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Abstract: Departing from a specific passage of a text by Douglas Hofstadter which addresses recur-
sive algorithmic application, this paper reformulates its basic structure, by using formal tools under a
transformational-musical perspective. The last section of the study proposes some discussion about possible
expansions and generalization from the obtained results.
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I. Introduction

In the dialogue that opens chapter VI (entitled "Canon by Intervallic Augmentation") of Douglas
Hofstadter’s well-acclaimed, Pulitzer-prized Gödel, Escher, and Bach ([1], pp. 153–157), the
character Tortoise tries to convince his friend Achilles that two different songs played in

his phonograph can be "coded inside the same record": the first "based on the famous old
tune B-A-C-H", and a "totally different melody (...) C-A-G-E". This is the kern of Tortoise’s
argumentation:

Tortoise: (...) What do you get if you list the successive intervals in the melody B-A-C-
H?
Achilles: Let me see. First it goes down one semitone, from B to A (where B is taken
the German way); then it rises three semitones to C; and finally it falls one semitone,
to H. That yields the pattern: −1,+3,−1.
Tortoise: Precisely. What about C-A-G-E, now?
Achilles: Well, in this case, it begins by falling three semitones, then rises ten semitones
(nearly an octave), and finally falls three more semitones. That means the pattern is:
−3,+10,−3.
(...)
Tortoise: They have exactly the same ”skeleton”, in a certain sense. You can make
C-A-G-E out of B-A-C-H by multiplying all the intervals by 31⁄3, and taking the nearest
whole number.
(...)
Tortoise: The melody consisted of enormously wide intervals, and went B-C-A-H.
(...) It can be gotten from the CAGE pattern by yet another multiplication by 31⁄3, and
rounding to whole numbers. (...)

*I am very grateful to Dr. Douglas Hofstadter for reading this paper, for his kind words about it, and for give me his
personal permission for using an excerpt of his book.
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Hofstadter’s algorithm, described by Tortoise, could be succinctly expressed as follows:

1. Translate the sequence ”BACH” into pitches (adopting the most compact disposition), using
German musical notation. Let us name as w the pitch sequence. Thus,
w = <B[4,A4,C5,B\4>

1 ;

2. Extract the melodic intervals from w, adopting as unity the semitone. Use the minus signal
to indicate descending intervals, and the plus signal to ascending intervals. Let INT be the
function used to determine intervals between sequential pitches. Let variable x represent the
sequence of intervals. Thus,
x = INT(w) = < −1,+3,−1 > ;

3. Multiply any element of x by 31⁄3, and approximate the result in case of fractioned number.
Name y this product. Thus,
y = x × 31⁄3 = < −1,+3,−1 > × 31⁄3 = < −3.33...,+9.99...,−3.33... >≈< −3,+10,−3 >;

4. Apply step 3 to y, and let z represent the resulted sequence. Thus,
z = y × 31⁄3 = < −3,+10,−3 > × 31⁄3 = < −9.99...,+33.33...,−9.99... >≈< −10,+33,−10 >;

Figure 1 presents the pitch structure of referential ”melody” BACH and of the two recursive
transformations.

+33

-10

-10

B C HA

B            A            C            H

C           A            G            E

-1 -1+3

-3
-3+10

Figure 1: Transformation of ”melodies”, according to Hofstadter’s algorithm: BACH into CAGE, and CAGE into
BCAH.

1Angled brackets indicate that their content is ordered.
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I was deeply impressed by this BACH/CAGE dialogue since the first time I read it (as well as
the whole book, of course), but only recently, involved with a research based on Transformational
and Group theories,2 I started to conjecture if I could reformulate Hofstadter’s clever idea using
pitch classes instead of intervals, and if it would be possible to formalize more strictly the
transformations.
This brief article was born as an attempt in this direction. The next section defines sets, functions,
and operations needed to the transformations, which are implemented in section III, reaching
the central aim of the article. An additional section explores the results obtained, attempting to
propose some expansion and generalization.

II. Definitions

(1) Let X be a set formed by German symbolic representation for musical notes (upper-case letters
or group of upper-case/lower-case letters).3

X = {C, Cis, D, Es, E, F, Fis, G, As, A, B, H}

(2) Let Y be a set formed by the twelve pitch classes, or else, Y is isomorphic to Z12.

Y = {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

(3) Let f be a bijective function that maps same-order members of X onto Y | f: X→ Y.

(4) Let f -1 be the function inverse of f, that maps same-order members of Y onto X | f-1: Y→ X.

Figure 2 presents sets X and Y, exemplifying the actions of functions f and f-1.
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Figure 2: Sets X and Y and two examples of application of functions f and f -1.

(5) Let g be the polynomial quadratic function g(x) = x2 + 3 | g: Z→ Z.

