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Abstract: Musicians recognize two important functions over the sixteen points in time, or beat classes,
distributed evenly over a common-time measure: metric weight and onset frequency. Existing scholarship
acknowledges that these functions are similar but not identical, and researchers tend toward one or the
other as a model for metric entrainment. However, if the discrete metric-weight function is converted
into a continuous curve, then the two functions strongly correlate: the ordering of each beat class by its
backwards discrete derivative on this curve perfectly matches the ordering of each beat class by its onset
frequency in a classical corpus.
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I. Two Functions Over Moments in Common Time

The bar graphs of Figures 1 and 2, representing two functions, offer two perspectives of
a musical measure divided into sixteen equal unit spans of time. The aim of this essay
is to elucidate, in both mathematically elegant and musically intuitive ways, not only

the structures of each function but also their mutual correlation. Before discussing the graphs
individually, a few words are needed about how this information is presented generally. The
moments beginning each unit span will be referred to as “beat classes” (bcs), because points in
time in previous or subsequent measures are deemed as equivalent to those in this measure. Each
function maps each beat class to what I will generally call a “level.”1 The measure that these two
graphs describes would be typically indicated in musical notation as lasting the duration of a
whole note, with a time signature of 4

4 , common time, or cut time, although other time signatures
such as 2

4 readily accommodate a sixteen-fold division. Although it is customary in musical
terminology to assign the first element of a series of beats in a measure (or notes in a scale) to
the number 1, the horizontal values for these graphs instead use zero-based numbering. This
follows both many mathematical conventions in general and music theory’s notation of beat class
in particular, whereby “beat” in “beat class” describes not only moments of tactus onset—the more
standard use of the word “beat”—but also the beginning of any unit duration that evenly divides
a longer span as a modular (i.e. quotient) space, such as a measure.2 I will mix both meanings
of “beat” in what follows. In both graphs, my inversion—higher as lesser—of the more typical
orientation of a Cartesian vertical axis—higher as greater—is deliberate and will be explained
later.
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Figure 1: Metric level of the 16 beat classes (f1).

Figure 2: Number of onsets (in italics) in common-time string-quartet movements by Joseph Haydn assessable by
computer, and their ranking into 16 frequency levels (f2).
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Figure 1 displays a standard interpretation of the relative weights or strengths of metric accent
in such a measure.3 In what follows, the more neutral term “level” encapsulates more subjective
expressions like “weight” or “strength” of metric accent. The downbeat (bc 0) is on the highest
level, because it carries the most weight of all of the beat classes in this or any other measure. If
the lowest level is numbered 0, then this downbeat should be numbered as level 4, as there are five
different degrees of metrical accent for this number of beat classes. The third beat (bc 8)—which
occurs halfway through the measure—carries the second strongest metrical accent (level 3), and
the second and fourth beats (bcs 4 and 12) tie for the third strongest metrical accent (level 2). The
four remaining even-numbered beat classes (bcs 2, 6, 10, 14)—the “di” moment in the Takadimi
[7] system of metric notation—tie for the fourth strongest metrical accent (level 1), and the eight
odd-numbered beat classes—the “ka” and “mi” in Takadimi—tie for the least strong metrical
accent (level 0). This mapping of beat-class number (x) to metric-accent level number (f1) can be
generalized for all “pure duple” meters (meters whose adjacent pulses relate by a factor of two)
as follows: for a measure of 2n units (n ∈ Z+), f1(x,n) = log2(gcd(2n, x)), where gcd stands for
“greatest common divisor.”4 For example, in a measure of sixteen units (n = 4), bc 4 has an accent
level of log2(gcd(24, 4)) = log2(gcd(16, 4)) = log2(4) = 2. Another way to define f1(x,n) is as the
number of contiguous rightmost zeros in a binary (radix-2) representation of x. For example, the
binary representation of 4 is 100, in which there are two contiguous rightmost zeros; therefore, bc
4 is on level 2.

