, 8, 11)(3, 10, 9, 4)
S3 := (0, 3, 6, 9)(1, 8, 7, 2)(4, 11, 10, 5) S9 := (0, 9, 6, 3)(1, 2, 7, 8)(4, 5, 10, 11)
S5 := (0, 5, 6, 11)(1, 10, 7, 4)(2, 3, 8, 9) S11 := (0, 11, 6, 5)(1, 4, 7, 10)(2, 9, 8, 3)

Nevertheless, of the three known examples, two values of 2 ≤ k ≤ 8 satisfy this condition, 3 and 6:
(3

2) = 22 − 1, and (6
2) = 24 − 1.11 In contrast, the largest groups that can potentially accommodate

an all-interval k-chord contain no involutions. As groups of odd order contain no involutions, at
least one isomorphism class — the cyclic group — exists for each odd order (and some odd orders
contain additional isomorphism classes of groups). For instance, Z7 is the largest group to have
all-interval trichords. It contains three intervals, none of which is an involution. However, it is
useful to note again that the existence of a group with (k

2) intervals — whether large, small, or in
between — does not guarantee the existence of all-interval subsets.

VI. Sets of All-Interval Chords

Aside from Z2, which contains a single all-interval chord, {0, 1}, interval groups that contain
one all-interval chord also contain additional all-interval chords.12 The set classes [0, 1, 4, 6]12 and
[0, 1, 3, 7]12 in Z12 — orbits of these tetrachords under the action of the dihedral transposition and
inversion group — are familiar examples of sets of all-interval chords. Each orbit is of size 24:
twelve all-interval tetrachords that relate to one another by transposition, and twelve more that
relate to those by inversion. As no other tetrachords in Z12 exist with the ICV (111111), these
forty-eight forms constitute the full set of all-interval chords contained in this interval system.

The members of set-classes [0, 1, 4, 6]12 are related to those of [0, 1, 3, 7]12 by neither transposition
nor inversion (and vice versa), and yet the members of both set-classes have the same intervallic
content. Hence, we observe that these set classes are Z-related [3]. Their members also relate to one
another’s by the multiplicative operations M and MI: pitch-class multiplication by 5 and 7 (modulo
12), respectively [21]. This situation occurs in all cyclic interval groups: if D is an all-interval
subset of Zn, then the affine transformations of D, Dx + a = {dx + a|d ∈ D, x ∈ Zn co-prime to
n, a ∈ Zn}, are also all-interval.13 The reasoning is straightforward: affine transformations do
not preserve distances, but they preserve ratios of distances. Accordingly, if D contains the set of
all distances in the finite space Zn, a transformation that preserves the ratios of these distances
results in a permutation on the set of distances.

The set of affine transformations on Zn form a group, Aff(Zn), the action of which on D
yields a set of Z-related all-interval subsets. In general, Aff(Zn) is equivalent to the normalizer
of Zn in the symmetric group on Zn : NSym(Zn)Zn.14 This correspondence allows us to carry the

11The next smallest value of k to satisfy this condition is 91, as (91
2 ) = 212 − 1 = 4095. No further examples of reasonable

size exist (and it is possible that no further examples exist at all).
12We might also say that the trivial group Z1 contain one all-interval chord, {0}, consisting of a single pitch class. It has

one and only one occurrence of the sole interval in that group, the unison. However, we do not include this example, as
we are concerned in this study only with non-unison intervals.

13The affine group Aff(Zn) is the set of all transformations xy + z (modulo n), where y, z ∈ Zn, and x ∈ Zn is co-prime
to n.

14The normalizer of a group G in another group H is the subgroup of elements in H that preserve G under conjugation.
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Table 2: An all-interval pentachord D in the interval system G ' S3 ×Z3.

Sonority 1 Sonority 2 Sonority 3 Sonority 4 Sonority 5

High C5
3 B5

3 C5
3 C6

3 A6
4

Middle B5
3 C5

3 A5
3 B6

3 C6
4

Low A5
3 A5

3 B5
3 A6

3 B6
4

notion of affine transformations to other types of interval groups. If G is a group that acts simply
transitively on a space S, then the normalizer of G in the symmetric group on S, NSym(S)G, serves
as an analog for the affine group. As the action of Aff(Zn) on D yields a set of all-interval subsets
in Zn, including Z-related subsets, the action of NSym(S)G on D yields a set of all-interval subsets
in any S, including GISZ-related subsets.15 For all cases except one (as we discuss in §7), this
action produces the full set of all-interval chords of small order for any interval system.

An example of a set of all-interval chords can be found in the following interval system. Define
a 9-note sonority that is separated into three distinct registers: high, middle, and low. Put an A
major triad in one register, a B major triad in a second register, and a C major triad in the third. In
any one sonority, all three triads must appear in the same position: root position [53], first inversion
[63], or second inversion [64]. The space S of all possible configurations of such sonorities is of
size eighteen: six permutations of the triads in three registers, and three positions in which the
triads may appear. The interval group G that has a natural action on the space of these eighteen
sonorities is isomorphic to the direct product of the symmetric group of degree 3 by the cyclic
group of order 3, S3×Z3 (of order 18). This interval system has (5

2) = 10 interval classes: seven
interval classes of invertible elements and three involutions. Moreover, it allows for all-interval
5-member subsets. For instance, the subset D of five sonorities that appear in Table 2 contains
one and only one of each interval in this group.

The symmetric group Sym(S) on the space S of these sonorities is of size
18! = 6, 402, 373, 705, 728, 000. Within this symmetric group, 216 operations normalize G. The orbit
of D under NSym(S)G is of size 108 (hence, each element of this orbit is stabilized by 216/108 = 2
members of the normalizer). These 108 pentachords constitute the full set of all-interval subsets
for this interval system. We do not find GISZ-relations in this set particular of all-interval chords.
All 108 pentachords in the orbit of D under the action of the normalizer are also in the orbit of D
under the respective actions of the group of GIS-transposition and GIS-inversion operations and
the group of interval-preserving operations.

VII. All-Interval Chords of Small Order (2 ≤ k ≤ 8)

In this section, we catalog all the interval groups (up to isomorphism) that contain all-interval
chords of orders 2 ≤ k ≤ 8. For each chord size, we include remarks about the groups that
produce all-interval chords, including the number of such chords that they contain and the types
of difference sets that those chords exemplify, whether the groups are abelian or non-abelian, and
other relevant information.

That is, NH G = h ∈ H|h−1Gh = G.
15The GISZ relation is Lewin’s adaption of the Z relation to the theory of Generalized Interval Systems. Sets that are

GISZ-related to one another are related by neither GIS transposition nor GIS inversion (nor, in the non-abelian case, by
members of the group of interval-preserving transformations) [22]
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Bichords. The smallest all-interval chords include only one (non-unison) interval; hence, they
are of size k = 2. Accordingly, the interval groups that contain these bichords must themselves
have only one interval class. The smallest isomorphism class of such groups is the cyclic group of
order 2, Z2. In this group, the single non-identity element is an involution. Z2 includes only one
all-interval chord, the smallest non-empty set of all-interval chords for any group. This bichord
is an example of a (2,2,2) non-planar difference set. The largest group with one interval class is
the cyclic group of order 3, Z3, which possesses no involutions. Z3 contains three all-interval
chords. As this group has no involutions, these all-interval chords are also all-directed-interval
chords. The all-interval bichords in Z3 are examples of (3,2,1) planar difference sets, the smallest
non-trivial class of these structures. Both the above groups are abelian.

Trichords. Groups with all-interval trichords must contain three interval classes. Three
isomorphism classes of groups have the appropriate number: the Klein four-group, Z2

2 ; the cyclic
group of order 6, Z6; and the cyclic group of order 7, Z7. All three possess all-interval trichords.
The three non-identity elements of Z2

2 are all involutions, making it the smallest group to have
all-interval trichords, as well as the smallest non-cyclic group to contain all-interval chords of
any size. The four all-interval trichords in Z2

2 are examples of (4,3,2) non-planar difference sets.
Z6 contains two interval classes of invertible elements and one involution. Its twelve all-interval
trichords are examples of (6,3,1,4) almost difference sets; as such, it is the smallest group to include
all-interval chords with this type of structure. In contrast, Z7 contains no involutions. Its fourteen
all-interval trichords are examples of (7,3,1) planar difference sets; hence, they are also all-directed
interval. As with the bichords, the three groups that contain all-interval trichords are abelian.

Tetrachords. For a group to accommodate all-interval tetrachords, it must have six interval
classes. Four groups satisfy this requirement: the dihedral group of order 8, D8; the cyclic group
of order 12, Z12; the dicyclic group of order 12, Dic12; and the cyclic group of order 13, Z13.
However, only three of these groups possess all-interval tetrachords: D8, Z12, and Z13. (In §5,
we examine the reasons why Dic12 fails to produce all-interval tetrachords.) D8 is distinguished
as being the smallest non-abelian group to contain all-interval chords of any size. Its sixteen
all-interval tetrachords are examples of (8,4,1,2) almost difference sets. Z12 contains the canonical
examples of the forty-eight all-interval tetrachords of pitch-class set theory, instances of (12,4,1,10)
almost difference sets. Z13 has fifty-two all-interval tetrachords. As Z13 contains no involutions,
these planar difference sets are also examples of all-directed-interval chords. These latter two
groups are abelian.

Pentachords. As the size of the all-interval chords increases, the number of interval groups
with appropriate numbers of interval classes that fail to produce all-interval chords also increases.
All-interval pentachords require groups with ten interval classes. Whereas seven groups meet
this condition, only four have all-interval pentachords: the semidihedral group of order 16, SD16
(also known as the quasidihedral group of order 16); the direct product of S3 and Z3, S3 ×Z3;
the semidirect product of Z7 by Z3, Z7 o Z3; and the cyclic group of order 21, Z21. SD16 has
128 all-interval pentachords, which are (16,5,1,10) almost difference sets, and the 108 all-interval
pentachords in S3 ×Z3 are (18,5,1,14) almost difference sets. Both these groups are non-abelian.

In the subsections above with 2 ≤ k < 5, we note the existence of almost difference sets in
the cyclic group of order (k− 1)2 + (k− 1) and planar difference sets in the cyclic group of order
(k− 1)2 + (k− 1) + 1. With k > 5, this circumstance no longer holds. Specifically, we cease to
find examples of all-interval k-chords in the cyclic group of order (k− 1)2 + (k− 1). Whereas Z21
contains forty-two all-interval pentachords as (21,5,1) planar difference sets (hence, they are also
all-directed-interval chords), no all-interval chords exist in Z20. The rationale for this situation is
related to the non-existence of perfect Golomb rulers with five or more marks.16 We find another

16A Golomb ruler with k marks and length L has a different measurement between any two marks. A perfect Golomb
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first occurrence with k = 5: the existence of a non-abelian group of order v = (k− 1)2+ (k− 1) + 1
that contains all-interval chords, Zv/3 o Z3. Such a non-abelian group exists for every k ≡ 2
(modulo 3), where k > 5 [12, Theorem 18.68]. Like the cyclic group of order 21, Z7 o Z3 contains
no involutions. Hence, the 294 all-interval pentachords in this group are (21,5,1) planar difference
sets (and they are also all-directed-interval chords), the same type of structure as those in Z21.

Hexachords. A hexachord has fifteen intervals; therefore, a group that contains all-interval
hexachords must have that number of interval classes. Eight such groups exist, but only five of
these groups contain all-interval chords: the direct product of four copies of the cyclic group of
order 2, Z4

2; the direct product of the alternating group of degree 4 and the cyclic group of order 2,
A4 ×Z2; the direct product of Z3

2 and the cyclic group of order 3, Z3
2 ×Z3; the direct product

of cyclic groups of order 14 and order 2, Z13 ×Z2; and the cyclic group of order 31, Z31. Of
these five groups, only A4 ×Z2 is non-abelian. As with the sets of groups that contain all-interval
bichords and trichords, we find all-interval hexachords in the smallest and largest possible groups
to have the appropriate number of interval classes. Z4

2 , in which all fifteen interval classes are
involutions, is the smallest such group. Its 448 all-interval hexachords are examples of (16, 6, 2)
non-planar difference sets. In contrast, Z31 contains no involutions. It contains 310 all-interval
hexachords as (31, 6, 1) planar difference sets (i.e., all-directed-interval hexachords).

Two groups of order 24 exist with all-interval hexachords: one abelian with 1344 all-interval
hexachords, Z3

2 ×Z3; and one non-abelian with 192 all-interval hexachords, A4 ×Z2. As both
these groups have seven involutions, all 1536 of these hexachords are instances of (24,6,1,16)
almost difference sets. In the group Z14 ×Z2 of order 28, we find more than one orbit of all-
interval hexachords under the action of the normalizer of the group. Consequently, the GISZ
relations among these hexachords do not derive from operations that are analogous to affine
transformations. It is the only group with all-interval chords of size 2 6 k 6 8 to have this property.
Its 728 all-interval hexachords partition into three orbits: one orbit of size fifty-six, and two of size
336. All of these hexachords are examples of (28, 6, 1, 24) almost difference sets.

Heptachords. Of the sixteen groups with twenty-one interval classes, as required for all-
interval heptachords, only one has this type of subset. Interestingly, it is not the cyclic group
of order (k− 1)2 + (k− 1) + 1 = 43. As this number is prime, the cyclic group Z43 is the only
isomorphism class of groups of that order. Further, it has no involutions, suggesting that it contains
planar difference sets. However, we recall from §4 that k− 1 must be the power of a prime to yield
planar difference sets (and in this case, 7− 1 = 6 is smallest integer that is not the power of a
prime). Instead, the one isomorphism class of groups to produce all-interval heptachords is the
extraspecial group 2(1 + 4) of minus type. This order-32 group is the central product of a dihedral
group of order 8 and a quaternion group of order 8 that intersect in a central order-2 subgroup
(i.e., all thirty-two members of the group commute with the members of this subgroup) [24]. The
512 all-interval heptachords found in this non-abelian group are all instances of (32,7,1,20) almost
difference sets.

Octachords. As with the pentachords, 8 ≡ 2 (modulo 3); hence, we find a non-abelian group of
order 57, Z19 ×Z3 , along with the cyclic group Z57. In fact, of the ten groups with twenty-eight
interval classes, only these two produce all-interval octachords. Z57 contains 684 all-interval
octachords, and Z19 o Z3 has 6498. All 7182 are examples of (57,8,1) planar difference sets (i.e.,
all-directed-interval octachords).

ruler is one in which every distance from 1 to L appears as such a difference [23]
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VIII. Conclusions and Future Work

In total, we find 11,438 all-interval chords of sizes 2 6 k 6 8 in twenty interval systems. The groups
that these interval systems incorporate include abelian groups that are cyclic (Z2, Z3, Z6, Z7, Z12,
Z13, Z21, Z31, and Z57) and non-cyclic (Z2

2, Z4
2, Z3

2 ×Z3, and Z14 ×Z2), as well as non-abelian
groups (D8, SD16, S3 × Z3, A4 × Z2, Z7 o Z3, 2(1+4) [the central product of D8 and Q8], and
Z19 o Z3). Moreover, the all-interval chords themselves are of three general types: three classes
of non-planar difference sets, seven classes of almost difference sets, and six classes of planar
difference sets. The chords of the first two types are merely all-interval, whereas those of the third
type also meet the stricter requirement of being all-directed-interval. The full sets of all-interval
chords in these interval systems also vary in size and in terms of their GISZ-relations. Their sizes
range from one chord (Z2) to 6498 chords (Z19 o Z3). None of the sets with k < 4 have Z− or
GISZ-related members. Nineteen of the twenty sets are single orbits of all-interval chords under
the action of the normalizer of the interval group. The GISZ relations among the chords in these
sets derive from affine or affine-like transformations. The one remaining set — that of all-interval
hexachords in Z14 ×Z2 — is comprised of members in three such orbits. The GISZ relations
among all-interval hexachords within different orbits of the normalizer of this group obtain from
other, more obscure origins.