(6) The operation retrogradation, labelled as R, flips leftwards the content of a given ordered set S.
Ex.: Let set S = <i, j, k, ..., m, n>, then R(S) = <n, m, ..., k, j, i>.

2For some of my references, see, for example, [2], [3], [4], [5], [6], and [7].
3Suffixes ”is” and ”s” stand for, respectively, the accidents ”sharp” and ”flat”.
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(7) The operation rotation, labelled as ROTt, permutes t times (t is an integer greater than zero)
the content of a given ordered set S, i.e., it sends at each application the first member of S to the
last position of S, keeping unaltered the order of the remaining members.
Ex.: Let set S = <i, j, k, ..., m, n>, then ROT2(S) = ROT(ROT(S)) = ROT(<j, k, ..., m, n, i>) =
= <k,..., m, n, i, j>.

(8) The operation extraction, labelled as EXTt:u, extracts from a given ordered set S a subset
formed by contiguous members, delimited by the tthand the uth members of S.
Ex.: Let set S = <i, j, k, ..., m, n>, then EXT2:3(S) = T = <j, k>.

(9) The operation merging, labelled as MRG(S, T), concatenates two ordered sets S and T, keeping
unaltered their internal order, forming an ordered superset ST = <S, T>.
Ex.: Let sets S = <i, j, k, ..., m, n> and T = <o, p, q>, then MRG(S, T) = ST = <i, j, k, ..., m, n, o,
p, q>.

(10) The operation modulo12, labelled as MOD12, maps members of set Z onto members set Y |
MOD12: Z→ Z12.
Ex.: Let set S = {2, 25, 13, 72, 0, 375}, then MOD12(S) = {2, 1, 1, 0, 0, 3}.

III. Transforming BACH into CAGE

Given the sets, functions, and operations previously defined, this section describes a sequence of
nine transformations to be recursively applied. The initial input is a referential set (a0), represent-
ing ”BACH”, whose output becomes the input of another transformation, with the process being
then replicated until the target-set (a9), namely the ”CAGE” string, is reached.

• Let a0 be an subset of set X, in the following specific order:
a0 = <B, A, C, H>

• First transformation: a1 = f(a0) = {10, 9, 0, 11};
Figure 3 provides a graphical representation of this transformation. It is possible to consider
not only the individual mappings of the four members of a0, but also the higher-level action
of f on the whole set, in a kind of ”holistic” 4 transformation (indicated by the blue arrow).

4In reference to a frequent adjective in Hofstadter’s book.
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Figure 3: Representation of the transformation of a0 into a1.

• Second transformation (Figure 4): a2 = R(a1) = <11, 0, 9, 10>;

10 9 0 11 11 0 9 10

a2a1
a2 = R (a1)

Figure 4: Representation of the transformation of a1 into a2.

• Third transformation (Figure 5): a3 = ROT1(a2) = <0, 9, 10, 11>;

11 0 9 10

0 9 10 11 a3

a2

a3 = ROT1(a2)

Figure 5: Representation of the transformation of a2 into a3.

• Fourth transformation (Figure 6): a4 = EXT3:4(a3) = <10, 11>;
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Figure 6: Representation of the transformation of a3 into a4.

• Fifth transformation (Figure 7): a5 = g(a4) = <(102 + 3), (112 + 3)> = <103, 124>;

10 11

g(10) = 102 + 3 g(11) = 112 + 3 

103 124 a5

a4
a5 = g(a4)

Figure 7: Representation of the transformation of a4 into a5.

• Sixth transformation (Figure 8): a6 = MOD12(a5) = <MOD12(103),MOD12(124)> = <7, 4>;

103 124

MOD12(103) = 7 

7 4 a6

a5
a6 = MOD12(a5)MOD12(124) = 4 

Figure 8: Representation of the transformation of a5 into a6.

• Seventh transformation (Figure 9): a7 = EXT1:2(a3) = <0, 9>;

0 9 10 11

0 9a7

a3

a7 = EXT1:2(a3)

Figure 9: Representation of the transformation of a6 into a7.
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• Eighth transformation (Figure 10): a8 = MRG(a7, a6) = <0, 9, 7, 4>;
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7 4
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a8 = MRG(a7, a6)

a8

Figure 10: Representation of the transformation of a7 into a8.

• Ninth transformation (Figure 11): a9 = f-1(a8) = <f-1(0), f-1(9), f-1(7), f-1(4)> = <C, A, G, E>;
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Figure 11: Representation of the transformation of a8 into a9.

Finally, Figure 12 summarizes the whole process with the aid of a oriented transformational network.5

Under the same holistic perspective applied to the previous cases, I propose the creation of a
high-level operation (called B2C)6 that manages to map directly sequence BACH onto CAGE,
bypassing the intermediary functions and operations.