For a common-time measure in Western classical music, Figure 2 displays a common ranking
of onset frequencies among the sixteen equidistant beat classes. In particular, this bar graph shows
in italics how many onsets occur in the sixteen beat-class positions for all of the string quartet
movements by Joseph Haydn in 4

4 assessable by computer [4]. These sixteen counts are then
ranked into levels. With such a large data set, such that the frequencies of onsets for two different
beat classes are highly unlikely to be the same, Figure 2 unsurprisingly has sixteen different levels,
numbered 0 to 15, unlike the five of Figure 1. Thus, when described as a function—I will call
it f2(x,n), parallel to f1’s definition—this mapping of beat class to level is bijective, whereas f1 is
surjective. However, despite the higher specificity, the ranking among these sixteen beat classes
tends to be the same or quite similar for other Western common-practice corpora of sufficient size.
One such instance appears in an article by David Huron and Ann Ommen [8] about syncopation
in American popular music: their tally of onsets among common-time monophonic songs in the
Essen Folksong Database well matches the rankings in Figure 2.5

The distribution of Figure 2 can be related to an understanding of Western common-practice
styles. First, an onset chosen at random in a work related to a corpus from which f2 values are
computed is more likely to appear at a beat class with a higher f2 value, regardless of whether the
music is polyphonic (like Haydn’s quartet movements) or monophonic (like the folksongs of the
Essen Database). Second, as shown in Figure 3, each of the sixteen levels in Figure 2 corresponds
to a rhythm within a 4

4 measure, composed of onsets on the beat classes on that level or higher. For
example, the level 13 rhythm is half-quarter-quarter, because these three onsets correspond to beat

1See [1] for a relatively early use of this term, although the concept is an older one.
2Here, “tactus” refers to a primary pulse near the range of 85 to 120 beats per minute. Justin London [14, pp.30-33]

provides a summary of the concept.
3Lerdahl and Jackendoff [13, p.19] provide a well-known example.
4Cohn [2, p. 194] coins the term “pure duple.”
5The published bar graph in [8, p. 215] does not contain specific counts. However, in June 2015 Huron kindly shared

his data with me, which I will call f3(x,4) = [19221, 24, 2116, 412, 10226, 25, 5661, 430, 14280, 24, 2380, 348, 13458, 39, 5964,
634]. Of the 120 pairs of 16 beat classes that be ordered, only two of these 120 between f2(x,4) (my Haydn count) and f3(x,4)
(Huron and Ommen’s Essen count) are not the same: f2(3,4) < f2(11,4) but f3(3,4) > f3(11,4), and f2(1,4) < f2(9,4) but f3(1,4)
= f3(9,4).
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Figure 3: Sixteen common rhythms in 4
4 , corresponding to the 16 levels and 16 beat classes from Figure 2.

classes mapped to levels 13, 14, and 15 in Figure 2. Each of these rhythms is relatively idiomatic
of, and rather common within, Western classical music. For example, in Johann Joseph Fux’s
1725 treatise Gradus ad Parnassum, when the student writes a quarter-quarter-half rhythm within a
common-time measure, the teacher gently recommends the half-quarter-quarter rhythm as a better
solution.6 These norms may be generalized by the time-honored preference for beginning longer
inter-onset intervals on metrically stronger moments, which pushes shorter durations toward the
end of metrical spans like measures, half-measures, and beats. To be sure, other rhythms besides
those of Figure 3 are also quite probable in Western common-practice music. However, I speculate
that, of two rhythms spanning the same kind of measure with the same number of onsets, the one
that is more common in Western common-practice music is more likely than not to be the one
whose sum of Figure-2 levels is higher.7

In the aforementioned article by Huron and Ommen, the authors note how two of their graphs,
which correspond to my Figures 1 and 2, “are similar though not identical” [8, p. 214] to each
other, acknowledging the imbalance between the frequency of onsets for the second and fourth
beats (bcs 4 and 12) that I also cited earlier. They nonetheless continue with the recognition of
“a notable correspondence between the hierarchy of event onsets [the counterpart of my Figure

