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Abstract: The current tsunami of deep learning has already conquered new areas, such as the generation
of creative content (images, music, text). The motivation is in using the capacity of modern deep learning
architectures and associated training and generation techniques to automatically learn styles from arbitrary
corpora and then to generate samples from the estimated distribution, with some degree of control over
the generation. In this article, we analyze the use of autoencoder architectures and how their ability for
compressing information turns out to be an interesting source for generation of music. Autoencoders are
good at representation learning, that is at extracting a compressed and abstract representation (a set of
latent variables) common to the set of training examples. By choosing various instances of this abstract
representation (i.e., by sampling the latent variables), we may efficiently generate various instances
within the style which has been learnt. Furthermore, we may use various approaches for controlling the
generation, such as interpolation, attribute vector arithmetics, recursion and objective optimization, as
will be illustrated by various examples. Before concluding the article, we will discuss some limitations of
autoencoders, introduce the concept of variational autoencoders and briefly compare their respective merits
and limitations for generating music.
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I. Introduction

One of the first documented case of algorithmic composition (i.e., using a formal process, including
steps (algorithm) and components, to compose music), long before computers, is the Musikalisches
Wurfelspiel (Dice Music), attributed to Mozart. A musical piece is generated by concatenating
randomly selected (by throwing dices) predefined music segments composed in a given style
(Austrian waltz in a given key).

The first musics generated by computer appeared in the late 1950s, shortly after the invention
of the first computers. The Illiac Suite is the first score composed by a computer [12] and was an
early example of algorithmic music composition, making use of stochastic models (Markov chains)
for generation, as well as rules to filter generated material according to desired properties. Note
that, as opposed to the previous case which consists in rearranging predefined material, abstract
models (transitions and constraints) are used to guide the generation.

One important limitation is that the specification of such abstract models, being rules, grammar,
or automata, etc., is difficult (reserved to experts) and error prone. With the advent of machine
learning techniques, it became natural to apply them to learn models from a corpus of existing
music. In addition, the method becomes, in principle, independent of a specific musical style (e.g.,
classical, jazz, blues, serial). More precisely, the style is actually defined extensively by (and learnt
from) the various examples of music curated as the training examples.
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The two main abstract models which can be induced by machine learning techniques are
Markov models and artificial neural networks1. Since the mid 2010s, deep learning – the 3rd wave
of artificial neural networks – has been producing striking successes and is now used routinely
for applications such as image recognition, voice recognition and translation. A growing area of
application of deep learning techniques is the generation of content, notably music but also images.
Various types of artificial neural network architectures (feedforward, recurrent, etc.) are being
used2. In this article, we will focus on a specific type of artificial neural network, autoencoders, and
how they turn out an interesting approach for generating music.

II. Related Work and Organization

A recent book about deep learning techniques for music generation is [2], with some shorter
introduction and survey in [1]. Some general surveys about of AI-based methods for algorithmic
music composition are [22] and [6], as well as books [4] and [21]. A complete book about deep
learning is [8]. There are various introductory books (and courses) about artificial neural networks,
e.g., a very good course named “Machine Learning”, created by Andrew Ng at Stanford, and
freely available on Coursera.

In this article, in Section III we will introduce the (actually very simple) concept of autoencoder,
the way to represent music and to train it on a corpus of Celtic melodies. Section IV will introduce
a straightforward way of using an autoencoder to generate new melodies, illustrated by various
examples. Section V will introduce and analyze various approaches for controlling the generation
of the melodies. Section VI will discuss some limitations and further developments, notably the
concept of variational autoencoder, and analyze its merits and limits concerning generation, before
concluding this article.

III. Autoencoder

i. Architecture

An autoencoder is a feedforward3 neural network with the following structural constraints:

• the size (number of nodes) of the output layer is equal to the size of the input layer;
• there is (exactly) one hidden layer; and
• the size of the hidden layer is smaller than the size of the input layer.

The output layer actually mirrors the input layer, creating its peculiar symmetric diabolo (or
sand-timer) shape aspect, as shown in Figure 1, with two components highlighted:

• the encoder component, composed of the input layer and the hidden layer (and their connex-
ions); and

• the decoder component, composed of the hidden layer and the output layer (and their
connexions).