5Concept coined by David Lewin ([2]). For a comprehensive typology of these networks, see [3], pp. 101-121)
6The label stands for Bach-to-Cage.
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a0 = {B, A, C, H} a9 = {C, A, G, E} 

a9 = B2C(a0)
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EXT1:2(a3)

f -1(a8)

Figure 12: Network of the nine transformations, including high-level operation B2C, that maps a0 directly onto a9.

IV. Going a little further

After reaching the goal aimed by the article, namely, the formalization of the transformational
process of the motive/sequence BACH into CAGE, some speculation and questions can arise.
For example, what about the individual outputs of operation B2C? That is, in reverse to what has
been done so far, could we implement a low-level function in such a manner that the elements of
BACH could be sent to the corresponding members of CAGE? Or yet, it would be possible with
this method, after reaching CAGE, turn back to BACH through recursive application of the same
transformation (just as Hofstadter managed in his ”prove”)? If affirmative, could we generalize
this function and use it to transform ”melodies” of any combination of notes in any possible
extension?
Aiming to investigate these possibilities, I propose initially, for simplicity, to work with a subset of
X (which ultimately represents the chromatic scale), and to adopt Guido d’Arezzo’s hexachord
(Ut-Re-Mi-Fa-Sol-La, or C-D-E-F-G-A), extended by the ”molle” and ”dur” versions of Si (B and H,
in German notation).7 Let us label this new set X’ (Figure 13).
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H
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Figure 13: Subset X’.

Now, let b2c be the low-level function that maps members of X’ onto members of itself | b2c:
X’→ X’

7Since this task deals with permutation, if maintained the original cardinality of 12 elements in the set, the number of
possible arrangements of the letters would equal 479,001,600.
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From the general action of operation B2C it is possible to deduce the individual ”behavior” of
BACH’s notes (B→C, A→A, C→G, and H→E), but what about the remaining four letters that
form subset X’ (D, E, F, and G)? Strictly speaking, there are 48 (65,536) possible solutions for this
problem, but with the aid of logic, and by keeping in mind the idea of recursion (i.e., CAGE
returning to BACH),8 this number can be dramatically reduced to 2 alternatives.

Table 1 proposes an initial approach for the question. As it can be observed, is not possible
to go back directly from CAGE to BACH, since ”C” is sent to ”G”, which will demand at least a
second application of operation b2c.

Table 1: Outputs obtained from two recursive applications of function b2c to members of subset X’.

w x = b2c(w) y = b2c(x)
B C G
A A A
C G ?
H E ?
G ? ?
E ? ?
D ? ?
F ? ?

Assuming a minimal possible number of iterations for going from BACH to CAGE and back
to BACH, it is easy to complete the output list: ”G” must sent to ”B” (which in turn goes to ”C”),
and ”E” to ”D” (or ”F”), that goes to ”H” (and this returns to ”E”). Selecting ”D” as output of ”E”,
”F” must necessarily map to itself, like ”A”.9 Table 2 depicts the definitive configuration of the
cyclic transformations of the X’ members.

Table 2: Outputs obtained from three recursive applications of function b2c to members of subset X’.

w x = b2c(w) y = b2c(x) z = b2c(y)
B C G B
A A A A
C G B C
H E D H
G B C G
E D H E
D H E D
F F F F

I will name PBACH this special permutation in X’. It can be written in cyclic notation, as
follows:10

(BCG)A(HED)F

8What must not necessarily be done in an immediate transformation.
9Or, alternatively, E→F and D→D. I chose arbitrarily the first option.

10It would also be possible to consider here the formation of a subgroup of the symmetrical group S8, defined by set X’
and binary composition b2c, but do not intend to pursue this issue in the present article.

69

http://www.musmat.org


Journal MusMat • December 2019 • Vol. III, No. 2

V. Concluding remarks

This paper aimed primarily, and unpretentiously to use Hofstadter’s ”prove” (certainly provocative,
but humorous and extremely imaginative in his discussion about recursive algorithms) as a pretext
to examine more deeply some of its effects in musical contexts. The system PBACH, derived from
the formalization of the transformational process, opens a promising connection between the
notion of recursive transformation and musical variation, one of my current research interests.

Figure 14 presents a musical example, a pseudo-Haydnian theme, which is gradually ”distorted”
by recursive b2c-transformations of its notes (observe, however, that a third application of b2c
leads the melody to its original state).11 In spite of being a very simple (almost rudimentary, I
would say) case of (”cyclic”) variation,12 the very essence of the process, namely, the application
of recursive transformations, formalized as algebraic operations or functions, is potentially a
powerful theoretical construct to be used both for analysis and composition, as it is being currently
pursued in the course of my research.

b2c

b2c

b2c

Figure 14: Cyclic variations of a melody by recursive application of function b2c.
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