Within this diversity, we find some common threads that are of particular relevance to musical
structure. First, abstract mathematical groups correspond to groups of symmetries. Whereas
the generalized intervals we discuss here do not necessarily possess qualities of distance and
direction, they do relate to symmetries. Further, the groups of symmetries to which these twenty
interval systems correspond either contain simple symmetries themselves or are products (direct or
semi-direct) of smaller groups that are composed of simple symmetries. Basic symmetries — such
as translations, rotations, and reflections — surround us and shape our experience; they are found
throughout nature, and they are commonplace in many human endeavors, including the visual
arts, architecture, and music [25]. The cyclic groups Zn agree with rotations of regular n-gons.
These types of symmetries are used to model a variety of musical structures, including pitch-class
transpositions and rhythmic translations in metric spaces. The dihedral groups D2n add reflections
to these rotational symmetries. In music, such reflections correspond to pitch-class inversions
and rhythmic retrogrades. The Klein 4-group Z2

2 corresponds to a subgroup of symmetries of a
square, or 2-cube. As we discuss in §4, these symmetries are those of the serial operations prime,
inversion, retrograde, and retrograde-inversion. The larger elementary abelian 2-groups Zn

2 are
isomorphic to particular subgroups of n-cube symmetries. These symmetries model nth roots of
inversion and retrograde [26]. Similar associations exist for the other small groups that constitute
these interval systems.

In addition to the interval systems, the all-interval chords they contain also have special
musical significance. Their defining structure facilitates two important compositional processes:
summation and deconstruction/development. The Schoenberg Lieder from Figure 1 illustrates
the former process. This work — one of his first atonal compositions — is representative of the
”emancipation of dissonance” that characterizes his atonal style. Rather than organizing pitch-
class intervals in this song in terms of a hierarchy that is based on consonance and dissonance,
Schoenberg treats all intervals equally. Thus, the final sonority of this piece, an all-interval
tetrachord, serves as an economical summary of the song’s intervallic content. The process of
deconstruction/development is evident in the first two string quartets of Elliott Carter. Carter
systematically deconstructs the all-interval tetrachords in these works into their constituent parts,
exploring and developing each of the intervals in turn and in combination. Additional aspects
of all-interval chords lend themselves to further musical interpretation. For instance, certain
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transformational processes, such as the one in Figure 2, are possible because of the unique
construction of these types of chords.

From a theoretical perspective, the completion of an existence theorem is perhaps the most
significant open question. As we note in §5, an interval system cannot contain all-interval k-
chords unless it has exactly (k

2) interval classes. Satisfying this condition is necessary, but not
sufficient, for the existence of all-interval chords. Does a single, unifying requirement exist that
proves sufficiently the existence (or lack of existence) of all-interval chords in a given interval
system? Much future work remains in the study of all-interval chords. The small-order structures
investigated here can serve as departure points for new compositional designs and analytical
investigations, and similar work may also be applied to larger-order all-interval chords.
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Abstract: With this paper we aim to highlight the connection between quality and quantity, from a
musical point of view. For this, we heuristically sketch a typology of musical qualities. Every quality
offers a gamut of gradations. Each degree inside this range can be indexed as a value, making a range of
quantities available. The changes of a musical quantity over time is represented as a list of values. This
list can be manipulated through a variety of mathematical operations. Such approach can be applied to
any musical quality (thus, encouraging students to face the elements assembled in a composition from the
start). Some of these operations are presented here as functionalities of J-Syncker, an assistant software for
the generation of pre-compositional material.

Keywords: Music Composition. Musical Qualities. Musical Quantities. Lists. J-Syncker.

I. Introduction

Listening reveals nuances inside its own realm. Basically, we perceive a sound by means of its
intensity (strong or weak), duration (long or short), pitch (high or low) and timbre (smooth
or rough). Furthermore, each one of this basic specialties (or qualities) signals variations to

the attentive listener.
In a composition, musical qualities also describe changes in their values over time. We represent

these values (or quantities) using the concept of list. For instance, we can use a list to depict the
quantities associated to dynamics or melodic contour (respectively, variations of intensities and
pitches).

Values of the same list can be used to quantify different musical qualities. On the one hand,
this helps achieve coherence. On the other, it communicates dynamism to the craft of composition.

Employing operations on lists can be strategically used for musical ends, producing a wealth
of pre-compositional material. It is also a way to summarize composition techniques, suggesting
another manner of formalizing knowledge to the field of music composition. Once quantitative
variation described by musical qualities is numerically represented, it can be subjected to a variety
of mathematical resources. Still, this approach can be applied to any musical quality.

*This paper reports part of my postdoctoral research (2015-16) sponsored by CAPES (Brazil) and Fulbright (USA)
commissions. I would like also to acknowledge Heather Dea Jennings and Agamenon de Clemente de Morais Júnior for
their kind attention to review the paper.
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Figure 1: An heuristic mapping of Musical Qualities.

It is highly desirable for such an approach to be assisted by a computer application, through
which a composer can listen to and choose from output results. In the proceedings of this paper
we will talk about a specific application, written as a proof of concept. We will describe some
of its functionalities in the context of referred operations on lists. For now, let us go back to the
musical qualities.

II. Musical Qualities

In Figure 1 we map1 a first generation of musical qualities: intensity, timbre, pitch, and duration.
Intensity relates with the volume of musical sounds. Timbre is referred as the tone color (or
that which differentiates one sound source from another). Pitch is related to sound frequencies.
Duration refers to the length of events2.

It is possible to subdivide these first branches, reaching new subtleties in the auditory sense.
Within intensity we may locate silence (absence of intensity); dynamics (changes in intensity)
and stress (a way to differentiate some events from others, bringing them to the foreground of
listening). Within timbre, instrumentation deals with the possibilities of timbristic combinations;
texture deals with the number of voices (or instruments) sounding in a given moment. Within
pitch we locate register (a range of notes possible to be played in a instrument); intervals; scale;
harmony and tonality. Within duration we have tempo (speed of execution); the size of attacks;
articulations (the nuances in the lengths of notes); meter (a way to group beats in measures); and
structure (rhythm of sections3). Also in this domain is the total duration of a given work.

Furthermore, we witness a combination of them sprouting new entities. Rhythm is in itself a
complex combination of properties related to duration along with stress. Melody could be seen
as how pitches change as function of durations and intensities. Orchestration is the variation
of instrumentation and texture along with structure; the same with modulation, i. e., sectional
articulation of tonalities.

1The software used to this end was Freeplane [11].
2Extra musical elements are beyond the scope of this work, such as lyrics, written descriptions, other medias (choreog-

raphy, video, etc.), soggetto cavato, mood markings and so on.
3The idea of structure as a rhythm of sections was an insight shared by Professor Ilya Levinson (Columbia College

Chicago) in a personal communication with the author.
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Figure 2: An instance of Bossa Nova rhythm to drums [13, p. 60].

Musically speaking, it is possible to notice that listening reveals nuances inside its own realm.
We may identify sub-senses tracking a variety of stimuli. Music can invite a listening expansion in
which different qualities may be perceived residing even within the auditive experience.

III. Musical Quantities

In a composition, musical qualities change their values over time. Pitches go up and down.
Durations become longer and shorter. Intensities get strong and soft. The same may happen with
timbre, texture, tonality and so on. These changes define ranges of possibilities even inside a very
quality. It seems reasonable to relate a scale to each musical quality, i. e., a gamut of varieties
provided by every domain 4.

Let us use a list to collect the values involved in a musical quality, changing over time. We
employ the term list here as a sequence of quantities derived from a given musical domain. Next,
we describe some attributes of a list. Take for instance a list of some composers’s birthdays
(6,1,19,12,2,15). The size (also referred to as length) gives the number of elements in the list. In
this case, the size is 6. A list has an order of elements. Thus, an element has a position in a list.
The birthday 12 is in the forth position. Also, an element may have a specif type, i. e., numeric,
alphabetic, alphanumeric, etc. Our list has only numeric values. Let total be the sum of all numeric
elements. In our case, total is 55.

Now we will use a list to represent the quantities associated to a musical quality. We will
represent attack durations, for instance. Consider the information displayed in Figure 2.

Let us take only the snare part. The list (3,3,4,3,3) was generated taking into account the
durations of each attack. The basic unity in this case is the 16th note. So, "1" is represented by a
16th note, "2", by a 8th note, "3", as a dotted 8th note, "4", by a quarter note and so on. (It is also
possible to obtain different notations by tying music figures in different combinations.)

Let us consider some of the attributes of this list from the point of view of the rhythm. The
size of the list (or the number of elements) gives the number of attacks. The one designated to the
snare has 5 elements, thus, 5 attacks. The list sum gives the total duration of the rhythm (which is
the duration of all attacks together). It is equal to 16 units. As we already know, the value of an
element gives the duration of a single attack. The first attack takes 3 units, the second 3, the third
3, and so on. So, we can say that this specific rhythm of 16 units were partitioned into 5 attacks.
This information will be represent as 16P5. However, notice that the sequence of 3, 3, 4, 3 and 3
units is unique. Just imagine that (4,3,2,3,4) is also another member of a 16P5. We will cover more
about partitioning in the next section.

4This approach lies in the heart of the system of musical composition devised by Schillinger [15]
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Next, we will use the same list to quantify different musical qualities. Besides rhythm itself,
we will provide an example for structure and intervals.

In terms of structure, we perform a one-to-one correspondence between two lists, the second
being a list of sections:

(3, 3, 4, 3, 3)→ (A, B, C, B, A) = (3A, 3B, 4C, 3B, 3A)
=(A,A,A,B,B,B,C,C,C,C,B,B,B,A,A,A)

Thus, an example of one list controlling the number of repetitions of the members of another
list. Here, we can say that the first was used as a list of "coefficients of recurrence" [15].

In terms of intervals, we apply the values of the list as intervals (in semitones) to generate a
scale of non neighbor pitches.

3 3 4 3 3
F]ACEGB[

Likewise, we could keep applying the same list over other domains. Thus, rhythm may be
represented as a list of durations. A structure, as a list of sections. A scale, as a list of pitches (or a
list of pitch intervals).

Up to this point we have described how to represent quantities related to a musical quality. In
the next section we will employ operations to produce changes in the quantities of such qualities.
This will be very useful to aid the process of obtaining variety out of the same musical seed.

IV. Operations on lists

In the previous section we described a way to represent two important attributes of a list. They
are sum and size. We represented them with the expression [sum][Part][size]. So, 16P5 means
that a total of 16 were partitioned in five elements (also referred to as parts, terms, summands
or addends). We use this device only with integers. For instance, we depict in the Figure 3 an
example of partitions of the integer 8.

Notice how the representation [sum][Part][size] changes according to the place in the partitions
generations. In this case it goes from 8P1 to 8P8, revealing 8 generations.

The number of partitions grows very quickly as bigger integers are used. Thus, we apply a
restriction criteria, depicting only results with greater values placed on the left5.

This family holds coherence once it is performed systematically within the bounds of its
parent integer. Such coherence is very useful when applied to musical purposes. For instance, its
members can be used in succession but also simultaneously, producing rhythmic polyphony.

Next, we are going to use a list to quantify rhythmic durations. Let us reuse the pattern
executed by the snare in Figure 2, now represented as the list (3,3,4,3,3) – a member of 16P5. In
Figure 4 we depict some operations on it, producing variants as results. (Notice also how the
partitions change by means of such operations.)

We will describe each of these operations, as they are numbered in clockwise direction.

1. Reverse returned the original list. This is due to the list elements being palindromic, i. e.,
the same thing can be read back and forth. Such a non-retrogradable rhythm was referred as
"the charm of impossibilities" by Messiaen [10];

5When permuted results are taking into account, the term Composition is used instead of Partition.
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Figure 3: Partitions of the integer 8.

Figure 4: Operations on a list of rhythmic durations (3,3,4,3,3).
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2. Rotations can be obtained imagining the list tied in its extremities and rotated clockwise or
anticlockwise (the latter being notated with negative indexes, i. e., Rot−2). The number of
possibilities equals the number of elements (considering that the rotation zero is the original
list). This operation is referred to as circular permutation [15, p. 116];

3. Partial sums performs a series of adjacent additions. The brackets within a list (depicted
in Figure 4) contain the elements to be added. They are displaced to the right in each turn
of sums until they contain the last element. These additions start with two elements then
three, four and so on until the brackets contain all elements to be added, thus returning the
total sum. In each turn the resulted lists have fewer elements. Such an operation generates
"familiar" rhythms, since the results are tight connected to the original seed list. A similar
operation is referred to as "Summation Series" by Schillinger [15, p. 119]. This operation
also can be seen as an inverse operation of partition. (Notice that other rounds of partial
sums could be performed with the results obtained in the example depicted here, giving rise
to new generations. Some results of such recursion are redundant however. Exclusion of
identical lists would be needed in these cases.);

4. Products. A list can be multiplied by an integer, becoming expanded by this factor. If
multiplied by 2, for example, it will get 2 times expanded, i. e., each of its elements will
increase by a factor of 2. (Which is the numeric representation of the augmentation technique,
used as a contrapuntal device. We will cover this correspondent relationship later in this
paper.) Furthermore, our example list can be multiplied by another list. (We choose to use
partitions of 4 in this example: (1,1,2), which is a form of 4P3 and (1,1,1,1), a form of 4P4).
In this case we apply the distributive property, so that each value of the first list multiplies
all the elements of the second list. Notice that this operation may not be commutative for
all cases, i. e., (1, 1) ∗ (2, 3, 4) is different to (2, 3, 4) ∗ (1, 1). Finally, a list can be raised to an
exponent. The squared list is depicted, which is the product of it by itself;

5. Phase shifting. Each entrance of the pattern is shifted one rhythmic unity to the right. In this
case the basic unit is the 16th note. (Notice that some results coincide with rotations.) See for
instance an interesting video6 with a graphic representation of Steve Reich’s Clapping Music.
In this work Steve Reich uses a shifted result (Clap 2) against the original (Clap 1), causing a
kind of musical interference of attacks. For other compositional purposes the shifted result
can be also used as a new durational pattern;

6. Rhythmic complement. A second rhythm sounds in the empty spaces of the first. It can be
seen as a boolean negation as the durations are represented as a series of 1 and 0. 1 for an
attack unit and 0 for the unities between them. Then, each 1 becomes a 0 and vice versa. In
Table 1 we show the steps of such operation.