1Some tentative comparison, pros and cons, of neural networks and Markov models for learning musical style and for
generation may be found in [2, Section 1.2.3].

2See a tentative classification and analysis, e.g., in [1].
3A feedforward neural network, also named multilayer Perceptron (MLP), is the most basic and common type of artificial

neural network. It is composed of an arbitrary sequence of layers composed of artificial neurons, where each successive
layer is analog to multiclass logistic regression. Computation proceeds by feedforwarding data from the input layer into the
successive layers, until reaching the output layer.
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Figure 1: Autoencoder architecture (with its encoder component in blue and its decoder component in purple)

ii. Training

An autoencoder is trained with each of the examples both as the input data and as the output
target, thus trying to minimize the difference between the reconstructed data and the original
input data. As the hidden layer has fewer nodes than the input layer, the encoder component must
compress information4, while the decoder component has to reconstruct, as accurately as possible,
the initial information. This forces the autoencoder to discover significant (discriminating) features
to encode useful information into the hidden layer nodes, considered as a vector of latent variables.

iii. Generation

Indeed the motivation for an autoencoder is neither in just learning the identity function and
nor in the direct compressing of data, as opposed to some experiments in using compression
for creating art, e.g., the compressed cars by the sculptor César in the 1960s and more recently
by the sculptor Ichwan Noor (see Figure 2). The latent vector of an autoencoder constitute a
compact representation (some kind of label [26]) of the common features of the learnt examples.
By instantiating this latent vector and decoding it (by feedforwarding it into the decoder), we can
generate a new musical content corresponding to the values of the latent variables and in the same
format as the training examples.

iv. Representation and Encoding

In order to use an autoencoder with music, we need to define a way to represent that music. As in
this article we focus on algorithmic music composition, we will consider a symbolic representation (of
notes and durations), as opposed to some audio representation (waveform signal or spectrum).
We choose a piano roll representation, for its simplicity. Piano roll (and its name) is inspired from
automated mechanical pianos with a continuous roll of paper with perforations (holes) punched

4Compared to traditional dimension reduction algorithms, such as principal component analysis (PCA), feature
extraction by an autoencoder is nonlinear, thus more general, but it does not ensure orthogonality of the dimensions, as we
will see in Section VI.iii.
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Figure 2: Compressed cars by César (left) and by Ichwan Noor (right)

Figure 3: Example of: (top) score; (middle) piano roll; (right) one-hot encoding – with a time step of a sixteenth note

into it. In practice, it is a two dimensional table with the x axis representing the successive time
steps and the y axis the pitch, as shown in Figure 3.

There is still an additional step from the representation to the artificial network input, this is the
encoding5 of a representation (of a musical content). It consists in the mapping of the representation
(composed of a set of variables, e.g., pitch or dynamics) into a set of inputs (also named input
nodes or input variables) for the neural network architecture. The most frequent type of encoding
is one-hot-encoding6, where a discrete or a categorical variable is encoded as a categorical variable,
through a vector with the number of all possible elements as its length. Then, to represent a given
element, the corresponding element of the one-hot vector7 is set to 1 and all other elements to 0.
For instance, the pitch of a note is represented as shown in the right part of Figure 38.

5Note that this stage of encoding is different and independent of the encoding that will be performed by the Encoder.
6The advantage of one-hot encoding over value encoding (direct encoding of a variable as a scalar) is its robustness against

numerical operations approximations (discrete versus analog), at the cost of a high cardinality and therefore a potentially
large number of nodes for the architecture.

7The name comes from digital circuits, one-hot referring to a group of bits among which the only legal (possible)
combinations of values are those with a single high (hot!) (1) bit, all the others being low (0).

