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Abstract: We consider a sequential machine model with output a cancellative monoid in order to describe
fundamental music functions (transposition, inversion, retrogate, change of durations, pitch class distri-
bution, move function). The minimal such machine of a prefix preserving function is provided. Musical
functions are classified according the complexity of the minimal sequential transducers representing them.
Functions coming from contour situations are shown to be sequential and their minimal machines are con-
structed. A machine simulation based hierarchy of musical contours and the corresponding classification
of musical languages are exhibited.
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I. INTRODUCTION

Mathematical machine models, such as automata, were already used to analyse, interpret and
represent musical processes, [1], [5, 6, 7], [4], [17], [2]. Sequential transducers constitute the
most general algorithm that can be executed in real time by a finite device. Non-deterministic
transducers and weighted transducers have already been used in speech recognition [14, 15],
natural language processing [13], [19], image generation [9] and music identification [21], [16]. A
sequential transducer is a deterministic automaton with transitions labelled with both input and

output symbols
(H——

interpreted as follows: if M is in state g and we input the symbol ¢, then M goes to state g
and outputs the string u. The behavior of M is the function defined in the following way: every
input string o7 - - - 0y, labels a unique path

/

and the emitted string is u; - - - ux, where (0 denotes the single initial state.

Functions computed by such systems are called sequential and have the fundamental property
to preserve prefixes. The preservation of prefixes musically refers to the maintenance of similarities,
necessary for outlining the dynamics of the musical flow, thus rendering sequential transducers a
considerable tool to classify musical strings.
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Example 1.1. Consider the chromatic alphabet X, = {c,cf, d,d4,e, f, ft,5, g, a,at,b} and the se-
quential transducer

, x/e y/a x,yeX
My : @ @ @ e:em;gty string

where a = 1,0, —1 whenever y is located in X, upwards, at the same level or downwards of
x respectively. The function f; computed by M; sends every musical string to its outline. For
instance, the musical string

w=bctebcef gl fieghchb

resulting from the following melodic line

e

TIL

e
TR
[\

|
[
|

Figure 1: Opening melodic line of Solon Michaelides’ Sappho’s Lyre.

generates the path

@ c/e /\ch/l /;\ e/1 /\ b/-1 /\cﬁ/l /\gﬁ/ IQ
l ) &

SR/ 2N e/ N 88/ o a/-1 N b/
(=) oy =)=

and so

A(@) =11 (=1)1(=1) (1) (=1) 1 (=1) (=1),

Figure 2: Outline f1(w).

The equivalence relation induced by f; classifies two musical strings to the same class if and only
if they have the same outline.

The fundamental counterpoint transformations T; (transposition), I; (inversion) are sequential
but the retrograde function
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fails to be sequential, because it does not preserve prefixes. On the other hand, the function
counting the numbers of 0’s, 1’s, ... 11’s occuring on a string of pitch classes, as well as the function
counting the ascending, horizontal, descending moves on a musical string are not sequential
because their destination sets are not free monoids. The same holds for the move index function f
that informs whether the number of ascending moves in a given musical string is greater than
the number of descending moves and vice versa. In order to capture these exceptions as well, we
extend the sequential transducer model by setting the output to be a cancellative monoid.

Another advantage of this extension is that the minimal sequential transducer M describing
a given prefix preserving function f : ¥* — M (M cancellative monoid) can be effectively
constructed by using the residuals of f as in the classical case, [10], [20]. Musical transformations
are classified according to the complexity of minimal sequential transducers computing them. If
M and M are isomorphic, then f and f " are syntactically equivalent, i.e. they represent the same
mechanism regardless of the nature of the objects they act upon.

The present paper is divided into four sections. In section 2 we review some basic properties of
the structure of cancellative monoids. In section 3 we propose the model of sequential transducer
with output a cancellative monoid and construct the minimal such transducer associated with a
prefix preserving function. Most of musical viewpoints can be represented by extended sequential
transducers. Especially, musical morphisms have simple minimal machines and so they are located
at the first level of any hierarchy of musical functions. The framework of the extended sequential
transducers is highly appropriate to study musical contour functions (section 4).

A musical contour is a triple (X, M, ¢) consisting of a set X of musical elements, a cancellative
monoid M of transformations or numbers and a function ¢ : ¥ x ¥ — M assigning an element
c(s1,52) of M to any pair (s1,s,) € £2. The essence of music contour is an unfolding act of
transition between one musical element and the next. This act of transition reflects the true
substance of music, an art defined by movement in time, on the stave and the connection between
theoretical /analytical significations. [2] studied contours of the form X x X — R counting
quantitative features of musical strings. We show that any musical contour function with values in
a cancellative monoid is sequential and we construct its minimal sequential transducer. Hierarchies
of musical contours with respect to transducer simulation, as well as the corresponding musical
string hierarchies, are provided.