6[5, p. 67].
7Temperley [17, p. 358] recognizes and addresses the shortcomings of this approach.
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2] and the conventional metrical hierarchy [the counterpart of my Figure 1].” However, “[t]he
causal relationship here is unknown” to the authors, although they speculate that “[i]t is possible
that the metrical hierarchy originates in the distribution of event onsets. . . or the distribution of
event onsets might simply reflect a pre-existing metrical hierarchy that influences the composition
of music.” The primary purpose of this article is to propose such a causal relationship between
Figures 1 and 2. My first step toward this proposal is to appreciate that both Figures 1 and 2 exhibit
comparable symmetries and formulaic generalizations.

II. Symmetries and Formulas for Each Function

When one looks at both bar graphs, Figure 1’s symmetry is probably discerned more immediately:
for example, all of its rankings invert around both bcs 0 and 8; that is, f1(x) = f1(0–x mod 16)
= f1(8–x mod 16). Put in colloquial terms, assuming that the beat-class assignment continues
cyclically into adjacent measures, Figure 1 exhibits a vertical mirror symmetry around both an
axis at bc 0 and an axis at bc 8. In other words, if two beat classes sum to 0 or 8 mod 16, then they
will have the same level in Figure 1. Moreover, Figure 1 admits formulation: earlier, I proposed
two formulas for f1(x,n), one using a logarithm and the other using binary representation.

It is quite reasonable to perceive and understand Figure 2 as a distortion of Figure 1, especially
with the latter’s conspicuous symmetry. It is even more reasonable to do so when the data of
Figure 2 is displayed on a vertical axis whose units are onset counts and not ranking levels, as
Huron and Ommen do in their article. From this vantage point, my Figure 2 may be seen as a
distortion not only of Figure 1 but also of the scale of the onset distribution: for example, bcs 7
and 15 are adjacent in the ranking (levels 6 and 7) and differ by 112 onsets, while bcs 15 and 8 are
also adjacent in the ranking (levels 7 and 8) but differ by 4758 onsets.

However, this recalibration of the graph’s range helps to reveal Figure 2’s own internal
consistency that is at once independent from that of Figure 1, while also obliquely affiliated with it.
For example, f2(x) = 15 – f2(1–x mod 16). In colloquial terms, assuming that beat-class designations
continue into adjacent measures, Figure 2 exhibits a vertical mirror symmetry around both the
point equidistant from bcs 0 and 1 and the point equidistant from bcs 8 and 9. In other words, if
two beat classes sum to 1 mod 16, then they correspond, not with the same ranking as they do
in the Figure 1 mirror, but rather opposite rankings. For one example, bcs 0 and 1 sum to 1 mod
16, and bc 0 hosts the most frequent onsets (level 15), while bc 1 hosts the fewest (level 0). For
another example, bcs 12 and 5 sum to 1 mod 16, and bc 12 hosts the third-most frequent onsets
(level 13) while bc 5 hosts the third-fewest frequent onsets (level 2).

Furthermore, f2 may be written formulaically. At the heart of one such formula is a function
from applied mathematics that also employs binary representation, a form of representation I used
earlier for a formulation of f1(x). This function is the bit-reversal permutation (revn), which maps
a set of integers 0, 1, . . . , 2n–1 (n ∈ Z+) to itself by mapping each integer to the reversal of the bits
in its binary representation.8 For example, rev4(12) = 3, because the four-bit binary representation
of 12 is 1100, and the retrograde of 1100 is 0011, which is 3 in decimal form. Generalized for any
span divided into 2n equidistant beat classes, f2(x,n) = (2n–1) – revn(-x mod 2n). Table 1 provides
the computation of this equation for n = 4 in particular, matching the mapping of beat classes to
the rankings of Figure 2.

8The bit-reversal permutation has been applied to FFT (Fast Fourier Theorem) algorithms, as demonstrated in [3, p.
918].
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Table 1: Demonstration of f2(x,n) = (2n–1) – revn(-x mod 2n), for n = 4.