8The Figure also illustrates that a piano roll could be straightforwardly encoded as a sequence of one-hot vectors to
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Figure 4: “The Green Mountain” (8 first measures)

Figure 5: “Willa Fjord” (8 first measures)

Note that a global time step has to be fixed and usually corresponds, as stated by Todd in [27],
to the greatest common factor of the durations of all the notes to be learned. In the case of the
corpus that we will consider, it is a sixteenth note. Also note that, there is no way to distinguish
between a long note and a repeated short note9. Therefore, we will use the solution proposed
in [10] to consider holding curent note (a hold) as a special kind of note (pitch). This solution is
simple, but its main limitation is that it only applies to the case of monophonic melodies10. We
will also consider silence (rest) as a special kind of note11. These two special cases will be added
to the set of possible note pitches for the one-hot vector.

v. Learning Celtic Melodies

In this article, we will use as corpus a set of Celtic melodies, selected from the folk music repository
“The Session” [14]. In practice, we selected 75 melodies, all in 4/4, in D Major key, and tagged
as “Reel” (a type of Celtic dance). Two examples, “The Green Mountain” and “Willa Fjord”, are
shown12 in Figures 4 and 5, respectively.

The shortest melody in the corpus is 8 measures long and the shortest note duration is a
sixteenth note. The lowest note pitch is G3 and the highest note pitch is B5. Thus, the number of
possible notes within the [G3, B5] interval is 29. The size of the final one-hot vector is thus 31 (after
adding the hold and rest cases). The size of the the input representation is therefore: 8 (measures)
× 16 (sixteenth notes per measure) × 31 (size of the one-hot vector) = 8 × 16 × 31 = 3,968.

vi. Architecture

Successive melody time slices are encoded into successive one-hot vectors which are concatenated
and directly mapped to the input nodes of the neural network autoencoder architecture. In Figure 6,
each blackened vector element, as well as each corresponding blackened input node element,
illustrate the specific encoding (one-hot vector index) of a specific note time slice, depending on its

construct the input representation of an architecture, as we will see in Figure 6.
9Actually, in the original mechanical paper piano roll, the distinction is made: two holes are different from a longer

single hole. The end of the hole is the encoding of the end of the note.
10Which is the case for Celtic melodies. Polyphonic music would need to be represented as different voices/tracks.
11For the reason discussed in [2, Section 4.11.7].
12Actually, only their 8 first measures, which is the actual length of the melodies that will be considered, as explained

just below.
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Figure 6: Autoencoder architecture for learning melodies

actual pitch (or a note hold in the case of a longer note). The dual process happens at the output.
Each grey output node element illustrates the chosen note (the one with the highest probability),
leading to a corresponding one-hot index, leading ultimately to a sequence of notes.

The input layer and the ouput layer of the autoencoder architecture have 3,968 nodes. The
hidden layer has an arbitrary number of nodes13, e.g., 1500 nodes. The output layer activation
function (as well as the hidden layer activation function) is sigmoid and the loss (reconstruc-
tion error) function is binary cross entropy14. The optimizer algorithm is ADAM and training
hyperparameters are: number of epochs = 100 and minibatch size = 20. We use the Keras frame-
work as front end, Theano platform as the back end and our own made representation library15.
Purposively, we do not use any additional optimization, as to keep it simple and generic.

Training the architecture proceeds by presenting an example of melody at the input layer and at
the output layer (as the target for the reconstruction)16. The training procedure will incrementally
adjust the connexion weights between neurons in order to minimize the reconstruction error.

IV. Generation

The model having being trained, it may be used for generation. As explained in Section III.iii and
shown in Figure 7, we instantiate the latent vector, usually denoted as z, and feedforward it into the

13Which will be varied, as we will see in Section IV.i.
14See, e.g., [2, Sections 5.5.3 and 5.5.4] for details about the reasons of these choices.
15It transforms a musical score into data for the architecture and vice-versa. We designed it for our course at UNIRIO

which is available at http://www-desir.lip6.fr/~briot/cours/unirio3/. It uses the Music21 symbolic music repre-
sentation library as pivot and also for reading MIDI and ABC music formats.

16Actually, a mini batch of examples, randomly selected from the training set, is used for each epoch.
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Figure 7: Generation of a melody by the decoder component of the autoencoder from a latent vector (random or given)

Figure 8: Example of melody generated from a random latent vector by the decoder component of the autoencoder
(h = 1500) trained on the Celtic melodies corpus

decoder component. This will reconstruct some melody corresponding to the compressed version.
Figure 8 shows an example of melody generated from a latent vector randomly generated17.

i. Size of the Hidden Layer

For simplification, we will name h the size of the hidden layer (which is also the size of the latent
vector z). Setting the value of h is an important decision. If h is large, close to the input (and
output) layer size, reconstruction will be almost perfect or even perfect, but there will be many
latent variables to be instantiated in order to generate melodies18. If h is small, the control of the
generation will be easier to understand, specially in the case of h = 2 where the latent vector can
be visualized in a 2D-figure19, as shown for each example of the corpus20 in Figure 9, but the
reconstruction will not be optimal.