II. CANCELLATIVE MONOIDS

In order to increase the recognition power of ordinary sequential transducers, we use the structure
of cancellative monoid. A monoid is a set M equipped with a binary operation

O:MxXM-—->M (m1,m2)»—>m1®m2

which is associative and admits a neutral element e € M. Given operation ©® : M x M — M, its
opposite ©°PP : M x M — M is defined by my @°PP my := my ©® mq, for all my,my € M. If (M, ®,e)
is a monoid, then (M, ®°F?,e) is again a monoid, called the opposite monoid of (M, ®, e) and is
denoted by (M, ®,e)°PP.

For a given alphabet X, the set 2* of all finite strings (finite sequences of letters of 2) with the
concatenation operation and neutral element the empty string € is a monoid, the free monoid over
the alphabet . A monoid (M, ®, e) is a group if the following additional condition is fulfilled: for
every m € M there exists m’ € M so that m © m’ = e = m’ ©® m. The element m’ is unique with
this property and is called the symmetric of m.
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The set Z1, = {0,1,2,...,10,11} with the clock addition

x@y = x+yif x+y <12
= x+y—-12if x+y>12

constitutes a group, the group of modulo12 integers. Given monoids (M, ®,¢) and (M’,@/,¢'), a
function ¢ : M — M’ verifying the laws

p(my ©my) = p(my) & ¢p(my) ¢(e) =€, forallmy,mye M

is called a morphism of monoids. A morphism ¢ is an epimorphism (isomorphism) whenever ¢ is a
surjective (bijective) function.
A monoid (M, ®, e) is left cancellative if it satisfies the condition

m@®mp =mO®my implies m; = my, for all my, my,m € M.

For a left cancellative monoid (M, ®,e) and «, B € M a left residual of by a is an element y € M
such that a ©® v = B. If 4/ € M also satisfies the equation « ©® ¢/ = B, thena ® v = a ©® ' and so
by left cancellation we obtain v = /. This unique element (if exists) is denoted a~ !B and is called
the left residual of B by «. In the additive case we adopt the left difference notation p — a. The next
properties are immediate:

ala=e, eilﬁ =B, (a1 ® rxz)flﬁ = a;l(acflﬁ), for all &, aq, a2, B € M.

Right cancellative monoids are defined in a dual way. A monoid is said to be cancellative whenever
it is both left and right cancellative.

Clearly, groups and free monoids are cancellative monoids. The set IN of all k-tuples of natural
numbers with the pointwise addition constitutes a cancellative monoid.

Every function from a free monoid to a cancellative monoid is said to be a viewpoint. A
viewpoint f : ¥ — M is prefix preserving whenever for all s, € 2* it holds

f(st) = f(s) ®asy, forsomeasy € M and f(e) =e.
The residual

sTlf: 2" — M isgivenby (s Lf)(t) = f(s) 'f(st), forallte X*.

III. SEQUENTIAL TRANSDUCERS

We propose a sequential transducer model capable to represent musical functions that ordinary
sequential transducers are unable to recognize. The output of that machine is assumed to be a
cancellative monoid.

Formally, a sequential transducer is a system

M = (Z/ (M/ ®1 e)r Qr i’ K)
where

* X is the input alphabet

* (M, ®,e) is the output cancellative monoid
¢ () is the state set

e i € Q is the initial state and
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¢ K is a finite set of transitions of the form

o/m ,
0 0 7,9 €Q oceX, meM

with the property: for every state g € Q and every input letter o € %, there exists a unique

pair (m,q") € M x Q so that
o/m
(D) <«

g% g, qg€Q

The trivial transitions

belong to K.
The function fyq : £* — M determined by M is obtained as follows: every input string
oy - - - 0 € X* labels a unique path

O — - — ")

and we put fa(oq---0%) =mp © -+ © my.
A function f : 2* — M is said to be sequential whenever f = f for some sequential transducer
M. There is a nice criterion to infer sequentiality.

Theorem IIL1. Let (M, ®,e) be a cancellative monoid. A prefix preserving function f : ¥* — M is
sequential, if and only if it has finitely many residuals.

The proof follows the classical one, [10], [20]. In this case, the minimal sequential transducer
M computing f can be effectively constructed: it has Qf = {s71f| s € 2*} as state set, e 1 f = f
as initial state and its transitions are of the form

o/ f(s)7"f(s0)

Transformations with simple minimal sequential transducers are monoid morphisms.
Clearly, every monoid morphism h : ¥* — M is prefix preserving and all its left residuals
coincide with & itself: s~1h = h for all s € £*. Indeed, for all t € ©* we have

(s7 ) (t) = h(s) 'h(st) = h(s) "1 (h(s) ® h(t)) = h(t).