III. Relating the Two Functions to Each Other

The resemblances between the manners in which I have described the symmetries and formulations
of f1 and f2 hint at, but do not themselves furnish, a deep-seated connection between them. The
use of binary representation in defining both f1 and f2 intimates a utility in a component-wise
disassembly and reassembly of both metrical and rhythmic wholes, and the different positions
of the f1 and f2’s axes of symmetry suggests that metrical symmetries hinge on the beat classes
themselves, while rhythmic regularities operate in between these beat classes somehow. My
investigation into a causal relationship between Figures 1 and 2 continues by revisiting Huron
and Ommen’s article. At one point, they set two psychological theories of temporal regularity
head-to-head:

Some psychologists have proposed that the metrical hierarchy arises from integrally-
related mental oscillators that coordinate auditory attending. However, recent psycho-
logical research more strongly suggests that rhythmic perceptions arise from simple
exposure to rhythmic stimuli rather than via mental oscillators. This research suggests
that patterns of auditory attending arise through the mechanism of statistical learn-
ing. Listeners are sensitive to the frequency of occurrence of sound events, and these
distributions appear to become internalized as mental “schemas.” [8, p. 214].

On the one hand, a series of synchronized mental oscillators operating at different frequencies,
all multiples of the downbeat frequency, correlate with metrical weighting schemes such as that in
Figure 1. On the other hand, the various schematized rhythms in Figure 3 that follow from the
statistical distribution of Figure 2 entrain an acculturated listener to a metrical orientation and
flow. The words “rather than” in the quotation above suggest that these two models are mutually
incompatible. But could they be mutually reinforcing? Is it possible to replace “rather than” with
“in addition to” or perhaps even “derived from”? I believe the answer to both of these questions
could be “yes.”

The use of a mental oscillator as a model for entrainment to a periodicity expresses not only
the regularity of this periodicity and its persistence in the absence of constant support, but also
the continuous nature of metric experience, in contrast to the discrete and discontinuous design of
Figure 1 and f1’s requirement of integer input. Meter has been characterized as the fluctuation of
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a listener’s attention [6]. The greater the metrical weight, the more a listener is paying attention.
This correlation probably stems from evolutionary efficiency. Changes in music, such as shifts to a
new harmony, often occur on metrically accented moments. Therefore, it one wishes to discern as
much information about the music as possible with the least amount of attentional energy, it makes
sense to attend considerably more to downbeats or downbeat-like moments in particular and
considerably less to the moments in between. But one cannot change this energy non-continuously.
Thus, the model of an oscillator—such as a spinning circle, a swinging pendulum, a vibrating
spring, and so forth—captures this continuous change, and has been called upon by scholars to
model meter, particularly in the work of Edward Large.9

A common visualization of such an oscillating function is as a continuous periodic wave,
peaking at the moment of greatest metrical weight and bottoming out at the moments of least
metrical weight (although this verticality metaphor has been, and could be, inverted). These waves
can be binarily categorized in two ways. First, music scholars have constructed these waves either
more causally as visual aids or precisely as mathematical functions. Second, music scholars have
constructed these waves so that either its curvature—that is, its second derivative—at any point
has the same sign or not. For example, the musicologist and conductor Viktor Zuckerkandl drew
inverted cycloid-like waves to depict the periodicity of the downbeat in Chopin’s “Military” Polon-
aise op. 40 no. 1.10 Although Zuckerkandl’s argument is more philosophical than mathematical,
his downbeats as the sharp points of an inverted cycloid’s maxima suggests the notion that the
rate in which one is gaining attentional energy as a downbeat approaches is always increasing.
This acceleration and sharpness appears to emulate an idealized metric state, such as the crispness
of a conductor’s beat pattern, in which the hand moves more quickly as it both approaches and
leaves a beat.