Line 1 depicts the elements of the list (3, 3, 4, 3, 3) as a grouping inside the 16 durations. Line 2
holds its representation using 1 for attack and 0 for non attack. Line 3 is the negation of line 2,
i. e., the result of the binary NOT operation. Line 4 converts back from 1 and 0 notation (using
R to symbolize rests in the place of zeros). Line 5 depicts a optional form, "tying" rests with its
previous durations7.

In Table 2 we suggest some of the operations on lists that can be strategically used for musical
ends.

6"Steve Reich – Clapping Music (Scrolling)". Gerubach (Youtube channel). Available at <https://www.youtube.com/
watch?v=lzkOFJMI5i8>. Access 10/01/2016.

7This operation can be correlated to bit shifts, a kind of bitwise operation.
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Table 1: Rhythmic complement operation steps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 3 4 3 3
2 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
3 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1
4 R1 1 1 R1 1 1 R1 1 1 1 R1 1 1 R1 1 1
5 R1 1 2 1 2 1 1 2 1 2 1 1

It could even be desirable to search for a set of "primitive" (low level) operations, such as
subtract, that can be combined in order to generate other (high level) operations, such as derivate
(which return the difference of the values of adjacent numerical elements). List operations also
can be used nested. For instance, consider the nesting operations depicted below:

reverse(rotaten(product(f; list)))

Table 2: A sample of operations on lists

accumulate GCD–LCM permute
append intersect power

(bitwise operations) max reverse
combine min riffle
derivate mod rotate
divide mode sort
factor multiply subtract
find partition sum

Table 3: Some correspondences between composition techniques and list operations

Augmentation product(n;list)
Rotation rotate(index;list)

Expansion product(n;list)
[Pitch] Inversion (chromatic) complement(12;list)

Retrograde reverse(list)
Rhythmic complement NOT(list)

[Phase] Shifting bitShifts(index;list)
Transposition add(n;list)

Where f is the factor that multiplies the list elements. Product’s result are passed to Rotate,
where n is the index of rotation. Finally, the result is retrograded by Reverse.

Working with operations on lists is also a way to summarize musical composition techniques.
For example, take the correspondences depicted in Table 3.

Members in the right column represent the techniques used in music composition. Members
in the left represent operations to perform analogous tasks. Notice that some of them need
extra arguments, such as numbers and indexes (beyond the list itself). In the cases of NOT and
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bitShifts operations, the numeric list passed as argument should be first converted to a list of
ones and zeros (see Table 1, steps 1 and 2).

It is convenient to open the use of the same operations on different musical qualities. In this
way, much of the same set of operations can be applied over durations, intensity, pitch and timbre
related lists.

Thus, we presented an attempt to gather an expanding collection of operations on lists. These
lists are representations of values changing in time related to one or more musical qualities.
Our goal is the generation (and variation) of pre-compositional material. Furthermore, to lay
foundation for compositional pedagogy. Such an effort also casts a glimpse towards a creative
theory of music composition.

So far we have been giving a systematic approach to Musical Composition, formalizing
knowledge of its field by means of mathematical modeling. In extension, this also leads towards a
next step in formalization. Namely, it is highly desirable that such an approach be assisted by a
computer application (through which a composer can listen to and choose from computed results).
In the next section, we will explore that possibility.

V. Synckers

My research project is entitled "Generation of pre-compositional material based on a computational
interpretation of the Schillinger System of Musical Composition (SSMC)" [15]. Implementations
based on the SSMC are feasible, for it also makes use of a mathematical approach8 . A computer
application was originally conceived as the main result of this research. It is devised to facilitate
understanding of a variety of devices shown in SSMC. The application aims to benefit students
and scholars who can make use of it according to their demands and musical purposes.

Oposmodus, Symbolic Composer and OpenMusic are among some of the softwares that could
fit in the category we propose. Their disadvantages are due they are proprietary and do not offer
versions to the Linux9 operating system. From the academic context, we name similar works in
implementing SSMC techniques as [12],[8], [5]and [4].

Two solutions are being developed in parallel. One application, called J-Syncker uses some of
the devices presented in SSMC, making them available through a user friendly interface. J-Syncker
is available to download at <http://j-syncker.weebly.com/>. Pd-Syncker is another solution
developed by our team. Its development runs in parallel with J-Syncker. It is programmed in
Pure Data. The advantage of this language is to be dedicated to multimedia processing (audio,
video, Internet and MIDI devices). Pd-Syncker is available to download at <http://pd-syncker.
weebly.com/>. Both solutions have been used as tools in Compositions Workshop courses given
at School of Music of UFRN.

For the sake of space, next we will focus only to J-Syncker, showing how it works and how to
perform some of the operations listed previously.

i. J-Syncker

The application is called J-Syncker for three reasons. First, the program was written in the Java
programming language. It is common to see programs written in this language starting with the
letter "J", for example, JFugue, Jedit, JabRef, etc. Second, the program deals primarily with the

8The Mathematical Basis of the Arts (MATHBART) is his published magnum opus [14]. It turns out that the SSMC is the
musical branch of MATHBART.

9The Linux platform have being preferred for it is open source, free software, shared worldwide and benefit people who
do not have affordable access to proprietary technology – offering an alternative to barriers imposed by such paradigm.
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Figure 5: J-Syncker’s GUI, elements description and Database window.

concept of synchronization (see [17]). Syncker was the short word chosen for synchronizer. Third,
and in a more veiled way, the name of the application suggests a rhyme with Joseph Schillinger –
or just J. Schillinger. [18] As it is written in Java, J-Syncker is multiplatform. It is free and open
source.

J-Syncker has a user-friendly interface. Its design is inspired by the idea of the scientific
calculator. This format is somewhat familiar and demonstrates features available on the GUI.
Additionally, this kind of interface suggests the mathematical character underlying a compositional
process (something that, from the outset, is not always apparent in music composition).

Next we will describe some of the functionalities from J-Syncker’s GUI, depicted in Figure 5.
To begin with, it is possible to enter any durations list, typing directly in the format of a

comma separated list. This means that one comma separates each two operands (integers, in this
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case). Use R button (or type "r") to enter a rest, followed by its duration.
To clean elements or the entire display, click the buttons CE and C respectively (or backspace

and delete keys respectively).
To select, use the mouse to click and drag (double click or Ctrl+A selects all). Copying (Ctrl+C),

cutting (Ctrl+X) and pasting (Ctrl+V) are also allowed.
To choose from presets lists of rhythmic durations, go to View in menu bar then choose

Database (or simply Shift+D). Such lists are based on rhythms found in [13], [15] and [3]. (This
database is used to evaluate rhythmic complexity. The complexity of a given numerical list
representing rhythmic durations may be evaluated by pressing the "D" button. For more on this
see [2])

Click the button (or type the capital letter) "M" and a number (from 0 to 9) to store data in
memory. The same procedure can be used to recover and clean memories, using RM button (or
Alt+R) and the CM button (or Alt+C) respectively.

To append one list to another, enter the first, click the plus button (or type the "+" character)
then click the equal button (or hit Enter key).

The partition operation is performed by entering an integer and pressing P button (or typing
letter "p") then hitting Enter key. The results are shown indexed from 1 to n− 1 elements. One
can use the form nPm, where n is an integer and m the number of parts (also hitting Enter key for
the result be evaluated). In this case only partitions with m parts will be depicted. The resultant
format is similar to the one depicted in J-Syncker’s display in Figure. Actually, this one generates
the output of the factorization (or multiplicative partition). To achieve that result, click the FAT
button (or type letter "f") instead of P. Likewise, use the format nFm to obtain only multiplicative
partitions of n with m parts. (The output showed in the display of J-Syncker in Figure 5 was
obtained after entering 30F + Enter. To show only results with two values 30F2 + Enter would
suffice.)

PER button permutes the elements of a list previously entered.
The two buttons with circular arrows (or left and right arrow keys) rotate a list in both

directions. The two buttons with straight arrows (or shift+Left/Right arrow keys) shift a list in
both directions. The basic unit is the step of shifting. (This operation resembles the correlated
bitwise operation.)

The asterisk button performs the product operation. Its factors can be integers and/or lists of
integers. Press the equal button to evaluate the result.

The caret button (or typing the caret character) is used to perform exponentiations. A list of
integers can be passed as the operand in this operation. (Pressing equal button is also needed.)

The so-called rhythmic complement is performed by hitting the RhC button (or pressing the
minus character). Performing it again over the result gives back the original.

Click Play button (or hit space bar) to listen the results of the various edits and operations in
loop. (The same procedure can be used to pause and resume playing.) Stop button (or Esc key)
stops the loop.

Other functionalities are also found10 in the J-Syncker menu bar. The drop down menus are
described as follows, according to Figure 6, in clockwise direction.

From the File menu, it is possible to save results as MIDI or text formats. MIDI files can be
opened in other applications for editing. The text file format were conceived to report the musical
arguments used in some operations. (This functionality is still in need of bug fixes.) Besides MIDI,
it is possible to open some results automatically in the music notation software MuseScore [16],

10GUI buttons not described are related to operations not covered here. Synchronization of lists of durations, pitches,
meter, voices and pitch contour deserve a specific report, thus lying beyond the scope of this paper. As an introduction to
the subject see [17].
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Figure 6: J-Syncker’s menu bar elements.

once it is installed in the machine. (Currently, this is only possible in the Linux platform, due to
MuseScore version updates.)

From the Edit menu, it is possible to set the basic rhythmic unit. That is, a number one in
a list could be represented by one of the following rhythmic notes: quarter, eighth, sixteenth,
thirty-second or sixty-fourth.

From the View menu, it is possible to change the MIDI program name, as a away to set a new
timbre from a synthetic bank of instruments (or just Ctrl+I). The Database of rhythm attributes
used in complexity measurement is made available also from this menu (or Shift+D). The player
functionality was intended to be implemented in future versions.

From the Tempo menu, it is possible to set the speed of playback. One can choose from preset
options (from Grave to Prestissmo) or enter a number through the "Other" option at the end of the
list of tempos.

From the Language menu, it is possible to translate GUI elements between Portuguese and
English.

From the Help menu, it is possible to retrieve information about the software (Shift+H), report
a bug or request a feature.

In the next sections, we will bring back some of the previous discussion topics for further
comments and lastly point to perspectives and future works.

VI. Discussion

The term "musical quality" was used here as an alternative to music element and music parameter.
Element is too generic, meaning a constitutive part of a collection, function or system. Parameter
has been used in a variety of definitions (even in the sense of quantity). Etymologically, it came
from Greek, being an articulation of two words, para (beside) and metron (measure). Thus, a
reference to a given meter. [7] It is defined in multiple ways such as "a rule or limit", "an arbitrary
constant", "an independent variable" and "a set of physical properties". [9] The latter definition
is the closer to its use in Music Theory. With that in mind, the term was put aside in order to
avoid ambiguity and lack of clarity. Another reason to choose "musical quality" was to combine,

68



MusMat: Brazilian Journal of Music and Mathematics • December 2016 • Vol. I, No. 1

compare or cooperate with the term "musical quantity". The aim was to bring forth the relation of
these two terms, regarding manifestations of a musical stimulus, i. e., quality and quantity.

In Music Theory literature, numbers are commonly used to represent pitch related qualities
(such as [6] and [20], among others). Still other authors expanded to other quality branches (such
as [15], [10] and [1]).

Once quantitative variations described by musical qualities are numerically represented, they
can be subjected to a variety of mathematical resources. The values plotted from a numeric list
can also be seen as contours, bringing the underlying variation to an imagery media, helping
prominently visual subjects.

It is important to highlight that this approach can be applied to any musical quality (durations,
pitches, timbres, intensities and their combinations). It encourages students to face early on the
elements assembled in a music composition. Such a comprehensive overview certainly brings
benefits to "multi-quality" writing. (It may contribute to overcome the habit of presenting a score
with only pitches and durations written.)

Typical techniques from the field of Music Composition [19] can be "re-presented" by means of
operations on lists. This can be useful in aiding the process of obtaining variety out of the same
musical seed.

Once established, such a paradigm makes clear the desire for an interface between Music
and Mathematics. It can be used theoretically first in the form of a model. Later, it can be used
technologically, in the form of a computer application.

The type of specification conducted here helps guide developers in the designing phases of
a software project. J-Syncker is one example. Thus, a process for dealing with the articulation
of music composition and mathematical modeling may constitute steps such as, formalizing,
pseudocoding, coding and testing.

Listen and choose from computed results. This allows focus on the appreciation of computed
results. The speed allows the composer to select from a large quantity of outputs.

That being said, one thing still needs to be considered: technologies come and go. As we have
seen, they fall out of fashion, are discontinued or even became proprietary. Above all, what is
worthy of attention is to focus on the paradigm. It is the paradigm that has a bigger chance to
survive.

VII. Future Work

This paper was intended for students and scholars, as well as people interested in the intersection
of Music Composition and Mathematics. By doing this, it also takes a step towards increasing the
collaboration among such individuals.

In a broad perspective, we intend to continue developing pedagogical content in order to
design a knowledge base (be it in a form of book, site or the like). Additionally, courses (and even
curricula) based on this content is a desirable consequence. It will be possible also to adapt this
approach to teaching existing courses (such as Scorewriting, Arranging, Analysis and so on.)

More specifically, the J-Syncker project has some known bugs to be fixed. It succeeded as a
proof of concept and is being used as a central tool in musical courses at the School of Music at
UFRN.

Pd-Syncker project needs the porting from Pd-Extended (discontinued) to Pd-Vanilla to be
finished. The website needs to be translated to English. Coding externals in the C language also
will bring benefits from the point of view of robustness.

A LibSyncker project has being designed to implement numerous operations on lists in a
systematic way. We intend to update the lineage of both Synckers. This will demand a solution
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to work in a clever and broad way, to work with lists with various musical qualities, further
advancing the concept of music synchronization.
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Abstract: In this paper, we present some problems of two Music Contour Relations Theory operations
algorithms: the Refinement of Contour Reduction Algorithm, which was developed by Rob Schultz, and
the Equivalence Contour Class Prime Form algorithm, which was developed by Elizabeth Marvin and
Paul Laprade. We also propose two alternative algorithms to solve these problems.
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I. Introduction

Contour is the shape or format of an object and can be either bi- or multidimensional. In
music, a contour is an abstraction of elements such as pitch, chord density, duration, timbre,
or intensity. A melodic contour, for instance, is a map of pitches in time.

Musical contour is "a set of points in one sequential dimension ordered by any other sequential
dimension" [10]. The study of contour is important because, as is the case with motifs and pitch
class sets, it can contribute to musical coherence.

The Musical Contour Relations Theory provides concepts and operations with which to
establish contour identity and similarity measures for analytical and compositional purposes.
This theory has supported the analysis of works by composers such as W. A. Mozart [1], Luigi
Dallapicolla [6], Arnold Schoenberg [4, 10], Anton Webern [3], Olivier Messiaen [12], Elliott Carter,
Pierre Boulez, Iannis Xenakis, Alois Haba, Milton Babbitt, Harrison Birtwistle, and Igor Stravinsky
[2], as well as video game soundtracks [8].