Figure 10 shows the loss (the error of the reconstruction) and the accuracy (the precision of
the reconstruction), in function of h. Our experiment shows that h = 1.258 is the lowest value for
which the accuracy is equal to 1, that is, for which the reconstruction of all training examples is
perfect.

In Figure 11, we show the reconstruction by the autoencoder of “The Green Mountain” melody,
in function of the value of h. We could see that with h = 1000, the reconstruction is still perfect21.

17The ranges of the possible values for each latent variable may be determined by computing the lowest and the highest
values of latent variables for each training example, see Figure 9.

18And moreover, the autoencoder may not be enough forced to extract interesting features.
19Let us think of the analogy of approximating a 3D location on earth onto a 2D map and even onto a 1D road on this

map.
20To compute the value of z corresponding to a given melody, we just need to feedforward the melody data into the

encoder component of the autoencoder and retrieve the values of the hidden layer nodes, i.e. the latent variables.
21The reconstruction of “The Green Mountain” is perfect but it is not the case for all the training examples, otherwise
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Figure 9: Values of the latent vector (z) generated by the encoder component of the autoencoder (h = 2) for each of the
75 examples of Celtic melodies. Each dot and its color (from blue to yellow) corresponds to each melody of the
corpus (from #0 to #74)

Figure 10: (left) Loss and (right) Accuracy of the reconstruction by the autoencoder, in function of h

With h = 750, reconstruction has only a minor error: the last note of the 6th measure, a D quarter
note, has been substituted by D and B 16ths notes. With h = 500, some further errors and

the accuracy (for all examples) would have been equal to 1. Also note that, as opposed to the initial score of “The Green
Mountain” in Figure 4 which has a key signature (with two ], i.e. D Major) because the actual key was part of the
specification, the score of the reconstruction has no key signature but the notes are indeed equivalent. (We used MuseScore
to display the scores).
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h = 1000

h = 750

h = 500

h = 250

h = 200

h = 150

h = 100

h = 2

Figure 11: (from top to bottom) Reconstruction by the autoencoder of “The Green Mountain” for h = 1000, 750, 500,
250, 200, 150, 100, 2

simplifications appear, although most of melodic motives are still preserved. It is from h = 150
that the melody starts being simplified, with from h = 100 a major simplification trend and quasi
stability.

It may seem surprising that, even with a small size of the hidden layer, the autoencoder could
reconstruct partially an initial melody. What does the autoencoder is in fact to map the various
dimensions corresponding to the various latent variables to some variational characteristics which
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vary among examples, e.g., main melodic motif, average duration of notes, etc.22 What is common
to all examples is stored into the connexion weights of the network, for it to be able to reconstruct
a melody. What is specific to examples is stored into the latent variables. Therefore, changing the
values of the latent variables will allow to change the melodies generated.

V. Approaches for Generation

i. Exploration

The latent space (the space of variation for z the latent vector of latent variables) may be explored
with various operations to control/vary the generation of content, e.g., as summarized in [24]:

• translation;
• interpolation;
• averaging;
• attribute vector arithmetics.

ii. Interpolation

We may for instance do interpolation (morphing) between two existing melodies, “The Green
Mountain” (see Figure 4) and “Willa Fjord” (Figure 5), with, e.g., 5 steps of linear interpolation. In
practice, as shown in Figure 12:

Figure 12: Generation of interpolation between two melodies by the autoencoder: 1) encode 1st melody into a latent
vector; 2) encode 2nd melody into another latent vector; 3) interpolate between them; 4) decode interpolated
latent vectors to reconstruct successive melodies

1. we compute the value of z resulting from feedforwarding “The Green Mountain” into the
encoder component of the autoencoder;

2. as well as the value of z resulting from feedforwarding “Willa Fjord”;

22As will be discussed in Section VI.iii.
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3. we compute the various values/steps for interpolating between the two values of z; and

4. we feedforward each value into the decoder component of the autoencoder to reconstruct
the corresponding successive melodies.