Thus, the minimal sequential transducer of / has a single state and its graph is

M, : @(r/h(a), oe .

The transposition and inversion morphisms Ty, I; : Z7, — Zj, given by Ti(x) := x @ t,
Ii(x) := —x @ t are represented by the first two graphs in Figure 3.
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Figure 3: The minimal sequential transducers of T, I, R.

The retrograde function
R:ZTZ —)ZTZ, R(xk~~~x1) = X1 X

satisfies the relation R(st) = R(t)R(s), for all s,t € Z7,. Denoting by ® the opposite of the
concatenation operation, 1 ® up = upy, the previous relation is written as R(st) = R(s) ©® R(t),
which means that R is a morphism from the monoid Zj, to the cancellative monoid (Z],)°F".

Hence, its minimal sequential transducer is the third graph in Figure 3. Indeed, the output of
the string x1xp - - - x is X1 O © - - - © X = Xg - - - XpX7 as asserted.

According to [8], a multiple viewpoint is a function assigning to each melody, a tuple of musical
features

foiXf =2 x - X XL

One of the most familiar multiple viewpoints is the function h : Z}, — N2, which to every
musical string w € Z3, assigns the vector (|w|o, |wl1,...,|w|11) of numbers of 0's, 1’s, ..., 11's
occurring in w. This function is a musical morphism and its minimal sequential transducer is

depicted in Figure 4.
@O k/(0,...,0,1,0,...,0) k € Z1
/]\

k" place

Figure 4: The minimal machine of h.

Another remarkable musical morphism is change in durations: we keep the same pitches and
change the durations according to a function ¢ from a specific duration alphabet X into itself, thus
imposing a new rhythm.

My, @ (x,d)/(x,0(d)), x€Xc,deXy

Figure 5: Change in durations.

The action of M), according to the change of durations
3/4 — 2/4, 1/4 —1/8, 2/4 — 3/4

is depicted in the following example.
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Figure 6: A change of durations in Costas Nikitas” Duo for Violin and Piano

Generally, musical morphisms are located at the first level of any hierarchy of musical functions.

IV. MusicaL CONTOURS

In this section we show that any contour function with values in a cancellative monoid is sequential
and we construct its minimal sequential transducer. Hierarchies with respect to transducer
simulation concerning fundamental musical contour functions are provided.

Let X be a set of musical elements and (M, ®, ¢) be a cancellative monoid. Consider the contour
c: X X X — M and its associated function f; : ©* — M defined by

o fe(owop---0y) = c(01,02) ©c(02,03) © - - ©c(0k—1,0%), 0; €L, k > 2
e fe(o) =e= fc(e), for all ¢ € X (e the empty word).

Often, by abusing notation, we say that f. itself is a contour.
The function f. is prefix preserving since for all s, € 2*, it holds

fo(st) = fo(s) @ fe(last(s)t) and so s~ 'f. = last(s) " f,,

where last(s) designates the rightmost letter of s. The set of all residuals of f, is finite, o~ f.(c € ),
e~ !f. = f. and so f, is sequential.

Its minimal sequential transducer has states g, (0 € ), g = i (initial state), where for notation
simplicity we have put g, instead of ¢! f.. The transitions are of the form

@ o/e @ T/ fe(o7) @ cres

Figure 7: Sequential transducer of a contour.

Let X, be the chromatic alphabet and consider the classical contour functions
fi:Xex Xe —{1,0,-1}*  fo: Xex Xe — {{,5,0,—s,—(}*
fz:Xex Xe—{11,...,1,0,—1,...,—-11}"
given by
* fi(x,y) =1,0,—1if y is located in X, upwards, at the same level, downwards of x,

* fo(x,y) =s,—s (resp. £, —{) if y is located in X, one step (resp. more than one step) upwards,
downwards of x,

e fa(x,y) =k, —k if y is located in X, k semitones upwards, downwards of x.
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By applying f, and f3 to the musical example of section I, we obtain

Figure 8: Outline fp(w).

Figure 9: Outline f3(w).

The above outlines simulate to t-norm / f-conorm-union and intersection of fuzzy (musical)
sets, [3], [11].

The function F : X} — IN3, F(w) = (|f1(w)]1, |f1(w)]o, | f1(w)|_1) gives information about the
frequence of the ascending, horizontal, descending moves in a musical string. On the other hand
the move index function fy : X} — Z, fo(w) = |f1(w)|1 — |f1(w)|_1 tells us whether the number
of ascending moves is greater than the number of descending moves and vice versa, providing
useful musical statistics for the analyst.