This sharpness qualitatively differs from modeling downbeats as the plateaus of a sine wave
or an iterated normal distribution, where the rate in which one is gaining attentional energy as
a downbeat approaches slows down at some significantly earlier point, which provides a better
model for how listeners might “hedge their bets,” adjusting to small fluctuations in a periodic
stimulus. The use of von Mises distributions [11] allows for a continuum between the two types of
curves: a wave with a high κ (its measure of concentration) produces sharp peaks whereas a wave
with a low κ creates gently sloped plateaus.

Large and co-author Caroline Palmer [12] also innovated the combination and display of
component waves into a composite wave that represents multiple periodicities of a metrical
hierarchy. For example, their model of triple meter combines two periodic von Mises distributions
of equal amplitude but with one distribution’s period three times as long as the other. In
an analogous fashion, Figure 4 models the 4

4 -plus-eighths-and-sixteenths meter of Figure 1
by combining—in the manner of Fourier synthesis—five periodic parabolic functions of equal
amplitudes but with periods two times as long as the next shorter function. These five periodic
parabolic functions signify the five metric levels in a 4

4 measure subdivided into sixteen equal
parts. While other types of waves—such as sine or von Mises—could be used for the components
of this composite metric function, the periodic parabolic wave has a constant second derivative, or
acceleration of attentional gain. This captures a general intuition that, as a relatively strong beat is
approached, the rate in which one is gaining attentional energy is always increasing. This intuition
aligns with a conductor-musician synchronization study that concluded that “absolute acceleration
along the movement trajectory. . . was the main cue used by participants to synchronize with the
conductors’ gestures” [15, p. 470]. (Zuckerkandl’s cycloid would also provide this continuous
acceleration and yield the same results below, but a parabolic function is mathematically easier

9[9], [10], and [11] are three early examples.
10[18, p. 171].
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Figure 4: Demonstration of the synthesis of a composite metric wave composed of five periodic parabolic waves at
different frequencies, with values for the 16 beat classes provided in italics, rounded to the nearest thousandth.

to work with.) This rate then drops non-continuously to a lower value when the strong beat
is passed, and then begins to rise once again in its approach to the next. I will generalize this
composite function as µ(x,n) for all pure duple meters that are 2n units long (therefore, Figure
4’s composite wave is µ(x,4)) as follows, where bc represents the floor function that produces the
function’s periodicity:

µ(x, n) =
n

∑
i=0

(⌊
−x
2i

⌋
+

x
2i +

1
2

)2

This composite wave is attractive to me as a musician and a theorist for multiple reasons,
which I will attempt to convey through a listening and kinematic activity that I encourage the
reader to try. (It is because of this activity and the ideas that stem from it that the customary
orientation of the vertical axis has been consistently reversed in all of my graphs.) Audiate a pure
duple meter with five different metric levels such that Level 0’s periodicity is somewhere between
200 beats per minute (closer to a 4

4 measure) and 30 beats per minute (closer to eight measures
of 4

4 ). Now, in time with the music, move your arm up and down within a range of one or two
vertical feet to connect the cusps of µ(x, 4) while flexing your wrist so that your hand (which is
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perhaps holding a baton) moves along the curves of µ(x, 4). First, despite its limitation to a single
spatial dimension, this still feels to me a lot like conducting, a gestural embodiment of the many
levels within the meter. Second, the vertical position of your hand at beat classes 0, 4, 8, and 12
corresponds exactly to the metric weight graphed in Figure 1, although the same cannot be said
for the other beat classes.

However, this non-correspondence of the other twelve beat classes sets up a third correspon-
dence. In a 4