In this paper, we present some problems of two Contour Theory operations algorithms: the
Refinement of Contour Reduction Algorithm [13] and the Equivalence Contour Class Prime Form
algorithm [6, 7]. We also propose two alternative algorithms for solving them.

II. Contour Theory basic concepts and operations

A complete presentation of Contour Theory concepts and operations is outside the scope or this
paper1. However, an understanding of contour space, contour segment, comparison matrix, class
equivalence, prime form, and contour reduction is necessary to follow this paper’s premise.

1See Beard [1], Bor [2], and Sampaio [11] for further information concerning Music Contour Theory.
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Figure 1: Fugue 2 subject, The Well-Tempered Clavier by J.S. Bach

Table 1: Comparison matrix of the contour M < 5 4 5 2 3 >

5 4 5 2 3
5 0 - 0 - -
4 + 0 + - -
5 0 - 0 - -
2 + + + 0 +
3 + + + - 0

Contour space2 is a musical space composed of the contour elements (or contour points [CPs]3).
The contour space of pitches, for instance, is composed of all pitches represented as integers from
low to high and numbered from 0 to n− 1 [9], where n denotes cardinality. For instance, the
contour space of pitches in the melody shown in Figure 1 is S = {0, 1, 2, 3, 4, 5, 6}, representing the
pitches Eb, F, G, Ab, B, C, and D.

A contour segment, or, more simply, a contour, is an ordered set of contour points. For instance,
the contour of the first five notes in Figure 1 is M < 5 4 5 2 3 >. Normalization (or translation) is
an operation that simplifies the contour representation by re-enumerating from 0 to n− 1. The
motive M < 5 4 5 2 3 > normalization is < 3 2 3 0 1 >.

The relation of any pair of CPs is ternary: one CP is lower, equal to, or higher than the other.
The contour can be analyzed and represented in a linear or combinatorial way. The linear contour
regards only the relations between adjacent CPs; the combinatorial contour considers relations
between adjacent and non-adjacent CPs. For instance, in the contour M, the relation between 5
and 4 is lower (−), whereas it is higher (+) between 2 and 3.

The relations among the contour points are represented in a comparison matrix (cf. Table 1).
Two contours are equivalent if they share the same comparison matrix. The set of equivalent

contours forms a contour class. This class is represented by an equivalent class prime form4.
According to Marvin and Laprade citeMarvin1987, the retrograded, inverted, and retrograded-
inverted versions of a contour belong to its equivalence class. The prime form of this class can be
calculated with a simple algorithm (cf. Section IV).

Any contour can be reduced to a prime form through the Contour Reduction Algorithm [10].
This algorithm, like the

Schenkerian reductive techniques,

sets up hierarchical levels of pitch salience. High and low peaks are selected: "passing
notes" and "inner voices" are pruned. That is, the algorithm provides a criterion for
associating nonadjacent notes by picking out those that are presumably most obvious
to the ear [10].

Robert Morris [10] proposed 25 basic contour prime forms to which any contour could be
reduced. Rob Schultz [13] proposed a refinement to this algorithm because some contours such as

2See Lewin [5] for further information regarding musical spaces.
3A contour point is also known as a contour pitch, or c-pitch.
4Do not confuse this with prime contours, as proposed by Robert Morris [10].
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A < 2 1 3 0 > are not reducible to one of the basic primes by the Morris algorithm.
The equivalence classes and prime contours are useful for checking the identity of the contours

for analytical and compositional purposes. For instance, the contours A < 0 1 3 2 > and B < 1 0
2 3 > belong to the same class, as represented by their prime form < 0 1 3 2 >. The B contour is
obtained by inverting and retrograding the A contour. As another example of this, the contours
C < 0 2 4 1 3 > and D < 0 3 2 1 > have a common prime: P < 0 2 1 >, as obtained by the Refined
Contour Reduction Algorithm.

III. Refined Contour Reduction Algorithm (by Schultz)

The Refined Contour Reduction Algorithm [13] (cf. Algorithm 1) removes intermediary CPs and
preserves salient ones with the support of an auxiliary internal structure called the max-/min-list.
This algorithm has a preliminary component (Steps 1 to 5), as well as a recurrent one (Steps 6 to 17).

CONTOUR-REDUCTION-ALGORITHM(C), where C is a contour. Let variable N:
Step 0: Set N to 0.
Step 1: Flag all maxima in C upwards; call the resulting set the max-list.
Step 2: Flag all minima in C downwards; call the resulting set the min-list.
Step 3: If all c-pitches are flagged, go to step 6.
Step 4: Delete all non-flagged c-pitches in C.
Step 5: N is incremented by 1 (i.e., N becomes N + 1).
Step 6: Flag all maxima in the max-list upward. For any string of equal and adjacent maxima

in the max-list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C,
then flag only it; or (2) both the first and last c-pitches of C are in the string, then flag (only) both
the first and last c-pitches of C.

Step 7: Flag all minima in min-list downward. For any string of equal and adjacent minima in
the min-list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C,
then flag only it; or (2) both the first and last c-pitches of C are in the string, then flag (only) both
the first and last c-pitches of C.

Step 8: For any string of equal and adjacent maxima in the max-list in which no minima
intervene, remove the flag from all but (any) one c-pitch in the string.

Step 9: For any string of equal and adjacent minima in the min-list in which no maxima
intervene, remove the flag from all but (any) one c-pitch in the strings.

Step 10: If all c-pitches are flagged, and no more than one c-pitch repetition in the max-list
and min-list (combined) exists, not including the first and last c-pitches of C, proceed directly to
step 17.

Step 11: If more than one c-pitch repetition in the max-list and/or min-list (combined) exists,
not including the first and last c-pitches of C, remove the flags on all repeated c-pitches except
those closest to the first and last c- pitches of C.

Step 12: If both flagged c-pitches remaining from step 11 are members of the max-list, flag
any one (and only one) former member of the min-list whose flag was removed in step 11; if both
c-pitches are members of the min-list, flag any one (and only one) former member of the max-list
whose flag was removed in step 11.

Step 13: Delete all non-flagged c-pitches in C.
Step 14: If N 6= 0, N is incremented by 1 (i.e., N becomes N + 1).
Step 15: If N = 0, N is incremented by 2 (i.e., N becomes N + 2).
Step 16: Go to step 6.
Step 17: End. N is the "depth" of the original contour C.
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Algorithm 1 Refined Contour Reduction Algorithm (by Schultz)

A maximum point exists if, in a triad of CPs, the middle CP is equal to or greater than its
neighbors. By default, the first and last CPs in a sequence are also maxima. The maxima-list
is calculated in a linear manner with Algorithm 2 (in pseudocode). This algorithm returns a
max-list from a given sequence of CPs. The minima and min-list are calculated in an analogous
way. For instance, the maxima- and minima-list of the contour S < 1 0 3 2 > are M = [1, 3, 2], and
m = [1, 0, 2].

Algorithm 2 Maxima list algorithm
MAX-LIST(S), where S is a sequence of CPs, represented as S = {S0, S1, ..., Sn−2, Sn−1} and n is
its cardinality.

Let max-list
Add S0 to max-list
for i from 0 to n− 2 do

if (Si+1 ≥ Si) ∧ (Si+1 ≥ Si+2) then
Add Si to max-list

end if
end for
Add Sn−1 to max-list
return max-list

In the Reduction Algorithm, the CPs are recurrently flagged as maxima and minima, and the
CPs that are not flagged are removed. Each loop iteration increases the algorithm depth value that
represents the complexity of the contour reduction. The loop finishes when all CPs are flagged.

In the first part, the contour is used as the sequence of CPs for max- and min-list calculus. In
the second part, the max- and min-lists themselves are used for the calculus.

As an illustration, consider the reduction of the contour A5 < 1 3 0 2 0 2 0 2 0 2 0 3 1 > following
Algorithm 1.

Step 0. N = 0.
Step 1. Maxima flag: {A0, A1, A3, A5, A7, A9, A11, A12} (Figure 2a).
Step 2. Minima flag: {A0, A2, A4, A6, A8, A10, A12} (Figure 2b).
Step 3. Conditional: all flagged, jump to Step 6.
Step 6. First part: Flag maxima from max-list: {A0, A1, A5, A7, A11, A12} (Figure 2c).
Second part: The repeated adjacent maxima sequence ({A5, A7}) does not involve either the

first or the last CP. Thus, both are flagged.
Step 7. First part: Flag minima from min-list: {A0, A2, A4, A6, A8, A10, A12} (Figure 2c).
Second part: The adjacent minima sequence ({A2, A4, A6, A8, A10}) does not involve either the

first or the last CP. Thus, both are flagged.
Step 8. The repeated adjacent maxima sequence ({A5, A7}) contains an intervening minima

(A6). Thus, the flag is kept.
Step 9. The repeated adjacent minima sequence ({A2, A4, A6, A8, A10}) contains a slice with

two intervening maxima ({A4, A6, A8}) and two other slices without it ({A2, A4} and {A8, A10}).
The slices without the intervening maxima have the flag removed. The resulting min-list is
{A0, A4, A6, A8, A12} (Figure 2d).

5In this analysis, we are representing the maxima and minima using small triangles above and below the CPs, with the
letters M (for maxima) and m (for minima) and the contour as a sequence A = {A0, A1, ..., A11, A12}.
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Step 10. There are CPs not flagged ({A2, A3, A9, A10}), and the combined maxima and minima
repeat ({A4, A5, A6, A7}). Go to Step 11.

Step 11. Remove the flags from the combined CPs, keeping the CPs near the beginning and
end of the contour (Figure 2e).

Step 12. The CPs flagged in Step 11 ({A4, A7}) belong to the max- and min-lists and remain
unchanged.

Step 13. Remove non-flagged CPs ({A2, A3, A5, A6, A9, A10}) (Figure 2f).
Step 14. N = 0. Maintain the CPs as being unchanged.
Step 15. N = 0. Increment of 2 units: N = 2.
Step 16. Return to Step 6.
The second iteration begins with the CPs, maxima and minima flags illustrated in the figure 3a6

Step 6. First part: Flag maxima from max-list: ({A0, A1, A11, A12}) (Figure 3b).
Second part: The repeated adjacent maxima sequence ({A1, A11}) does not involve either the

first or the last CP. Thus, all maxima are flagged.
Step 7. First part: Flag minima from min-list: ({A0, A4, A8, A12}).
Second part: The repeated adjacent minima sequence ({A4, A8}) does not involve either the

first or the last CP. Thus, all minima are flagged.
Step 8. The adjacent repeated maxima sequence ({A1, A11}) has two minima intervene ({A4, A8}).
Step 9. The adjacent repeated minima sequence ({A4, A8}) has not yet had the maxima intervene.

The flag of the one repeated minima (A8) is removed (Figure 3c).
Step 10. There are CPs that are not flagged ({A7, A8}). Go to Step 11.
Step 11. There is no combined CP repetition.
Step 12. There is no combined CP repetition.
Step 13. Remove non-flagged CPs ({A7, A8}) (Figure 3d).
Step 14. N = 2. Increment of 1 unit: N = 3
Step 15. N = 3. Maintain the contour as being unchanged.
Step 16. Return to Step 6.
The third iteration begins with the CPs, maxima and minima flags illustrated in the figure 4:

{A0, A1, A11, A12} and {A0, A4, A12}.
Step 6. First part: Flag maxima from max-list: ({A0, A1, A11, A12}) (Figure 4).
Second part: The repeated adjacent maxima sequence ({A1, A11}) does not involve either the

first or the last CP. Thus, all maxima are flagged.
Step 7. First part: Flag minima from min-list: ({A0, A4, A12}) (Figure 4).
Second part: There are no repeated adjacent minima sequences.
Step 8. The repeated adjacent maxima sequence contains an intervening minima. Thus, the flag

is kept.
Step 9. There are no adjacent repeated minima sequences.
Step 10. All CPs are flagged, and there are no combined maxima and minima repetitions. Jump

to Step 17.
Step 17. The contour A has a depth of 3, is reduced to < 1 3 0 3 1 >, and is normalized to < 1 2

0 2 1 >.

i. Reduction algorithm review

There are two problems in this algorithm:

1. Combined adjacent maxima and minima repetition is in Step 10.

6For simplification reasons, we keep the original sequence index.
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(c) Steps 6–8
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(d) Steps 9 and 10
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(e) Steps 11 and 12
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Figure 2: Reduction algorithm flags in the first iteration

77



MusMat: Brazilian Journal of Music and Mathematics • December 2016 • Vol. I, No. 1

0 1 4 7 8 11 12
1

0

1

2

3

4

M

M

M

M

M

m

m m

m

Contour < 1 3 0 2 0 3 1 >

(a) Initial state

0 1 4 7 8 11 12
1

0

1

2

3

4

M

M M

M

m

m m

m

Contour < 1 3 0 2 0 3 1 >

(b) Steps 6–8
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(c) Steps 9–12
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Figure 3: Reduction algorithm flags in the second iteration
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Figure 4: Reduction algorithm flags in the third iteration
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Figure 5: Combined adjacent maxima and minima repetitions
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Figure 6: Contour < 1 2 2 0 2 1 > and flagged maxima and minima.

2. There is indefiniteness in the repeated maxima and minima sequences of Steps 8 and 9.

Step 10 contains two conditions with two possible results: continue with Step 11 or jump to
the algorithm’s end at Step 17. In the second condition, the expression "no more than one" leads
to an error because prime contours cannot have combined maxima and minima repetitions, and
this expression allows for at least one. Thus, the algorithm must not end while these repetitions
are in the contour. For instance, the contour A < 1 2 0 2 0 1 > (Figure 5) has all CPs flagged and
only one max-min combined repetition of CPs—2 and 0. Thus, in Step 10, the algorithm ends, and
the repetition is not removed.

To fix this problem, this step should be rewritten as "and there are no repeated combined CPs
in terms of the maxima and minima."

The expression "string of equal and adjacent maxima" in Step 8 is not precise concerning the
length of the string. For instance, the contour A < 1 2 2 0 2 1 > (Figure 6) has three repeated maxima.
There are two possible interpretations of "string" in this example: the unique sequence with three
repeated maxima {A1, A2, A4}, or each of the two sequences of repeated maxima {A1, A2} and
{A2, A4}.

Considering the unique sequence {A1, A2, A4} as the string, there is an intervening minima
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(b) without minima between the maxima
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(c) with and without minima between the maxima

Figure 7: Contour with and without minima between maxima

(A3), and we should move to Step 9. Considering each pair of repeated maxima as a string, there is
no intervening minima in the first pair, and we should remove the flag from one of these maxima.

In the first case, with a unique string, the algorithm ends with the unchanged contour < 1 2 2 0
2 1 >, and with the repeated maxima. In the second case, with two strings, one of the maxima is
removed, and the algorithm finishes with the correct prime contour < 1 2 0 2 1 >.

There are three particular situations for the equal and adjacent maxima in maxima-list:

1. with minima between the maxima (Figure 7a).

2. without minima between the maxima (Figure 7b).

3. with slices with and without minima between maxima in the same string (Figure 7c).