In the case of h = 1500, the resulting melodies are shown in Figure 13. We could see that the
interpolation, although correct (it maps the start and the target), is not uniform. Step 1 is equal to
start and step 4 is equal to target. This discontinuity limitation will be analyzed and addressed in
Section VI.i.

step 0: Start: The Green Mountain

step 1

step 2

step 3

step 4

step 5: Target: Willa Fjord

Figure 13: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the autoencoder (h = 1500), from
“The Green Mountain” to “Willa Fjord”

We can also do interpolation between arbitrary values of z. With h = 2, we interpolate the
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Figure 14: Values of z for the interpolation (5 steps) of z1 (from its min value (dark purple blue spot) to its max value
(yellow spot)), while z2 is constantly equal to its mean value

Figure 15: Melody resulting from the interpolation (5 steps) by the autoencoder (h = 2) of the value of z1 (from its min
value to its max value), while z2 is constantly equal to its mean value

value of z1 between its minimum value and its maximum value23, while z2 stays constant to its
mean value, as shown in Figure 14. Unfortunately, the resulting melody, shown in Figure 15,
is actually constant for all steps. The same happens, with a different generated melody shown
in Figure 16, when interpolating the value of z2. This is actually another illustration of some
limitation of the ways the autoencoder dispatches the melodies in the latent space, as will be
analyzed in Section VI.i.

23These values, as well as mean values, for all latent variables, are computed from the latent vectors for all training
examples.

Figure 16: Melody resulting from the interpolation (5 steps) by the autoencoder (h = 2) of the value of z2 (from its min
value to its max value), while z1 is constantly equal to its mean value
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Figure 17: Bach Chorale BWV 347 soprano voice (transposed into D Major key) (8 first measures)

Figure 18: Generation of the adaptation of a melody by adding an attribute vector to its encoded latent vector and
decoding the resulting latent vector

iii. Attribute Vector Arithmetics

In this approach, the idea is to specify some attribute vector capturing a given characteristic (e.g.,
long notes, high pitch range, etc.) and to apply it to an existing example in order to influence
it. An attribute vector is computed as the mean of the latent vectors of all examples sharing that
characteristic. As an example, let us augment the Celtic corpus with a set of (80) soprano voice
melodies from Bach chorales – an example, BWV 347, is shown at Figure 17 – and train the
autoencoder accordingly24. Let us compute the mean of latent vectors of all Bach chorales soprano
voices examples. Then, as illustrated in Figure 18:

• let us consider the Celtic melody “The Green Mountain” (shown in Figure 4);
• compute its latent vector;
• add the “Bach chorales” attribute latent vector (computed as the mean of latent vectors of all

Bach chorales melodies examples); and
• create the corresponding melody, shown in Figure 19.

We can see that the original melody has been simplified, with longer notes, such as in the
Bach chorales melodies corpus, while keeping the basic melodic motif. Figure 20 shows25 the
position of this chimera melody regarding the Celtic and Bach corpus. We can see that the original

24The training set of examples is the union of Celtic melodies and Bach soprano melodies. We transpose Bach soprano
melodies into the D Major key in order to be aligned with the Celtic corpus. Also, as some Bach melodies are outside of
the Celtic pitch range, the pitch range must be adjusted and as a consequence the one-hot vector size (and the autoencoder
input layer size) is adjusted.

25It uses the T-distributed Stochastic Neighbor Embedding (t-SNE) nonlinear dimensionality reduction machine learning
algorithm for visualization [28]. t-SNE models each high-dimensional object by a two (or three) dimensional point in
such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points. The
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Figure 19: “The Green Mountain” transformed into a Bach chorales-like melody by the autoencoder (h = 1500)

Figure 20: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots) – including “The
Green Mountain” (circled blue spot) –; Bach corpus (green spots); and “The Green Mountain Bach-ized”
(circled yellow spot) generated by the autoencoder (h = 1500)

“The Green Mountain” melody (circled blue spot) is on the left, within the main part of the Celtic
corpus (dark purple blue spots), while its “Bach-ized” version (circled yellow spot) is right at the
center of the Bach corpus (green spots).