4 conducting pattern, the downbeat is preceded by the largest descending motion of
the hand. In fact, in standard conducting patterns, the downbeat’s significance is experienced
somatically by the conductor and indicated visually to the ensemble not by the relatively low
position of the hand, but rather by the relatively large downward change of position that precedes
this low position. It is a downbeat, not a lowbeat. The same can be said for conducting µ(x, 4): from
the immediately preceding beat class, the arm descends the most into beat class 0 than into any
other beat class. The values for the 16 beat classes provided in Figure 4 help to see this distinction:
the ordered difference between µ(0, 4)(1.25) and the immediately preceding µ(15, 4)(≈ 0.645) is
≈ 0.605, which is larger than the next-largest ordered difference of 0.543 between µ(8, 4)(1) and
the immediately preceding µ(7, 4)(≈ 0.457). Described using terms from calculus, beat class 0 has
the highest backwards difference, or backwards discrete derivative (∇), of all 16 values in µ(x, 4):
∇µ(0, 4) > ∇µ(x, 4) for all x ∈ Z16, x 6= 0, where ∇µ(0, 4) = µ(x, n)− µ(x− 1 mod16, n).11

Beat class 0’s superlative position regarding ∇µ(x, 4) correlates with its highest level in both
Figures 1 and 2. While this correlation only extends to the second level in Figure 1, each beat class’s
ranking by ∇µ(x, 4) perfectly corresponds to its ranking by onset count shown in Figure 2. Table
2 shows this exact correspondence. In mathematical terms, for all x,y ∈ Z16, ∇µ(x, 4) > ∇µ(y, 4)
if and only if f2(x,4) > f2(y,4). In practical and embodied terms, the distance one’s hand travels
downwards to a beat class when conducting ∇µ(x, 4) matches the degree of likelihood that an
onset (or more onsets, if polyphonic) will occur at that beat class in a common-practice work.

This exact correspondence strikes me as more than coincidental. An even division of time
focuses a listener’s attention more toward some moments equidistant in time and less toward
other moments in between. This change of attentional degree is necessarily continuous to some
degree. Due to this constant flux, those moments of greater attention can be distinguished not only
by the absolute high state of attentional level but also by the change of this level from a preceding
moment on a lower level to the current moment on a higher level. For relatively strong beats
like downbeats, both the state of the moment and the change of state into the moment highly
correlate and become interchangeable as indicators. Multiple periodicities, each with their own
continuous attentional functions, constitute a composite attentional function. In such music with
multiple periodicities, certain points in time that are equivalent in their state of composite metrical
attention will nonetheless be preceded by different degrees of change of state of composite metrical
attention, differentiating them. Owing to an overgeneralization inherent in the aforementioned
interchangeability of state and change, it follows that a moment preceded by a greater change of
state—such as the fourth beat in a 4

4 measure—could be experienced as more downbeat-like than
a moment of equivalent state preceded by a lesser change of state—such as the second beat in a 4

4
measure.

Earlier, I quoted Huron and Ommen’s proposal that “patterns of auditory attending arise
through the mechanism of statistical learning” of common rhythmic patterns, such as those in
Figure 3 for common time. Nothing I have presented here calls this into question. However, I
hope that what I have presented here is a reasonable hypothesis for why at least one meter and its
constituent periodicities give rise to certain rhythmic patterns—and not others—affiliated with
this meter in the first place.

11Reale [16] offers a recent application of calculus’s backwards discrete derivative to metric dissonance.
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Table 2: Demonstration of correspondence between f2(x,4) and ∇µ(x,4).

IV. Extensions

I leave it as an exercise to the reader to adapt and extend f1, f2, and my proposed manner of
relating them to other common-practice meters besides common time, such as what Cohn [2] calls
“pure triple” (such as 9

8 ) or “mixed meters” (such 3
4 , 6

8 , and 12
8 ), each with a potential variety of

subdivisions. My preliminary forays into doing so are producing encouraging results. However,
to the reader interested in this exercise, I offer a recommendation that I have already built into
the present study: use continuous functions like periodic parabolic or cycloid waves. In my
initial research into correlating Figures 1 and 2, I built µ from constituent sine waves, and the
correspondence between f2 and ∇µ was just as exact. However, neither sine waves nor von Mises
curves—regardless of the value of κ—yield nearly as close of a correspondence for mixed meters,
at least when the amplitudes for each constituent function are the same, as periodic parabolic or
cycloid waves, two continuous functions that are arguably more in line with conducting motions.
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