In the first situation, all the maxima flags must be kept; in the second, only the first maxima
must keep it flag; and in the third situation, in the slice without minima between the maxima, these
maxima must be unflag, and, in the slices with minima between maxima, the maxima adjacent to the
intervening minima must be kept. In this third situation, there are cases where two equal adjacent
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maxima are between two minima. In these cases, the second maxima must be unflag (See C6 in the
figure 7c).

There is a similar problem in the analogous Step 9, related to maxima between equal adjacent
minima.

We propose a new version of the algorithm with these questions reviewed (Algorithm 3).

CONTOUR-REDUCTION-ALGORITHM-REVIEW(C), where C is a contour.
Let variable N.
First part
Step 0: Set N to 0.
Step 1: Flag all maxima in C upwards, and call the resulting sequence the max-list; flag all

minima in C downwards, and call the resulting sequence the min-list. All modification in a max-
or min-list will result in a new max-/min- list.

Step 2: If all CPs are flagged, go to Step 4.
Step 3: Delete all non-flagged CPs in C, and increment N by 1 (i.e., N becomes N + 1).
Second part
Step 4: Flag all maxima in the max-list upward, and flag all minima in the min-list downward.
Step 5: If there are no adjacent repeated maxima in max-list and minima in min-list, go to Step

10.
Step 6: For any string of equal and adjacent maxima in the max-list:

if First and last CP are present in the string then
Flag them.

else if First or last CP are present in the string then
Flag it.

else
Flag all maxima in the string.

end if
Step 7: For any string of equal and adjacent minima in the max-list:

if First and last CP are present in the string then
Flag them.

else if First or last CP are present in the string then
Flag it.

else
Flag all minima in the string.

end if
Step 8: For any string of equal and adjacent maxima in max-list:

if There is no minimum between the maxima then
Flag the first maxima and unflag the others.

else if There are minima between all the maxima then
Flag all the maxima.

else
Flag the maxima that are adjacent to the minima and unflag the others.
if There is two adjacent maxima between two minima then

Unflag the second maxima.
end if

end if
Step 9: For any string of two equal and adjacent minima in the min-list:
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if There is no maximum between the minima then
Flag the first minima and unflag the others.

else if There are maxima between all the minima then
Flag all the minima.

else
Flag the minima that are adjacent to the maxima and unflag the others.
if There is two adjacent minima between two maxima then

Unflag the second minima.
end if

end if

Step 10: If there is no CP repetition in the max-list and min-list (combined), not including the
first and last CPs of C, go to Step 14.

Step 11: Remove the flags on all repeated CPs except those closest to the first and last CP of C.
Step 12: If both flagged CPs remaining from Step 11 are members of the max-list, flag any one

(but only one) former member of the min-list whose flag was removed in Step 11.
Step 13: If both flagged CP remaining from Step 11 are members of the min-list, flag any one

(but only one) former member of the max-list whose flag was removed in Step 11.
Step 14: If all CP are flagged, go to Step 17.
Step 15: Delete all non-flagged CP in C and, if N = 0, increment N by 1 (i.e., N becomes

N + 1); otherwise, increment N by 2 (i.e., N becomes N + 2).
Step 16: Go to Step 4.
Step 17: End. N is the "depth" of the original contour C.

Algorithm 3 Reviewed Contour Reduction Algorithm

IV. Equivalence Contour Class Prime Form

The equivalence contour class prime form is obtained with the algorithm proposed by Marvin and
Laprade [7] (Algorithm 4).

Algorithm 4 Equivalence Contour Class Prime Form Algorithm
EQUIVALENCE-CONTOUR-CLASS-PRIME-FORM(cseg), where cseg is contour:
Step 1: If necessary, translate the cseg so its content consists of integers from 0 to (n− 1),
Step 2: If (n− 1) minus the last c-pitch is less than the first c-pitch, invert the cseg,
Step 3: If the last c-pitch is less than the first c-pitch, retrograde the cseg.

The main feature of this prime form is the compactness in the contour beginning. This feature
is inspired by the Post-Tonal Theory’s set class prime form. The Contour Interval Succession7 is a
useful tool for how compact the beginning of the contour is. For instance, the contour A < 0 2 1 3
4 > belongs to the same class of its retrograde, inverted, and retrograded/inverted versions: R(A)
< 4 3 1 2 0 >, I(A) < 4 2 3 1 0 > and RI(A) < 0 1 3 2 4 >. Table 2 contains the interval successions of
these contours. The RI (A) version starts with the lowest positive value of the Contour Interval
Succession.

Marvin and Laprade’s algorithm has some conditions to invert and/or retrograde the contour
to find the prime form of its equivalent class.

7A sequence with the differences (or contour intervals) between adjacent CPs [4].
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Table 2: Contour Interval Succession of contour A < 0 2 1 3 4 >, R(A), I(A) and RI(A)

Contour Contour Interval Sucession
A < 0 2 1 3 4 > [2,−1, 2, 1]

R(A) < 4 3 1 2 0 > [−1,−2, 1,−2]
I(A) < 4 2 3 1 0 > [−2, 1,−2,−1]

RI(A) < 0 1 3 2 4 > [1, 2,−1, 2]

i. Algorithm review

This algorithm, however, fails in 28 of 235 equivalent classes according to the Marvin and Laprade
table [7] (cf. prime form fails in Table 3). Each of these classes has two prime forms. For instance,
both contours A < 0 1 3 2 4 > and RI(A) < 0 2 1 3 4> belong to the cseg-class 5-3, but according to
the Marvin/Laprade algorithm, each one has a particular prime form. They are not changed by
the algorithm steps.

Let the processing of the two contours A and RI(A) occur while comparing each step:
Step 1: Both contour A and RI(A) are normalized. Maintain the contour as being unchanged.
Step 2: Both contours have the same cardinality (N = 5), and the same last CP (4). Therefore,

the condition (5− 1)− 4 < 0 is false. Maintain both contours as being unchanged.
Step 3: Both contours have the same first (0) and last CP (4). Thus, the condition 4 < 0 is false.

Maintain both contours as being unchanged.
Hence, this algorithm fails with some classes. To fix this problem, we propose a new algorithm

that is tested using the Marvin/Laprade table (Algorithm 5).

Algorithm 5 Equivalence Contour Class Prime form Algorithm Reviewed
EQUIVALENCE-CONTOUR-CLASS-PRIME-FORM-REVIEW(cseg), where cseg is the contour:
Let the array arr:
Step 1: Normalize cseg.
Step 2: Get the result of inversion (I), retrogression (R), and retrogression-inversion (RI) and add
them to arr.
Step 3: Sort the array arr.
Step 4: The prime form is the first contour of the array arr.

V. Conclusions

In this paper, we revealed problems with the Refined Contour Reduction and the Equivalence
Class Prime Form algorithms that lead them to fail with some contour inputs. We demonstrated
how and why these algorithms fail, as well as how to fix the issues, and we proposed alternative
algorithms.

The problems with the Refined Contour Reduction Algorithm raised here do not allow for
an output of the correct reduction of some of the contours with combined maxima-minima like
< 1 2 0 2 0 1 >, and with strings of repeated maxima (or minima) with intervening minima (or
maxima), such as < 1 2 2 0 2 1 >. However, a review of the string definition and a small change in
the algorithm’s tenth step fixed these problems.

The problem with the Equivalent Class Prime Form Algorithm led to it returning two prime
forms for the same class in 28 of the 235 Marvin/Laprade classes, as shown in the table showing
the same [7]. The alternative algorithm proposed in this paper fixed this problem.
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Table 3: Equivalent Class with Two Prime Forms

Cseg class FP correta FP incorreta
5-3 < 0 1 3 2 4 > < 0 2 1 3 4 >
5-8 < 0 2 3 1 4 > < 0 3 1 2 4 >

5-25 < 1 0 4 2 3 > < 1 2 0 4 3 >
5-27 < 1 2 4 0 3 > < 1 4 0 2 3 >

6-3 < 0 1 2 4 3 5 > < 0 2 1 3 4 5 >
6-9 < 0 1 3 4 2 5 > < 0 3 1 2 4 5 >

6-13 < 0 1 4 2 3 5 > < 0 2 3 1 4 5 >
6-15 < 0 1 4 3 2 5 > < 0 3 2 1 4 5 >
6-31 < 0 2 3 4 1 5 > < 0 4 1 2 3 5 >
6-37 < 0 2 4 3 1 5 > < 0 4 2 1 3 5 >
6-53 < 0 3 2 4 1 5 > < 0 4 1 3 2 5 >
6-59 < 0 3 4 2 1 5 > < 0 4 3 1 2 5 >

6-115 < 1 0 2 5 3 4 > < 1 2 0 3 5 4 >
6-119 < 1 0 3 5 2 4 > < 1 3 0 2 5 4 >
6-125 < 1 0 5 2 3 4 > < 1 2 3 0 5 4 >
6-127 < 1 0 5 3 2 4 > < 1 3 2 0 5 4 >
6-134 < 1 2 3 5 0 4 > < 1 5 0 2 3 4 >
6-139 < 1 2 5 3 0 4 > < 1 5 2 0 3 4 >
6-144 < 1 3 2 5 0 4 > < 1 5 0 3 2 4 >
6-149 < 1 3 5 2 0 4 > < 1 5 3 0 2 4 >
6-178 < 2 0 1 5 4 3 > < 2 1 0 4 5 3 >
6-180 < 2 0 4 5 1 3 > < 2 4 0 1 5 3 >
6-181 < 2 0 5 1 4 3 > < 2 1 4 0 5 3 >
6-182 < 2 0 5 4 1 3 > < 2 4 1 0 5 3 >
6-184 < 2 1 4 5 0 3 > < 2 5 0 1 4 3 >
6-186 < 2 1 5 4 0 3 > < 2 5 1 0 4 3 >
6-188 < 2 4 1 5 0 3 > < 2 5 0 4 1 3 >
6-190 < 2 4 5 1 0 3 > < 2 5 4 0 1 3 >
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Abstract

Abstract: We discuss in this paper a new environment for computer aid musical composition which is
designed to create works centered on the creative use of instrumental extended techniques. The process is
anchored on computational techniques to retrieve musical information via audio descriptors. We developed
an analytical process, based on the extraction of spectral characteristics of a Sound DataBase (SDB), and
on supporting the compositional planning as follows: relate statistical measures to the spectral behavior of
specific execution modes of various instruments contained in the SDB. The result of the process is a palette
of possibilities that assists the composer decisions regarding to the desired orchestration to be applied in a
musical piece. The paper presents then the motivation and context to develop the environment, describes
and characterizes the audio descriptors that have been studied, presents the computer system architecture
and discusses the results obtained with Sound Shizuku.

Keywords: Composition. Computer-Aided Orchestration. Audio Descriptors. Extended Techniques.
Interdisciplinary Music Computation.

I. Introduction

Among the contemporary music compositional techniques, some of them can touch upon the
control factors related to musical timbre 1 and significantly alter the spectral characteristics
of each single note heard. It could be compared to a palette of color where mixed extended

instrumental techniques produce new shades and, finally, create new orchestral sounds. In line
with the use of timbre as a potential space for composition, there is an increasingly concern with

1The issues related to the term ‘tone’ as used in this paper, exceeds the definition by ‘exclusion to’ that timbre is an
identification of property and distinction, whose sound sources have the same intensity and pitch. We attribute the term
‘timbre’ a spectral morphological identity, as discussed by Smalley [37] .
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getting more refined and particular timbre results, both for the compositional planning and for
the instrumental/vocal realization. The idea of timbre as a ‘metadimension’ [14, p. 45] shows
the interest to consider it not as a simple ‘color’ but as a potential space for integration of other
musical features and thus become the central focus of the composition. From the artistic point
of view, the timbre is a concept linked to the modus operandi of musical language, concurrent
to aesthetics and musical form. Nevertheless there is still a fundamental issue centered on the
difficulty of relating to a ‘musician qualitative intuition’ on timbre with a ‘quantitative assessment’
of possible categories of measures and objective analysis of the musical timbre behavior [5, p. 162].

This paper establishes a dialogue between the study of musical timbre, as poetic and musical
approach, to a scientific point of view. More specifically, we work with recent studies on music
information retrieval based on spectral content that are the inner microstructures of musical
timbre and therefore might help the development of a more refined and conscious compositional
planning. This view has its origins in the pioneering research of Hermann von Helmholtz whose
treatise related timbre to the presence and the magnitude of spectral components with respect
to its fundamental component [15]. This study provided important subsidies to timbre analysis
focused on the spectral characteristics of the sound [26, 31, 13]. Other researches from Berger
[4] and form Wedin and Goude [41] pointed to a correlation between the accuracy of timbre
recognition with the attack and decay time of the sound source. As for Pierre Schaeffer, the
timbre of a sound is perceived by the variation of its spectral behavior and its evolution in time
[28]. Schaeffer was the pioneer by separating the physical phenomenon of the sound of his own
perception phenomenological.

Based on these concepts we present a man-machine interaction methodology that connects
computer aid sound analysis with the symbolic notation of a music score. We conducted a study
on musical information retrieval via low-level audio descriptors that are centered on feature extrac-
tion of sound frequency spectrum. In this sense, using audio features as composition architectural
tools, two approaches to aid the compositional planning were developed: a) extract from sound fre-
quency spectra specific features b) relate them to modes for the extended instrumental techniques,
including transcription to symbolic music information and music orchestration. For this goal we
have developed an virtual analytical environment that recommends orchestral sonorities called
Sound Shizuku Composition – SSC. To present this environment and its compositional implications,
in Section II we discuss the main stages of the sound analysis and music orchestration assisted by
computer. On Section III practical results are briefly discussed. Finally, we conclude our article in
Section IV discussing forthcoming projects.

II. Architecture of the Methodology

The scope of the computer-assisted music orchestration system presented here is to apply audio
descriptors to provide a pallet of contrasting timbre variations. The goal is to produce a refined
blending of sounds derived from set of extended techniques. Therefore the creative process
relates sounds, described by audio descriptors, and instrumental settings to transcriptions of
these relations into a music score. Finally, the transcriptions improve the original compositional
planning in face of the computer aid orchestration. The first step developed here was to build
‘Sound Mixtures’ that can be defined as computer simulations to generate audio files that will
expand possibilities of instrumental mixes. Sound Mixtures, are generated by superimposing
modes of playing, articulations and various extended instrumental techniques storage as audio
samples in the Sound DataBase (SDB).