We can also do the other way around, by selecting one of Bach chorales soprano voice, e.g.,
BWV 347; compute the mean of Celtic melodies latent vectors; add it to BWV 347 latent vector;
and obtain a melody, shown in Figure 21. The result of the transformation is much less obvious
than for previous case. But, by looking at Figure 22, we can see that the original BWV 347 melody
(circled blue spot) is actually already at the center of the Celtic corpus (dark blue spots), thus
minimizing the move to its “Celtic-ized” version (circled yellow spot), which results in very little
musical change.

difference with an autoencoder is that t-SNE does not try to minimize a reconstruction error but instead tries to preserve
the neighborhood distances.

Figure 21: Bach Chorale BWV 347 soprano voice transformed into a Celtic-like melody by the autoencoder (h = 1500)
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Figure 22: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots); Bach corpus (green
spots) – including “BWV 347” (circled blue spot) –; and “BWV 347 Celtic-ized” (circled yellow spot)
generated by the autoencoder (h = 1500)

iv. Recursion

Figure 23: Generation of a melody by the autoencoder by recursively feedforwarding into the autoencoder an initial
melody data (random or given) until reaching a fixed point

In [13], Kazakçi et al. proposed an original way of content generation from autoencoders.
The idea is to feedforward a random initial content (random melody representation) into the
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step 0: Start: Random Seed

step 1

step 2

step 3

step 4: Fixed Point

Figure 24: (from top to bottom) Example of successive melodies generated by the autoencoder (h = 1500) for each step
of the recursion

autoencoder and recursively feedforward the generated output as the input until the output gets to a
fixed point. They have experimented with a dataset of handwritten numerical digits (the MNIST
dataset for handwritten digits recognition) and generated new types of visual patterns that they
name “digits that are not”. We have applied their approach on our autoencoder trained on Celtic
melodies, as illustrated in Figure 23, with Figure 24 showing an example of progressive refinement
of a melody. Note that each melody generated corresponds to some attractor of the network and
their number is finite26.

26This is some kind of mode collapse, as for generation by generative adversarial networks (GAN) [16].
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v. Objective Optimization

Another approach is by controlling the exploration of the latent space (the input of the decoder)
by optimizing some property. This idea has been initially proposed in 1988 by Lewis and named by
him creation by refinement [18]. The idea is to “revert” the standard way of using gradient descent
for standard task – adjust the connexion weights in order to minimize the classification error –, into a
very different task – adjust the input in order to maximize an expected classification result27. This
approach can be seen as the precursor of various approaches for controlling the creation of a
content by maximizing some target property28, such as Deep Dream [20] and style transfer [7], see
more details in [1].

We apply this approach to optimize the value of the latent vector of the autoencoder to match
some objective29. In practice, a vector of random values is created, as initial values of the latent
vector. Then, an optimization algorithm30 is applied on the latent vector to maximize the objective, as
illustrated in Figure 25. We experimented with three different objectives for the melody:

Figure 25: Generation of a melody by the decoder component of the autoencoder by updating a latent vector (initially
random) in order to maximize some objective

• first note to be a C4
31, shown in Figure 26;

27In Lewis’ initial proposal, the neural network which is a feedforward binary classifier is at first trained with positive
and negative examples of what he names “well formed” melodies, defined as follows: 1) using only the unison, 3rd and
5th intervals between notes and 2) following some scale degree stepwise motion. Then, a vector of random values is used
as the initial input of the network and refined as to obtain a positive classification (i.e. a well formed melody). See more
details in [18].

28The target property may be of any kind as long as it may be measured and thus optimized.
29Sun [26] may have been the first author to propose this approach for autoencoders. In his experiments, the target

property is to generate a melody consonant to an existant melody. Note that he used stacked autoencoders, i.e. nested
autoencoders with a decreasing number of hidden layers.

30Gradient-based or even simple random generate-and-test.
31Note that the objective is not completely fulfilled. The first note of the generated melody is a D4. This makes sense

because the corpus of melodies is in the key of D Major and many of them start with a D. This is important to remember
that we can optimize some objective but within the boundaries of the representation that the autoencoder has learnt.
Opening up this structural restriction is possible but with another generation (and architectural) model, see, e.g., structure
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• maximize the number of hold (i.e. having notes as long as possible), shown in Figure 27; and
• minimize the number of hold (i.e. having notes as short as possible), shown in Figure 28.