The minimal sequential transducer of f; was displayed in section 1. The machines M;, M3 of
the contours f5, f3 are obtained from M by takinga = ¢,5,0, —s, —¢anda = 11,...,1,0,-1,...,—11
respectively. Also, the machine M is obtained from M; by taking a = (1,0,0), (0,1,0), (0,0,1),
according to x < y, x = y or x > y respectively. The above transducers are connected by
simulation.

A morphism from M = (£,(M,®,¢),Q,i,K) into M' = (X, (M, &',¢),Q',i,K') is a pair
(®, ) consisting of a state function ® : Q — Q' and a monoid morphism ¢ : M — M/, so that

e (i) = i’ (preservation of initial states),

o/m
e (o))
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is a transition in M, then

()

The functions computed by M and M’ are strongly connected as next statement confirms.

is a transition in M’.

Proposition IV.1. Keeping the previous notation, we have

fmr = @0 fm
where o stands for the composition function performed from right to left.

Proof. By definition, if

le/mloaz/mz@ @Uk/mk@

is a path in M, then

o1/ / /
\J &%) N,

is a path in M'. Thus

fm(owey o) = @(m1) © @(mz) © -+ © @(my)
= ¢(m ®m2®~--®mk)
= ¢(fmleroz2---0p)) = (9o fam) (o102 - - - %)
hence the announced equality ¢ = @ o faq. O
A morphism (P, ¢) is said to be a simulation notation M > M’, whenever both the functions ®
and ¢ are surjective. According to the above argument, only the states ®(Q) and the elements of

¢(M) participate to the definition of f,. Therefore, from machine point of view, only simulations
are worthy of consideration.

Proposition IV.2. The former contours are organized in a hierarchy

f3
|

f
(h): |
f
/7 N\
fo

Figure 10: Contour hierarchy.

F


http://www.musmat.org

Journal MusMat e June 2019 e Vol. 11, No. 1

The notation f/ f' means My simulates M.

Proof. First observe that all the mashines in question share a common stateset and the state
functions in the simulations above are the identity functions. Furthermore, M3 > My > M via
the epimorphisms

0, ifx=0
+1, ifx==+s
:{-11,...,-1,0,1,...,11}* = {—¢,—s,0,s,¢}%, x) = !
¢ b o Foew=4T, T
l, ifx>1

and

¥ i{==5,0,50 = {101}, (=€) =¢p(=s) = =1, p(£) =¢(s) =1, $(0) = 0.

Moreover, M7 > M via the Parikh function w — (|w|_1, |w|o, |w|1) whereas M7 > Mg via the
epimorphism oy - - - 0} — 07 + - - - 4 0.

To complete the proof we have to show that (/) is actually an ordered set. Indeed, no monoid
epimorphism ¢ from the additive group Z of integers to the free monoid {—1,0,1}* exists, since

¢(Z) = ¢({n.(=1),n1 / n e N}) = {o(=1)", ¢(1)" / n € N} ¢ {-1,0,1}".
Hence, M, />Mj. Likewise, for every monoid morphism ¢ : N3 — {—1,0,1}* we obtain
$(N%) = {¢(1,0,0)"¢(0,1,0)2¢(0,0,1)" / n1,n2,n3 € N} ¢ {-~1,0,1}*

and so Mg M.

The inequalities M1 My M3 come from the fact that any epimorphism of free monoids
¢:{x1,...,xm}* = {y1,...,yn}* does not increase rank, m > n. Indeed, by surjectivity, the strings
$(x1),...,¢(xm) generate the free monoid {yy,...,y»}* and so each letter y; is a concatenation of
these strings. It turns out that y; = ¢(x;,),...,yn = ¢(x;,), with x; , ..., x; pairwise distinct, i.e.
m > n. O

Now, let us remind some auxiliary matter. Any function f : A — B defines an equivalence wy
on the set A by setting

1 = mp(wy) < f(a1) = f(az).

Given equivalences w, w’ on a set A we say that w is thinner than w’, w \ w’, whenever
a1 = ay(w) implies a; = ap(w').

This means that any class of @’ is a union of classes of w.
Consider the commutative triangle

A—F .

C

If f is a surjection, then wy \ wg. Putting together propositions IV.1, IV.2 and the previous discussion
we get the following classification of equivalences on the set X

10
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w3

wo
|
w1
7N
wo wr

where w;, wr are the Kernel equivalences of the functions f;, F.

V. CONCLUSION

Fundamental musical functions are encoded in sequential transducers. The encoding is realized
by assigning to any musical function its minimal sequential transducer. A machine simulation
based hierarchy of musical contours and the corresponding classifications of musical languages
are provided. Our future intension will be to recognize function / transducer situations in Lewin’s
Generalized Interval Systems Theory, [12], as well as in self similarity theory [18].
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