Secondly the mixtures are analyzed with audio descriptors in order to extract their related
spectral features. Section i presents the audio descriptors used to process that extraction. Figure 1
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is the general outline of the proposed methodology in our research into computer-assisted music
orchestration.

i. Audio Descriptors Technical Definitions

In this section i we discuss the use of audio descriptors to provide sound analysis capability to the
music orchestration system. We introduce only audio descriptors that were studied in our research.
The scientific knowledge area on this subject is called Music Information Retrieval or simply MIR
[6, 7, 29, 38]. Studies on MIR use mathematical functions, supported by statistical measurements
and psychoacoustic models to proceed the so-called audio features extraction. According to [22, p.
01] the methodology to describe the characteristics of a sound signal have been proposed by the
scientific community to recognize patterns of speech and musical instrument classification. These
procedures are also significant tools on the context of musical composition and orchestration.
Several methods for analyzing the spectral content of digitized audio signals are performed by
Short-Time Fourier Transform or STFT, which is defined as follows by Sheh and Ellis [30, p. 02]:

Audio Features
Technical Study

Composer

Definition of
Sound Charac-

teristics from the
Audio Features

Referential
Remarks

Audio Fea-
tures Library

Audio Fea-
tures Library

- PDescriptors

Sound Mixtures

Definition
of the Music

Instruments that
will be used

Sound Database
Audio Samples
Database - SOL

Audio Samples
Database - PianoSound Anal-

ysis Space

Sound Mixtures
Selection

Music Tran-
scription

Exporting to
Audio File

Exporting to
Music Score

Composition

Stage 1

Stage 2

Stage 3

Stage 4
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Figure 1: General scheme of the computer-assisted music orchestration Sound Shizuku Composition - SSC. The gray
blocks represent the computational flow data for sound analysis. The white blocks represent user interaction
with the system itself. The dotted and dashed blocks comprise the tasks of each of the five steps of our
methodology architecture.

STFT[k,n] =
N−1

∑
m=0

x[n − m]w[m]e−j2πkm/n (1)
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Table 1: Summary of the audio features.

Feature Definition Sound Correlative Possible Application

Spectral Centroid Center of the Mass Brightness/Opacity Sound Detection Centroidariation
Spectral Standart Deviation Spectral Bandwidth Sound Mass Spectral Bands Equalization

Spectral Skewness Asymmetry or Obliquity Hot and Rounded/Bright and Penetrating Detection of percussion instruments
Spectral Kurtosis Flattening of the Distribution Noise Transient Detection

Spectral Flux Time Attack Attack Detection of Sound Events
Spectral Flatness Ratio of Geometric Mean with Arithmetic Mean Noise/Tone Noise Removal

Spectral Irregularity Difference Magnitude Spectrum Velvety and Smooth/Rough and Ribbed Spectral Band Equalization
Spectral Roll-Off Spectral Slope Envelope Roughness Mastering Voice and Music

Odd-to Even Ratio Quotient of the Magnitude of the Spectral Components Nasal/Soft Detection of Musical Intensities
RMS Energy Root Mean Square of the Energy Strong/Weak Detection of Sound Intensities

Loudness Auditory Sensation of Sound Intensity Strong/Weak Sound Intensity Perception
Zero-Crossing Rate Signal Changes in Time Noise Sound Noise Detection
Spectral Decreasing Energy Spectrum Percussion Sounds Detection of Percussive Sounds
Temporal Centroid Temporal Center of the Mass Percussion Sounds Detection of Percussive Sounds
Spectral Chroma Spectrum Analysis by Musical Pitches Tonality Harmony Identification

where k indexes the frequency axis with 0 ≤ k ≤ N − 1, n is the short-time window center, and
w[m] is an N-point Hanning window.

From the widespread view in the area of MIR, audio descriptors are tools for sound analysis
and most of them are represent by one-dimensional curves. As pointed out by Rimoldi [27, p. 01],
the audio features are useful tools for a taxonomy of features related to the spectral content of
the analyzed sound signal even though with their reductionist characteristics in relation to the
analyzed object. Such features can be correlated and not necessarily equivalent with subjective
attributes of the perception of the sound signal, such as ‘brightness’, ‘opacity’, ‘roughness’,
‘noisiness’, ‘softness’, among others.

To our research we use a set of fifteen audio features: Spectral Centroid [39, pp. 460-461],
Spectral Standard Deviation [9, 27], Spectral Skewness [9], Spectral Kurtosis [1], Spectral Flux
[22, 24], Spectral Flatness [8, p. 01], Spectral Irregularity [16], Spectral Roll-Off [19, p. 47], Odd-to
Even Ratio [22], RMS Energy [17, p. 113], Loudness [42, 10, 20, 40, 25], Zero-Crossing Rate [24, 21],
Spectral Decreasing [18], Temporal Centroid [23] and Spectral Croma [11, 12]. Such statistical
measures estimate particular characteristics of a digital audio signal. As already pointed out,
audio descriptors are powerful tools for the creation of a taxonomy of spectral characteristics.
This taxonomy can be correlated but not necessarily equivalent to the subjective attributes of the
human perception. Table 1 summarizes the main highlighted points for the audio descriptors. In
it, we summarized the presentation of the features with their possible applications.

ii. Sound DataBase - SDB

The audio samples used to generate Sound Mixtures belong to two databases compiled by Ballet
et. al [2] and Barbancho et. al [3]. Such samples have durations between five to seven seconds in
.aiff audio format. In Ballet research called Studio OnLine or SOL the repository of instrumental
sonorities relates to ‘some aspects of the sound of contemporary instrumental music’ [2, p. 124].
In total, the SOL database has 16 musical instruments such as accordion, tuba, bassoon, clarinet,
trumpet, contrabass, alto saxophone, flute, guitar, harp, horn, oboe, trombone, violin, viola and
cello. The collection of samples includes some extended instrumental techniques.

The database belonging to Barbancho [3], focuses on piano sounds. The research covers an
extensive study on piano sounds, from a single note to a whole chord with up to ten simultaneous
notes. There are several recordings of the piano in different registrations, intensities in staccato and
ordinary playing techniques with the presence or absence of the damper pedal. In both databases,
there are three different musical dynamics: pianissimo or p, mezzo-forte or mf and fortissimo or ff.
In the current version of our research we chose to use the piano audio samples playing only the
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one single note. The current version of our database (SDB) has an approximate size of 30 GB2.
Following Section iii describes the main steps that established the construction the sound analysis
and orchestration environment, named as Sound Shizuku Composition

iii. Sound Analysis Environment - Sound Shizuku Composition - SSC

The Sound Shizuku Composition or SSC 3 was built in modules that provide orchestration cues using
the SDB, described in Section i. SSC was developed in Pure Data (PD) using a library of audio
descriptors developed by Monteiro [21] at the Interdisciplinary Nucleus for Sound Studies (NICS).
Next Subsections discuss each of the modules and all the other computational routines that was
also implemented in Pure Data. There are seven modules as follows:

• Module 1 - Selection of musical instruments and the desired instrumental techniques
• Module 2 - Define orchestration blending to be evaluated by audio features
• Module 3 - Calculation of orchestration algorithm of sonorities
• Module 4 - Selection of the audio descriptors
• Module 5 - Analysis of sonorities via audio descriptors
• Module 6 - Interaction and choice of sound mixtures arranged in the GUI visual cues
• Module 7 - Selection of output formats of sound mixtures in audio format and musical score

transcription

iii.1 Module 1 - Selection of musical instruments and instrumental techniques

In the first stage the composer defines the desired musical instrumentation from a total 16 choices
of musical instruments. Choices of instrument are repeated in such way that a selection of an
instrument is followed by the choice of an instrumental techniques. The current version of SSC
does not allow selection of the same instrument, that is, the system enables only one flute, one
clarinet, one trumpet, one tuba etc. Figure 2 illustrates the Step 1.

Figure 2: Figure of Module 1. To startup the system is necessary to load the database using the load-db in the upper
right corner.

iii.2 Module 2 - Define orchestration blending

In this module, the composer is able to restrict the amount of Sound Mixtures (SM) to reduce
computer calculation when search and analyse mixtures. We also implemented a restriction

2Because of its size, we can not attach the sound database. It is suggested to contact the author to get the current
version of the sound database. email: mieysimurra@gmail.com

3The term Shizuku is Japanese for water drop.
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algorithm for searching orchestration solutions based on the presence of a pitch profile using
the Spectral Chroma, audio descriptors. This procedure ensures that the SM are restricted to a
certain pitch or at least to the presence of a specific musical time. It is possible to use the pitch
profile to calculate a percentual pitch presence. The algorithm calculates the presence in the range
[0, ..., 1]. When presence is 100 %, the search algorithm process the orchestral indication with the
greatest pitch influence. If the user do not indicate the presence of pitch the search algorithm
performs the selection of the SM randomly. This second possibility was accomplished with the
use of the function urn, in Pure Data. Next, Figure 3 illustrates the module 2 showing the quantity
of orchestral blending, given specific pitch and its percentage of presence.

Figure 3: Figure of module 2 of the SSC system

iii.3 Module 3 - Orchestration

The orchestration step uses the pitch presence, defined in the previous section, to perform
overlays of audio files from the sound database (SDB). This routine is performed using the object
tabletool, from TimbreID library, developed by William Brent 4. Each audio file is edited so that the
overlapping is performed on files with the same length. For this, we use the object min, from Pure
Data (PD), which identifies the smallest window of the data collected. The overlays are rendered
and stored in tables that will be used to extract the audio features. Figure 4a presents the overlay
algorithm of audio samples defined by the Module 1. The Figure 4b, represents the audio samples
corpus.

iii.4 Module 4 - Selecting Audio Features

After establishing the corpus of sound mixtures, sound analysis is conducted. In total, it is used a
set of four pairs of features which are arranged in a two dimensional space, a coloured graphic
display. As discussed in Section i, audio descriptors project the retrieved information of the
sound spectrum to one-dimensional curves. However, as discussed in the Introduction, timbre is a
perceptual feature which has several parametric dimensions. In order to help the composer to
expand the analysis scope on specific sonic characteristics, a set of four pairs of audio descriptors is
present in a graphic display. This tool enabled a refined detailing of various sound characteristics.
Section i then presents the available audio features in the current stage of our system. Figure
5 illustrates the selection of the four pairs of audio features. Indications ‘x’ and ‘y’, below each
feature represent their disposal in the operating interface of Sound Mixtures performed by Module
3.

4For more information about the TimbreID, see: <http://williambrent.conflations.com/pages/research.html.>
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(a) (b)

Figure 4: Figure for the audio samples overlays. In Figure 4a, the process is performed by the object tabletool, from
the TimbreID library. Figure 4b, the overlays are stored in the corpus named mixture_II. The corpus will
be analyzed by audio features in Module 4.
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Figure 5: Figure of the Module 4 in which the user can select the set of four pairs of audio features that will analyze the
sound mixtures.

iii.5 Module 5 - Sound Mixtures Analysis

In Module 5, the system performs the sound mixtures analysis via audio descriptors. The features
are based on the suitable PDescriptors library developed at NICS/UNICAMP [21]. It calculates
the mean of the extracted values of each audio feature. These means are accumulated in a list of
data to be arranged in a space for exploration and analysis. Figure 6a represents one of the four
pairs of the features chosen in module 4. In this patch the data analysis are collected. The mean
of the data are stored in sub-module pd accum-symbol. These means are arranged in the space of
operation which will be described in Module 6.

iii.6 Module 6 - Creation of the Sound Mixtures Space Exploration

this module, we have implemented a graphical user interface for the interaction, exploitation and
selection of the sound mixtures. It was used sound mixtures using the GEM (Graphics Environment
for Multimedia) library. The graphical SSC interface enables the visualization of four pairs of audio
features and allows up to listening to the sound mixtures arranged on the GUI. Figure 7 presents
the patch of the sound mixtures search and the four bi-dimensional graphic visualization. The
first space is represented by yellow dots. The second space is represented by green dots. The third
space is represented by the purple dots. Finally, the fourth space is represented by red dots.

iii.7 Module 7 - Selection of Sound Mixtures and Transcriptions

Module 7 controls the system output formats and there are two specific formats: a) audio file .aif
and b) music score that is performed by an external PD object called notes developed by Waverly
Labs, at New York University - NYU5. According to the description of notes the external object for
Pure Data was conceived as an aid for computer assisted composition (CAC), generative music,

5For more information, visit: http://nyu-waverlylabs.org/notes/.
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(a) (b)

Figure 6: Figure of the Module 5 which performs the analysis of Sound Mixtures. The collected data is extracted by the
audio features (Figure 6a). Figure 6b is the sub-module that calculates the mean of the collected data.
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Figure 7: Illustration of the Module 6 in which the user can interact with the sound mixtures in the exploitation space.
In this module the user can hear the sound mixtures.

and other places where symbolic music notation might be useful. This object interprets the data
collected from the PD environment and converts them into a musical graphical notation in Lilypond
format. The symbolic data that will be converted into musical notation must be configured in
the particular syntax of the Lilypond. The module that interprets the symbolic data on musical
transcription is called the score-ssc1.pd. Moreover, this module was not designed to produce final
scores although this is conceivable. The composer often goes to lilypond and edit, copy, combine
and modify scores in various ways.

There is the object inst that receives data such as ‘musical instrument’, ‘musical pitch’, ‘dynamic’
and ‘instrumental technique’. Each musical instrument has its own object inst. In general, the
algorithm receives a message with musical symbolic data and the object inst sends each information
for its specific sub-module. The sub-module interprets the specific data and converts it in the
Lilypond syntax. The next step creates a single message with all the information that will be
interpreted by the notes. The diagram in Figure 8 summarizes all the steps of the musical
information.

Musical In-
strumental

Pitch

Dynamics

Instrumental
Playing

Techniques

Symbolic
Musical Data

Lilypond format
Convertion

Figure 8: Diagram Blocks for the musical information, convertion in Lilypond format.
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(a) (b)

Figure 9: Figure of Module 7, which selects the sound mixture and stores it in audio format and in musical notation
format in lilypond. Figure 9a is the patch interaction with the module 7. Figure 9b illustrates the score of a
given sound mixture.

In the current version of SSC, there is no temporal information for the orchestral sonorities.
Each interaction will produce only an orchestral setting with previously established duration.
Figure 9a illustrates the patch to store sound mixtures, in .aif format or in music sheet format, in
lilypond. Figure 9b, represents an example of the score of a sound mixture.

iii.8 Sound Shizuku Compostion - SSC General Architecture

In the SSC system the orchestral possibilities result from the interaction of the analysis of audio
descriptors with their potential semantic correlates. Timbre has several perceptual characteristics
that may be intrinsically associated or orthogonally different. The sound analysis tools describe
certain aspects that can highlight one or more specific characteristics related to the subjective
attributes of timbre perception. Figure 10 illustrates the general outline for the orchestration
computer-aided orchestration architecture.

III. Practical Applications

The system for supporting the compositional planning presented here focus on how musical
orchestration connects two distinct universes a) instrumental extended techniques and b) compu-
tational tools to analyze and statistically describe the spectral content of the material generated
by these techniques. Therefore, we developed a method to help the composer to relate: a) the
high-level descriptions or symbolic data, called ‘sonority’ with b) the specific modes of extended
playing techniques. Next we present three compositional that was created with the system, briefly.
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Musical Instru-
mental Selection

Start

Sound Database

Playing Tech-
niques Selection

Amount of
Sound Mixtures

Definition

Search Al-
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Overlapping the
Sound Samples

Choice of
Musical Pitch

Pertinence

Percentage of
Musical Pitch

Pertinence

Audio Features
Selection

Sound Mix-
tures Analysis

Exploration and
interaction Space

Sound Mixtures
Selection

Export Mu-
sical Score

Export Au-
dio Format

Module 1 (Section iii.1)

Module 2 (Section iii.2)

Module 3 (Seção iii.3)

Module 4 (Section iii.4)

Module 5 (Section iii.5)

Module 6 (Section iii.6)

Module 7 (Section iii.7)

Figure 10: Sound Shizuku Composition - SSC General Architecture.