Figure 26: Example of melody generated by the autoencoder (h = 1500) with the objective of its first note being a C4

Figure 27: Example of melody generated by the autoencoder (h = 1500) with the objective of maximizing the number of
hold

Figure 28: Example of melody generated by the autoencoder (h = 1500) with the objective of minimizing the number of
hold

VI. Further Developments

i. Variational Autoencoder

As noted in Section V.ii, although producing interesting results, the autoencoder suffers from
some discontinuity limitation. We could see that the interpolation, although correct (it maps the
start and the target), is not continuous and thus creates discontinuities in the generation when
exploring the latent space. The reason, as discussed in [25], is that the autoencoder is solely trained
to encode and decode with a minimal loss, no matter how the latent space is organized. The
approach is then to regulate the latent space to ensure that the latent space has better continuity
properties for the generation.

A variational autoencoder (VAE) [15] is a refinement of an autoencoder with the added constraint
that the encoded representation, i.e. the latent variables, follows some prior probability distribution32,
usually a Gaussian distribution. This regularization ensures two main properties: continuity (two
close points in the latent space should not give two completely different contents once decoded)
and completeness (for a chosen distribution, a point sampled from the latent space should provide
a “meaningful” content once decoded) [25]. The price to pay is some larger reconstruction error,
but the tradeoff between reconstruction and regularity can be adjusted depending on the priorities
(as we will see in Section VI. iii).

imposition with a restricted Boltzmann machine (RBM) [17].
32This constraint is implemented by adding a specific term to the cost function which computes the cross-entropy

between the distribution of latent variables and the prior distribution. The model and implementation is actually more
sophisticated, instead of an encoder encoding an input as a single point, a variational autoencoder encodes it as a
distribution over the latent space, from which the latent variables are sampled, as explained in [25].
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autoencoder variational autoencoder
interpolation between Figure 13 Figure 29
existing melodies good reconstruction better continuity

but some discontinuity but imperfect reconstruction
interpolation between Figures 15 and 16 Figures 30 and 31
min and max constant (no interpolation) almost continuous interpolation
vector arithmetics Figure 19 Figure 32

convincing result ok result
recursion Figure 24 Figure 33

convincing result convincing result
objective optimization Figures 26, 27 and 28 Figures 34, 35 and 36

convincing results ok objectives but bad style

Table 1: Comparison of generation approaches with autoencoder and variational autoencoder

ii. Generation

Figure 29 shows the melodies generated by the variational autoencoder with h = 1500 by interpo-
lation between “The Green Mountain” and “Willa Fjord”. By comparing it with the generation by
the autoencoder (Figure 13), we could see that the interpolation is more continuous, at the price of
some imperfect reconstruction of the two original melodies.

In the case of h = 2, we may compare the melodies generated by the variational autoencoder
for the interpolation of values of z1 and of z2

33 (shown in Figures 30 and 31, respectively), to the
melodies generated by the autoencoder (Figures 15 and 16).

Let us now compare in Table 1 the results of the various approaches for generation (interpola-
tion, vector arithmetics, recursion and objective optimization) by a variational autoencoder to the
case of an autoencoder. These simple experiments suggest that a variational autoencoder may not
necessarily lead to an improvement in the quality of the generation, depending on the generation
approach34.

iii. Interpretation and Disentanglement

Another issue is that the characteristics (meaning, e.g., note duration range, note pitch range,
motif, etc.) of the dimensions captured by the latent variables are automatically “chosen” by
the autoencoder architecture (variational or not), in function of the training examples and the
configuration. Thus, they can only be interpreted a posteriori. For instance, in Figures 30 and 31,
we can observe that z1 seems to capture the range as well as the average of note durations, while
z2 captures refinements of the melody motif. This actually heavily depends on the set of training
examples and the way they vary35.

Furthermore, as for the mapping between a genotype and a phenotype, there may be a many-
to-many mapping between latent variables and characteristics. In fact, the dimensions captured
by the latent variables are not independent (orthogonal), as in the case of Principal component

33We use a straightforward linear interpolation of z1 or of z2. However, decoding a straight line in the latent space does
not necessarily produce melodies whose attributes vary uniformly. See, e.g., [9] for a discussion and a proposed solution.

