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Abstract: An iterable voice-leading schema combines a voice leading with a permutation that determines
how the voice leading is to be reapplied. These structures model a wide range of repeating musical patterns
from the Renaissance to the present day.
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This paper uses simple mathematics to analyze a not-so-simple collection of musical patterns
in which a single voice leading is repeatedly reapplied. The resulting collection encompasses
classical sequences as a special case, while also including a wider range of phenomena

familiar from other musical styles. Mastering these repeatable patterns is an important component
of contrapuntal expertise.

The mathematical background is adapted from previous work ([3],[4],[5],[1]): pitches are points
in a line R, with integer-valued pitches being scale tones; a scale here acts as a both a coordinate
system and a metric whose unit is the scale step. Pitch classes are points in the circle R/c with c
the (integral) size of the octave. A path in pitch class space is an ordered pair (p, r) with p a pitch
class and r a real number indicating how that pitch moves; this lifts to a directed line-segment p
→ p+r in the pitch space R. In this context, paths in pitch-class space can be understood either as
points in the circle’s tangent space or as homotopy classes of paths in the circle itself. Paths can
be related by transposition or inversion, with Tx((p, r)) ≡ (Tx(p), r) and Ix((p, r)) ≡ (Ix(p),-r). A
voice leading is a multiset of paths in pitch-class space, determining how the notes of one chord
move to those of another; these are described colloquially by phrases such as “C major moves to F
major by keeping the root fixed, moving E up by semitone to F, and G up by two semitones to A.”
A transpositional voice leading is one in which every path has the same real number—moving all its
notes in the same direction by the same number of scale steps.

A voice leading V = A→ B defines a transpositional voice-leading schema V that can be uniquely
applied to any transposition of the initial chord, so long as it contains no pitch-class duplications
and is not transpositionally symmetrical: V (Tx(A)) ≡ Tx(V). When B is transpositionally related
to A we can therefore reapply the voice-leading schema V in a chain, generating a repeating
musical pattern that sends each note n cycling through chordal elements:

n, Tx(ϕ(n)), T2x(ϕ2(n)), T3x(ϕ3(n)), ..., Tix(n)) (1)

with i the order of the permutation, so that ϕi(n) = n. When B is a transposition of A, then the
permutation ϕ is uniquely determined by the voice leading (so long as both chords are suitably
nonredundant). In the general case, where A is symmetrical or B is not related to A, we have to
supply the permutation ϕ explicitly. (Geometrically, the permutation ϕ contains information about
the path along which the vector V is parallel-transported from point A to B.) We therefore define
an iterable voice leading schema V I as a pair (V ,ϕ) with V a voice-leading and ϕ a permutation acting
on the musical voices, allowing us to iterate the schema in analogy to (1).
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Figure 1 shows iterated voice-leading schemas spanning more than four centuries. The period
of a schema is the minimum number p such that the voice leading connecting chord 1 to chord 1 +
p moves every voice by the same interval modulo the size of the scale; this is shown by the brackets
on Figure 1. The wraparound voice leading connects the chord at the start of one period to the chord
at the start of the next: a sequence is transpositional if this voice leading is transpositional (Figure
1b-d); if not, we have a contrary-motion sequence where the relative distance of voices changes by
one or more octaves with each period (Figures 1a and 2).

Figure 1: . Iterated voice-leading schemas. (a) Beethoven Op. 90, I, mm. 105–107; (b) a central intervallic pattern
in Stravinsky’s Firebird; (c) a passage from the Sanctus of Josquin’s Mass L’Ami Baudichon, mm. 14ff.;
and (d) a reduction of the descending-fifth sequence in the development section of the first movement of
Beethoven’s Op. 2 no. 1. The cyclic notation (12) indicates that the music of voice 1 in the first chord passes
to voice 2 in the second (counting from bottom to top), with the music of voice 2 passing to voice 1.
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Such sequences generally produce canons, with the nature of ϕ determining the structure of
the canonic voices. When ϕ has a single cycle, each voice articulates the same pattern of intervals,
forming a single canon as in Figure 1b-d. When ϕ has two cycles, repeated applications produce
a double canon with two distinct groups of canonically related voices, as in Figures 1d and 2;
more generally an n-cycle permutation produces an n-fold canon. (In the limiting case, where
the schema uses n distinct cycles to connect n-voice chords, each voice progresses along its own
interval independent of the others.) In Renaissance music, iterated voice-leading schemas tend to
link adjacent chords (Figure 3); in classical music, they frequently connect nonadjacent sonorities
(Figure 4).

Figure 2: A contrary-motion sequence in the first F-major fugue from the Well-Tempered Clavier, mm. 56ff.

Figure 3: Iterated voice leadings in (a) the Sanctus of Palestrina’s Mass Ave Regina Coelorum, m. 19ff. and (b) the
Sanctus of Palestrina’s Mass Spem in Alium, mm. 93ff., presenting six successive ascending fifths in a row.
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Figure 4: The “Omnibus sequence,” a common Romantic contrary-motion pattern [6].

Many familiar musical patterns can be analyzed using this framework. In some cases, these
structures have traditional music-theoretical names: for instance, a round is an iterable voice-
leading schema whose generating voice leading is of the form A→A, connecting a chord to itself
(Figure 5). Similarly, previous theorists have explored wedges generated by the combination of a
nontranspositional voice leading V with trivial permutation ϕ, so that all voices move along their
own individual paths (e.g. Figure 1a, [2, p. 124ff.]). Sequences are canonic when ϕ is nontrivial (as
in all but one of the preceding examples), and noncanonic otherwise (Figure 1a, Figure 6 below).
A final possibility is a variable sequence in which either the transposition or the permutation
changes over the course of the sequence: for instance, in Figure 6 V6

5–I progressions descend by
three thirds and one second, returning to their initial position after four units rather than seven;
here the voice leading from C to F is individually T-related to the previous voice leadings [4], with
the second chord being one step too high. More remarkable is Figure 7, where Bach changes the
permutation while preserving the voice leading.

Figure 5: The round “Row, row, row your boat.”
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Figure 6: A variable sequence in Beethoven’s Op. 31 no. 3, I, mm. 68–70.

Figure 7: The final phrase of Bach’s chorale “Ach lieben Christen, seid getrost” (BWV 256, Riemenschneider 31).

All of which is fairly clear when set out in abstract, mathematical form. However, I can
testify that even an analytically minded musician can spend a lifetime working with iterated
voice-leading patterns without clearly understanding their general structure.
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