In the particular case of Lana Tai, the methodology expounded on the construction of ‘Sound
Mixtures’, as discussed in Section II, which were anchored in two audio features: spectral chroma
and spectral centroid. In Lana Tai the audio features were related to two contrasting ideas: a)
opacity and b) brightness. The main ideas about the compositional planning can be found in
[35, 33, 34].

The work The oil, the moon and the river was anchored in three audio features: Loudness, Spectral
Irregularity and Spectral Chroma. The compositional planning consisted of contrasting sonorities
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called velvety and rough and the variation of their intensity in different dynamic levels. According
to the analysis from the spectral irregularity, we find that the different playing techniques alter the
timbre perception of each analyzed sound. Instrumental techniques which are characterized by
instrumental noise insertion tend to relate to rough and ridged sonorities. Conversely, for velvety
and smooth sounds we used certain instrumental techniques to result in clean and clear sound like
whistle tones, on flutes. In the analysis using Spectral Chroma, we find the polarization of musical
pitches in which we have established the basis of the melodic structure of the work. Published
works for the analysis of the composition can be found in [36].

Finally in Labori Ruinae we used audio descriptors to produce gradual timbre transformations.
Such analysis was anchored in a vector consisting of a set of six audio features. The formal
structure of the work relates to the spectral transformation of five pairs of sonorities. Each sonority
has been described by a vector with six audio descriptors. We interpolated each pair of sound
from its degree of dissimilarity, in ascending order. We began to work with the pair of sonorities
with lower dissimilarity index. Consequently, the work ends with the pair of the higher rate.

IV. Final Considerations

This article discussed a system to work as a new strategy on composition and orchestration
within the vast domain of sounds produced by extended playing techniques. The research
enabled the formal dialogue between analysis, audio descriptors with the conceptual, aesthetic
and subjectiveness providing to the composer a tool to be applied into the process of musical
composition. We presented the general architecture of the computer system and how aid to
orchestration is done. In this architecture, we introduced five stages concerning to the creative
process: a) defines the timbre characteristics to be exploited through the audio features. This
step will define the aspects and timbre characteristics which will be worked compositionally; b)
establishes the remarks within the space of characteristics, known as ‘Referential Remarks’; c)
conducts experiments in instrumental mixtures, known as ‘Sound Mixtures’, via orchestration
of audio samples of several playing techniques. These configurations were built from a sound
database of various instrumental playing techniques; d) defines the orchestral settings weighted
by the particular preferences of the composer. This procedure ensures the effective participation
of the composer in the final result of his own musical compositional; finally e) stores the sound
mixture selected by the composer in musical notation and in audio format.

We introduced the audio descriptors used in our analysis with a computer environment. In
total there are fifteen audio descriptors available and our perspective is associated with SSC
focuses on improving and refining the algorithm analysis and the overlapping audio samples
using techniques and tools of computer music and other computer models.

Moreover, we intend to publish other results obtained with the current version of SSC and also
further advance the stage of the system. One of our goals is to expand the sound database by
adding more audio samples. Another issue that we will address is to study correlations between
orchestral sonorities and text descriptions of timbre characteristics with the affective/emotional
states that may be induced or evoked by them.
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Abstract: This paper intends to demonstrate the different ways many of my compositional projects used
mathematical tools, from the pre-compositional stage through a final product done with sound synthesis.
These tools are of diverse nature, depending on the theoretical needs of the problem faced. In some cases,
the project employed discrete and combinatorial mathematics. In other cases, geometry was a useful tool
to visualize rhythmic manipulations. Irrational numbers were the basis of a non-conventional tuning
proposition. Continuous functions, like "sine", are at the core of digital sound synthesis and, in a
particular project, served to the design of a digital filter.

Keywords: Algorithmic composition. Inharmonic tuning. Fractal diminution. Set similarity. Cyclic
rhythm. Digital filter.

I. Introduction

Many music compositions of the 20th Century have benefited a great deal from Mathemat-
ical, Physical or Technologica l knowledge and many continue to do so nowadays. We
will concentrate the approach of this paper in the contribution of three different branches

of Mathematics: Discrete and Combinatorial Mathematics, Euclidian Geometry and all kinds of
Continuous Functions Mathematics.

We may distinguish two main general compositional approaches used in this period. The
first one prolongs the validity of the very ancient idea of reducing the complexity of the musical
phenomenon to a symbolic representation called the "note" which embraces some of the predomi-
nant characteristics of sound to human perception: pitch, duration, dynamics and timbre. This
approach allowed the development of musical notation. It still represents, to most composers,
their daily tool for music conception and representation. The second approach, that had only
subsidiary relevance until the 19th Century, depends on the possibility of dealing with the internal
characteristics of the sound. Some, as [7], say that is music composed with the sound itself. Some,
as Landy [8], call it "organized sound" and do not even defend that we need to call them "music"

102

mailto:rcoelho@usp.br


MusMat: Brazilian Journal of Music and Mathematics • December 2016 • Vol. I, No. 1

anymore. Of course, we are talking of sound products in which the author intentionally explores
the internal qualities of the sound evolving in time. Therefore, they belong to the realm of sound
design, electronic, concrete, acousmatic or electroacoustic music, or whatever other name is used
to identify music to which the concept of "note" is, at most, of secondary importance.

The mathematical tools of discrete and combinatorial mathematics, and geometry, apply mostly
to music that continues to use traditional notation, while the mathematics of continuous functions
holds the conceptual basis for music that, besides employing technological means to generate
sound, treats the sound from inside out.

I might use compositions of most of the established composer and the major names of the
20th Century to demonstrate my point but I choose to use my own compositions in order to
state my personal view of how important I consider the influence of mathematical thinking
in my compositional trajectory. The selection of cases intends to illustrate the use of different
mathematical tools, notwithstanding that more than one may have contributed to develop each
particular compositional project.

II. Pitch numerical representation allowing a processual form

It may seem a problem of nostalgic self-indulgence to resort to one of my first attempts in
music composition to illustrate how the elementary idea of representing the chromatic scale with
numbers emerged to me. Indeed, the circumstance around this report is what makes it interesting.
It was the year of 1970 and I was seventeen years old. I had just started to attend college classes
and one of the required freshman courses was "Introduction to Computer Programming". The
instructor taught us the Fortran 1.0 computer language. We had to punch cards and stay on line
to run our codes on the only IBM mainframe computer available in the school, a device that filled
a large room. We could not enter the room, only glimpse through a door window. Besides the
scheduled homework, we were supposed to come up with real world problems that a computer
program might solve. The teacher used to say that the computer was a solution in search of
problems. I was already interested in music composition, following whatever reached me of the
European avant-garde music. This means that I had some information about basic concepts of
dodecaphonic and aleatory music.

During that year, among other projects, I devised the idea of composing automatically a short
piece of atonal music with the aid of a computer program. The name of resulting piece of music
was Three Episodes for piano. Its definitive version dates 1974. The first problem I had to face in that
project was how to represent the notes of the chromatic scale with numbers. My first attempt was
to assign ten pitches to the numbers 1 to 10, substituting 0 for 10 to deal only with single digits.
Therefore my numeric code was: 1 = C, 2 = C] , 3 = D, 4 = D] , 5= E, (...) through 9 = G] and
0 = A. As I was missing numeric representations for A] and B, I circumvented the problem with
a systematic rotation of the numeric correlation assignment to include all the pitches.

I keep to this day a print out of the output, but unfortunately, the code itself was lost. It reads
like that:

4 1 7 8 3 0 9 5 2 6
5 8 5 1 3 9 4 7 8 0
3 3 6 4 2 3 1 5 8 5
6 9 0 6 5 4 6 3 3 8

etc.............................................................

The idea of the program was to calculate the numbers of each new line adding the adjacent
numbers of the previous line. For instance, the second line is based on the first: 4 + 1 = 5,
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1 + 7 = 8, until the last, which should turn around to the beginning and retrieve the first element,
6 + 4 = 10, however making 10 = 0. Insofar, when the sum exceeded 10, the program kept only
the last digit. For instance, 9 + 5 = 14, but 14 was replaced by 4.

Soon I realized that I did not need to restrain myself to single digits. I could operate the same
reduction used for numbers above 10, using the concept of base 12. For a new programming
attempt, I chose a more practical correlation that begun with the association C = 0, as practiced
nowadays. Therefore, a second program using the principle of mode 12, processing a new sequence
of twelve numbers without repetition, yielded the following result:

10 4 1 7 8 3 0 9 5 2 6 11
2 5 8 3 11 3 9 2 7 8 5 9
7 1 11 2 2 0 11 9 3 1 2 11
8 0 1 4 2 11 8 0 4 3 1 6
etc....................................................................................

These attempts of 1970 precede the publication of Forte’s pioneer book on musical set theory
[4]. Took me almost two decades to acknowledge the development of a set theory of music in
other part of the world. For sure, I had assumed that it might be happening, so intuitive the
approach seemed to me. The only problem was that, at that time, before the internet, information
reached Brazil much slower than today.

The more interesting aspect of that first attempt was how it allowed the generation of pitch
data by numeric manipulation. One cannot add pitches, unless numbers replace them. The
purpose was to build a machine that makes music using a process that only stops when it reaches
a certain condition, for instance, the completion of one hundred loop cycles. At that time, I was
only vaguely aware of the concept of "music as process" and the major trend it represented. Still
years later, when critics commented the first performance of the piece, referring to it as piece of
serial music, I thought they were mistaken because I did not follow the rules of serial music. For
me, then, serial music was dodecaphonic music with its principles extended to others parameters.
I realized that the pitch generation of that piece was somehow unpredictable and therefore closer
to stochastic music. One thing particularly pleased me: the process allowed pitch repetition, a
negative imperative to Schoenberg. All I knew at that time, concerning serial music, followed the
teachings of Krenek (1940). We knew very little details about the explosion of the series promoted
by Boulez and Stockhausen techniques, but the ear guided me to obtain similar results, although
the technique used was somehow original.

Figure 1: Coelho de Souza’s Three Episodes for piano, mov. 3, m. 14-16.

Even though Figure 1 does not show an analysis of the pitch generation, it illustrates the style
of the music produced by the numerical process above described.

As a corollary to this line of reasoning, we may question what would be the meaning of
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negative numbers in this context. In fact, the model is consistent because the chromatic scale
supports a symmetrical reflection:

... -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

... G A[ A B[ B C C] D D] E F F] G

On the other hand, what happens with actual pitch frequencies? For instance, consider
A0 = 27.50Hz as the low A in the scale above. Calculating the descending pitches according to
the tempered tuning, we obtain:

A(0) = 27,50 Hz
A[(0) = 25,96 Hz
G(0) = 24,50 Hz
G[(0) = 23,12 Hz
F(0) = 21,82 Hz
E(0) = 20,60 Hz
E[(0) = 19,44 Hz
D(0) = 18,35 Hz
D[(0) = 17,32 Hz
C(−1) = 16,35 Hz
B(−1) = 15,43 Hz
B[(−1) = 14,56 Hz
A(−1) = 13,74 Hz

Therefore, the pitches plunge into a sub-sonic frequency realm, asymptotically tending to zero.
There are no negative frequencies and even if we forcefully assign a negative value to the frequency
of a pitch, in physical terms this will be the same sound of the equivalent positive frequency with
a 180 degrees inverted phase. Therefore, this physical reality impairs the dualistic principle used
by Hugo Riemann to justify his Theory of Functional Harmony because its postulate requires the
existence of an inverted harmonic series. He missed that we can draw pitches in a linear scale that
supports negative numeric values, but these pitches map frequencies into a logarithm curve that
asymptotically approaches zero, never assuming negative values or any symmetrical shape.

III. Tuning with the Golden Section

From my first compositional project, I jump now to my most recent project that is an opera named
The Machine of Pascal in Pernaguá. For this project, I have also rescued from my memory the
generative operations described above and used them to compose some of the scenes. This is also
a reason to mention the procedure in this report. Unfortunately, I could not find a short good
example of the method taken from the opera therefore I resorted to that old but clearer example.

Going now to the point, one of the main scenes of the drama depicts an hypothetical ability
of Pascal’s machine to produce music. The story is set in the 18th Century but, obviously, the
Pascal’s machine is a metaphor of today’s computer. The music associated with the machine has
characteristics that go beyond human motor control or limits of instrumental performance. One
of such aspects is the microtonal tuning used by the computer-generated music of this scene. It
implements a scale division inspired by the golden section.
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The purpose of this tuning model is to obtain inharmonic relations between pitches. As the
basic generative proportion is an irrational number, we do not expect to obtain any of the harmonic
relations, known since Pythagoras, based on integer numbers.

ϕ = (1 + 51/2)/2 = 1.6180339887 . . . (1)

In this construction, we also applied two principles very fond to mathematical reasoning: the
principle of symmetry and the principle of self-similarity. Applying symmetry, reflecting the
division around the middle point, we obtain a first step of the division:

0.618034 0.381966 

0.618034 0.381966 

f                              1.319f         1.618f                          2f 

The following steps are recursive applications of the golden ratio, dividing each remaining
segment into three parts that replicate self-similarly the scheme above. For a matter of clarity, we
present the results in a vertical table instead of horizontally, as above.

The first column of Table 1 shows a linear division of the octave applying a nested golden
ratio proportion. The next column shows the linear increments: adding the values of the first and
second columns, we obtain the next line of the first column. However, we know that the human
hearing is not linear, but logarithmic. The next column shows a similar division of the octave
with logarithmic scaling. The fourth column shows the logarithmic increments: multiplying the
values of the third and fourth columns, we obtain the next line of the third column. The fifth
column depicts the tempered division of the octave. Of course, there is no perfect equivalence
with, neither the first, nor the third column, but we emphasize in bold italic that the values of the
tempered fourth and fifth degrees are very close of those in the golden rate division column. The
small discrepancy of values is not only a matter of accuracy. We tried to proof a mathematical
equivalence and performed a more precise evaluation of the results too. We find out that values are
indeed not equal, but only a coincidence up to a certain degree of precision. However, we cannot
perceive the difference between these pitches because they are within the JND (just noticeable
difference) limit.

The marks on sixth column show the nesting branches. Centered "x"s indicate the first division
step. A left positioned "x" shows the second branch e right positioned "x" the third interaction.
The last column applies the results to the interval A2-A3. Notice that we obtain a microtonal
scale divided in 25 intervals. There are three kinds of intervals that on the second column are
identified by the increments 0.022. 0.034 e 0.056. Notice that the sum of the first two equals the
third. Therefore. for practical purposes. we might reduce the division to 21 intervals of only two
sizes.