34As pointed out in Section VI.i, there is a tradeoff between continuity and reconstruction. Also, as pointed out in [8,
Section 20.10.3], there are still some troubling issues about variational autoencoders.

35For instance, when using Bach chorale melodies, the result is different: z1 captures mostly the range of note durations,
while z2 captures the pitch range.
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step 0: Start: The Green Mountain

step 1

step 2

step 3

step 4

step 5: Target: Willa Fjord

Figure 29: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 1500), from “The Green Mountain” to “Willa Fjord”
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step 0: Start: z1 = min(z1)

step 1

step 2

step 3

step 4

step 5: Target: z1 = max(z1)

Figure 30: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 2) of the value of z1 (from its min value to its max value), while z2 is constantly equal to its mean value
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step 0: Start: z2 = min(z2)

step 1

step 2

step 3

step 4

step 5: Target: z2 = max(z2)

Figure 31: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 2) of the value of z2 (from its min value to its max value), while z1 is constantly equal to its mean value

Figure 32: “The Green Mountain” transformed into a Bach chorales-like melody by the variational autoencoder
(h = 1500)
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Figure 33: Example of melody generated by the variational autoencoder (h = 1500) by recursion

Figure 34: Example of melody generated by the variational autoencoder (h = 1500) with the objective of its first note
being a C4

Figure 35: Example of melody generated by the variational autoencoder (h = 1500) with the objective of maximizing
the number of hold

Figure 36: Example of melody generated by the variational autoencoder (h = 1500) with the objective of minimizing the
number of hold
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analysis (PCA). However, various techniques36 have being recently proposed to improve the
disentanglement of the dimensions (see, e.g., [19]). Some recent approaches also propose to “force”
the meaning of latent variables, by splitting the decoder into various components and training
them onto a specific dimension (e.g., rhythm or pitch melody) [29].

iv. RNN Encoder-Decoder and Variational Recurrent Autoencoder (VRAE)

Figure 37: RNN Encoder-Decoder architecture. Inspired from [3]. The hidden layer he
t of the RNN encoder acts as a

memory which iteratively accumulates information about the successive elements xt of an input sequence
read by the RNN encoder; resulting in a final state he

N ; which is passed to the RNN decoder as the summary
c of the whole input sequence; which then iteratively generates the output sequence by predicting the next
item yt given its hidden state hd

t and the summary c as a conditioning additional input

A practical limitation of an autoencoder is that the size of the input (and output) layer is fixed
and as a result also the length of the music generated. The solution is to combine: the generative
property of the autoencoder with the variable length property of a recurrent neural network (RNN)
architecture (see [2, Section 6.5]). The idea is to embed a recurrent network (RNN) within the
encoder and a similar RNN within the decoder (thus, named an RNN Encoder-Decoder [3]), as
shown in Figure 37.

A natural further step is to combine this with the variational characteristic of a variational
autoencoder, resulting in what is named a variational recurrent autoencoder (VRAE) [5]. We will
not further detail VRAE architectures here because of space limitation. Please see, e.g., the
MusicVAE architecture and details on generation experiments presented in [24] and, e.g., [2] for
some comparative analysis of various architectures.

VII. Conclusion

The use of artificial neural networks and deep learning architectures and techniques for the
generation of music (as well as other artistic contents) is a very active area of research. In this
paper, we have introduced and illustrated the use of autoencoders to generate music. Various

36Two examples of approaches are: 1) increasing the weight of the prior distribution conformance (the β-VAE approach)
[11]; 2) ensuring that for a given dimension no other dimension will be present by using a classifier to check the
equiprobability among the classes along other dimensions (the antagonist approach) [23].
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approaches, simple conceptually and to implement, have also been discussed to control the
generation. Some lesson from these simple experiments shows that a variational autoencoder,
although providing some important improvements on the continuity of the latent space, also suffers
from some reconstruction imperfection. Therefore, depending on the generation approach and the
priorities, one may consider better using a simple autoencoder. We hope that this article will help
at showing the potential of using autoencoders for music generation. MIDI files of examples may
be found at: http://www-desir.lip6.fr/~briot/dlt4mg/Papers/compress-to-create-midi/.
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