These frequencies can be considered the fundamental of a complex note but also harmonic
partials of inharmonic sounds. They can disperse in many octaves or concentrate in clusters. A
digital synthesis program can implement any kind of pitch combination and their relative weight.
That is what we have done in the above-mentioned opera scene.
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Table 1

linear
proportion

linear
increment

logarithmic
proportion

logarithmic
increment

tempered
d = 2 1/12

fractal
nesting

pitches for
A2 = 110.0

1.000 f + 0.056 1.000 f x 1.0396 1.000 f x 110.0 Hz

1.056 f + 0.034 1.040 f x 1.0238 x 114.4 Hz

1.090 f + 0.056 1.064 f x 1.0396 1.059 f x 117.0 Hz

1.146 f + 0.034 1.106 f x 1.0238 x 121.7 Hz

1.180 f + 0.022 1.113 f x 1.0154 1.122 f x 122.4 Hz*

1.202 f + 0.034 1.150 f x 1.0238 x 126.5 Hz

1.236 f + 0.056 1.178 f x 1.0396 1.189 f x 129.6 Hz

1.292 f + 0.034 1.224 f x 1.0238 x 134.6 Hz

1.326 f + 0.056 1.253 f x 1.0396 1.260 f x 137.8 Hz

1.382 f + 0.034 1.303 f x 1.0238 x 143.3 Hz

1.416 f + 0.022 1.334 f x 1.0154 1.335 f x 146.7 Hz

1.438 f + 0.034 1.355 f x 1.0238 x 149.1 Hz*

1.472 f + 0.056 1.387 f x 1.0396 1.414 f x 152.6 Hz

1.528 f + 0.034 1.442 f x 1.0238 x 158.6 Hz

1.562 f + 0.022 1.476 f x 1.0154 x 162.4 Hz*

1.584 f + 0.034 1.499 f x 1.0238 1.498 f x 164.9 Hz

1.618 f + 0.056 1.534 f x 1.0396 x 168.7 Hz

1.674 f + 0.034 1.595 f x 1.0238 1.587 f x 175.5 Hz

1.708 f + 0.056 1.633 f x 1.0396 x 179.6 Hz

1.764 f + 0.034 1.698 f x 1.0238 1.681 f x 186.8 Hz

1.798 f + 0.022 1.738 f x 1.0154 x 191.2 Hz*

1.820 f + 0.034 1.765 f x 1.0238 1.782 f x 194.2 Hz

1.854 f + 0.056 1.807 f x 1.0396 x 198.8 Hz

1.910 f + 0.034 1.879 f x 1.0238 1.888 f x 206.7 Hz

1.944 f + 0.056 1.923 f x 1.0396 x 211.5 Hz

2.000 f - 2.000 f - 2.000 f x 220.0 Hz

107



MusMat: Brazilian Journal of Music and Mathematics • December 2016 • Vol. I, No. 1

IV. A process of fractal rhythmic diminution

The above mentioned section of the opera also uses another mathematical procedure that departs
from a rhythmic motive based on seven beats, irregularly divided with four kinds of durations: a
half note, two quarter notes, a dotted quarter note and three eight notes, assembled in a sequence
that produces syncopation, as displayed in the first line of Figure 2.

Figure 2: Fractal rhythmic diminution (Coelho de Souza’s The Machine of Pascal in Pernaguá).

Each line represents a new level of self-similar diminution of the original line. In the second
level, within the duration of a half note, a tuplet of seven eight notes (replacing four notes)
reproduces the rhythmic proportions of the original measure. Pitches are the same seven pitches
but on a different permutation. The process continues towards three more levels of diminution,
two of them displayed in Figure 2. The last one, not shown in Figure 2, replaces the three eight
notes by a 7:8 diminution. This musical process was inspired by a visual graphic, proposed by
Peano. to generate the design of a snowflake, as we can see in Figure 3. Although not identical,
these two processes of fractal self-similar diminution exhibit certain common features.

The main differences results from the asymmetrical internal structure of the first musical level,
which induces, by self-similarity, a quite chaotic rhythm, as the process continues through the
other levels. The snowflake design, on the other hand, appears to be much more regular. In
fact, we listen to that fragment of music almost as a random sequence of events, like a Brownian
movement, although, in a deeper level of perception, we realize that there is a coherent structure
resulting from the multi-level rhythmic self-replication.
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Figure 3: Snowflake curve depicted as a process of fractal diminution ([11, p. 190]).

V. A particular set property

The principle of permutation is another tool of combinatorial mathematics that I have used since
1984 when I composed Rébus for piano solo. Applying it to pitches yields trivial results but
applying it to intervals allows us to study an interesting similarity relation that is not part of
the standard Set Theory proposed by Allen Forte [4]. Forte devised a property related to the
interval content of sets that he calls the Z relation. This property measures the similarity of two
sets based on the identity of their interval vector, which counts the number of occurrence of each
interval between the pitches of the set. Forte was able find some pieces in which the segmented
sets exhibit the Z relation, but they are very likely to have occurred by chance, not intentionally by
the composer.

The relation that I have proposed is different from the Z relation, as I demonstrated in an
article [2]. It starts with the CORD vector, proposed by Soderberg [10], that lists the intervals of a
set class. Going a step further, I have proposed a PCORD set that rearranges the intervals of the
CORD vector to normal order, or actually, without any additional transformation, to its prime
form.

This proposition differs from Forte’s Z relation because it aims to be not only an analytical
tool, but also a generative model. Based in a single PCORD, we can generate sets of different set
classes. These sets have a second degree of structural similarity although to standard set theory
they seem to be unrelated.

If we segment this music grouping the pitches of each measure in the treble clef and the bass
clef. and reduce these sets to their prime form. the result will be:

Measures 1− 2:
Treble clef: {C].F].D.A].G]} → set class (01468)
Bass clef: {B.C.D].F.A} → set class (02368)
Measures 3-4:
Treble clef: {B[.A.G.D[.E[} → set class (02368)
Bass clef: {E.G].F].C.B} → set class (01468)
Measures 5-6:
Treble clef: {D.F.C.A[.E[} → set class (02358)
Bass clef: {G.A.C].E.F]} → set class (02358)
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Figure 4: Fragment (reduced) from Coelho de Souza’s Concerto for Percussion (w. in progress).

At a first approach. it seems that three different unrelated set classes have been used in these
six measures of the piece: (01468), (02368) and (02358). If we calculate the CORD vector of these
sets classes. reorder them to their prime form to calculate PCORD form. we obtain:

(01468) → [[1322]] → ((1223))
(02368) → [[2132]] → ((1223))
(02358) → [[2123]] → ((1223))

Therefore. we realize that this entire passage has been generated from a single PCORD. namely
((1223)). In the above mentioned article [2]. we listed all the set classes that are related by PCORD
similarity. for each cardinality. In Table 2 we reproduce only the list of cardinality 5 because the
sets used in the music of Figure 4 all the sets as based on five pitches. As expected in the column
of PCORD ((1223)) we find the three set classes used in that fragment: 5-30 (01468), 5-25 (02358)
and 5-28 (02368).

VI. Geometric representation of rhythm

The music of Figure 4 allow us to approach another mathematical tool that can be used to generate
or analyze music: the depiction of rhythm by geometry means. This is particularly efficient when
the rhythm presents cyclic features. That is the case of the music of Figure 4. We may calculate the
rhythms based on the smallest division value. in this case sixteenths:

Measures 1-2 (right hand): 3 - 3 - 3 - 3 - 4
Measures 3-4 (left hand): 2 - 3 - 3 - 3 - 4 - 1
Measures 5-6 (right hand): 1 - 3 - 3 - 4 - 3 - 2
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Table 2: List of PCORD x Set Classes with Cardinality 5

PCORD ((1111)) ((1112)) ((1113)) ((1114)) ((1122)) ((1123))

Set Classes 5-1 (01234) 5-2 (01235) 5-4 (01236) 5-5 (01237) 5-9 (01246) 5-Z36 (01247)
5-3 (01245) 5-6 (01256) 5-7 (01267) 5-10 (01346) 5-14 (01257)

5-Z12 (01356) 5-16 (01347)
5-8 (02346) 5-19 (01367)

5-Z18 (01457)
5-11 (02347)

((1124) ((1133)) ((1222)) ((1223)) ((1233)) ((2222)) ((2223))

5-13 (01248) 5-Z38 (01258) 5-24 (01357) 5-27 (01358) 5-31 (01369) 5-33 (02468) 5-34 (02469)
5-15 (01268) 5-21 (01458) 5-23 (02357) 5-29 (01368) 5-32 (01469) 5-35 (02479)

5-Z17 (01348) 5-22 (01478) 5-30 (01468)
5-20 (01568) 5-Z37 (03458) 5-25 (02358)

5-28 (02368)
5-26 (02458)

Although a certain degree of similarity in these rhythmic patterns induce us to suspect the
existence of some hidden consistency. the numerical strings do not allow an immediate realization
of some intentional process. On the other hand. it is clear to the ear that there are cyclic rhythmic
patterns driving the discourse. When we represent these three rhythmic patterns in a circle.
assigning striking points to sixteen possible positions, we obtain a much clearer visualization of
the displacement procedure (Figure 5)

3

4

3

4

3

3

3

Figure 5: Rhythm pattern of measures 1-2.

This representation allows us to realize that there is only one rhythmic pattern altogether
in the passage. Actually a single pattern is rotated at +45◦ and −115◦. as shown in Figures 6
and 7. so we have it starting at a different point of 16 points grid cycle at each two bars. A
similar linear representation is possible and in that instance. instead of rotation. the procedure to
consider is displacement. Another instance of geometric representation is the well know method
of representing the twelve pitches in a circle. as the hours in a clock. This is a standard procedure
of the set class theory. found in any textbook on the subject. Although we have used this kind
of representation to illustrate principles of symmetry in my own compositions. we chose to
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3

4

3

4

3 3

3

Figure 6: Rhythm pattern of measures 3-4.

3

4

3

4

3

3

3

Figure 7: Rhythm pattern of measures 5-6.

illustrate the use of geometry as a tool for music composition. using cyclic rhythms because it
is a less known problem. although some recent releases like [12] are quickly becoming popular.
Another reason is that for rhythm the number of points represented in the circle is variable.
and not a fixed clock face. We might also bring about the subject of geometry representation
used in the neo-Riemannian theory. especially the Riemannian Tonnetz (see [5]). besides other
achievements like those proposed by [13]. I did not show these devices because I have not used
them in my music. In this paper. I voluntarily limited myself to tools that I have employed in
my own compositions to demonstrate how mathematical tools can be helpful for establishing a
pre-compositional background for building a personal style.

VII. A mathematical filter used to transform a sound signal

So far. we have examined cases where the mathematical tools described belong to chapters of
discrete and combinatorial mathematics (see [6]) or geometry. I have promised to approach also
examples of the mathematics of continuous functions. Indeed. I might collect a bunch of examples
from my compositions and. fortunately. the mathematical foundation of them certainly belong in
one of the two volumes of the all-encompassing book on the subject written by Gareth Loy [9].
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Nevertheless. since I am trying to demonstrate that my fellow composers can easily understand
these mathematical tools. I will restrain myself to only one example because the mathematics
involved in the continuous functions usually depends on the knowledge of calculus and other
high-level mathematics.

The following Csound program. besides the usual opcodes offered as presets by the program.
uses a transformation of the wave signal applying directly to it a sine function multiplication. We
highlight that line of the code with boldface. As we know sine waves are continuous functions.
and according to Fourier’s theorem. we can analyze any sound wave as a sum of harmonic sine
waves. if we found the appropriate variables. In this case. however. the sine wave works as a kind
of mathematical filter.

This Csound experiment is based on a standard two-stack frequency modulation design. but
with the above mentioned transformation. we tried in this project. to perform a filtering that
somehow works like the waveshaping technique. however done with a brute-force mathematical
function instead of the usual tables. Most of the Csound opcodes are based in continuous functions
but the composer does not have to deal directly with them. For more information on computer
music synthesis see [3] and on Csound programming see [1].

;“EXPERIMENT 1.orc"
;instrument with time variable timbre

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 1
idur = p3
iamp = p4
ipitcar = p5
iratefreq = p6
iindex = p7

;transient for the attack
ifrtr = cpspch(ipitcar)
ikftr = .975
imfrtr = ikftr*ifrtr
kamptr1 expon iamp.idur.0.1
kamptr2 oscili kamptr1.imfrtr.2.0
aout1 oscili kamptr2.ifrtr.2.0

;filter units
kamp = 1
ifrcar = cpspch(ipitcar)
ifrmod = ifrcar*iratefreq
idev = iindex*ifrmod
kamp2 linen kamp..50*idur.idur..50*idur
amod oscili idev.ifrmod.1.0
afreq = (ifrcar)+(amod)
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aosc oscili kamp2.afreq.1.0
afilt1 = sin(aosc*3.14159/2) ;ïČ§ sine filter
again = ((1/(aosc+1.5))-1.2)*1.25
kvar line 0.idur.1
aout2 = ((afilt1*kvar)+(again*(1-kvar)))*2*iamp
kenv linen 1..05*idur.idur..05*idur
aout2 = aout2*kenv

;triangle
ktrian linen 0.5*iamp..01*idur.idur..95*idur
aout3 oscili ktrian.ifcar.2
aout4 = (aout1+aout2+aout3)*.75
outs aout4. aout4
endin

;test score “EXPERIMENT 1.score"
f01 0 512 10 1
f02 0 512 10 1 0 .1111 0 .04 0 .0204 0 .01234 0 .00826

;a sequence of notes with harmonic relations of modulation

;instr start dur amp pitch fm/fc I=d/fm
i01 0 6 10000 8.09 1 3
i01 3 6 10000 8.03 2 3
i01 6 6 10000 7.11 2 4
i01 9 6 10000 7.05 1.5 3
i01 12 6 10000 8.06 1.5 4

;a sequence of notes with inharmonic relations of modulation
;instr start dur amp pitch fm/fc I=d/fm

i01 0 1 10000 8.09 1.54 3.04
i01 2 1 10000 7.11 1.55 4.05
i01 4 1 10000 8.03 2.56 3.06
i01 6 1 10000 7.06 2.57 4.07
i01 8 1 10000 7.09 1.25 5.08
i01 10 1 10000 8.01 1.414 3.14
e

VIII. Conclusions

We tried to demonstrate. describing a varied set of examples assembled from my own composition
projects. how mathematical tools can be useful to shape a style. from the pre-compositional
stages through a final sound synthesis stage. In some cases. these tools use discrete mathematics.
for instance. in set theory that employs note representation by numbers. or in combinatorial
mathematics applied to algorithmic composition based in set manipulation. We can also resort
to irrational numbers to implement non-conventional tunings other than tempered or traditional
tunings based on integer proportions.
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On the other hand. the universe of continuous functions is at the base of human hearing. as far
as logarithmic functions explain the perception of pitch and sound dynamics. However. when we
jump into the world of direct manipulation of the sound. the mathematics of Fourier transforms.
Hilbert transform. convolution. filters (simple. FIR. IIR or Z transf). resonance. acoustic systems
modeling (with finite differential equations). and also techniques of sound synthesis (like AM. FM.
vocal synthesis. physical modeling. etc). dynamic spectra (Gabor. short time Fourier transform).
sound vocoder. and so on. are matters in which the deep understanding of their mathematical
foundations enhance the use of their capabilities.
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