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Foreword 
 

 

 

t is with great satisfaction that the MusMat Group announces the release of the first 

number of the fourth volume of MusMat – Brazilian Journal of Music and 

Mathematics. Five very interesting articles integrate this number, covering 

diversified aspects from the rich confluence of musical and mathematical subjects.  A 

study by Scott Murphy opens the issue, presenting an original approach of commmon-

time meter, based on the properties of the correlate functions of metric weight and onset 

frequency. Jean-Pierre Briot examines deep-learning theory and techniques under the 

standpoint of autoencoder architectures, used for enhancing the compression of 

information for musical composition. Liduino Pitombeira presents a quite 

comprehensive survey concerning compositional systems, including the processes related 

to systemic modeling.  Arthur Kampela discusses profoundly the processes associated 

with the Micro-Metric Modulation theory. Marianthi Bozabalidou addresses the 

theory of general scale systems through the prisms of algebraic groups, which involves the 

ideas of counterpoint groups and counterpoint spaces. 
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Common Rhythm as Discrete
Derivative of Its Common-Time

Meter
Scott Murphy

University of Kansas
smurphy@ku.edu

Orcid: 0000-0001-7766-0777

Abstract: Musicians recognize two important functions over the sixteen points in time, or beat classes,
distributed evenly over a common-time measure: metric weight and onset frequency. Existing scholarship
acknowledges that these functions are similar but not identical, and researchers tend toward one or the
other as a model for metric entrainment. However, if the discrete metric-weight function is converted
into a continuous curve, then the two functions strongly correlate: the ordering of each beat class by its
backwards discrete derivative on this curve perfectly matches the ordering of each beat class by its onset
frequency in a classical corpus.

Keywords: Rhythm. Meter. Calculus. Conducting. Fourier.

I. Two Functions Over Moments in Common Time

The bar graphs of Figures 1 and 2, representing two functions, offer two perspectives of
a musical measure divided into sixteen equal unit spans of time. The aim of this essay
is to elucidate, in both mathematically elegant and musically intuitive ways, not only

the structures of each function but also their mutual correlation. Before discussing the graphs
individually, a few words are needed about how this information is presented generally. The
moments beginning each unit span will be referred to as “beat classes” (bcs), because points in
time in previous or subsequent measures are deemed as equivalent to those in this measure. Each
function maps each beat class to what I will generally call a “level.”1 The measure that these two
graphs describes would be typically indicated in musical notation as lasting the duration of a
whole note, with a time signature of 4

4 , common time, or cut time, although other time signatures
such as 2

4 readily accommodate a sixteen-fold division. Although it is customary in musical
terminology to assign the first element of a series of beats in a measure (or notes in a scale) to
the number 1, the horizontal values for these graphs instead use zero-based numbering. This
follows both many mathematical conventions in general and music theory’s notation of beat class
in particular, whereby “beat” in “beat class” describes not only moments of tactus onset—the more
standard use of the word “beat”—but also the beginning of any unit duration that evenly divides
a longer span as a modular (i.e. quotient) space, such as a measure.2 I will mix both meanings
of “beat” in what follows. In both graphs, my inversion—higher as lesser—of the more typical
orientation of a Cartesian vertical axis—higher as greater—is deliberate and will be explained
later.

1
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Figure 1: Metric level of the 16 beat classes (f1).

Figure 2: Number of onsets (in italics) in common-time string-quartet movements by Joseph Haydn assessable by
computer, and their ranking into 16 frequency levels (f2).
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Figure 1 displays a standard interpretation of the relative weights or strengths of metric accent
in such a measure.3 In what follows, the more neutral term “level” encapsulates more subjective
expressions like “weight” or “strength” of metric accent. The downbeat (bc 0) is on the highest
level, because it carries the most weight of all of the beat classes in this or any other measure. If
the lowest level is numbered 0, then this downbeat should be numbered as level 4, as there are five
different degrees of metrical accent for this number of beat classes. The third beat (bc 8)—which
occurs halfway through the measure—carries the second strongest metrical accent (level 3), and
the second and fourth beats (bcs 4 and 12) tie for the third strongest metrical accent (level 2). The
four remaining even-numbered beat classes (bcs 2, 6, 10, 14)—the “di” moment in the Takadimi
[7] system of metric notation—tie for the fourth strongest metrical accent (level 1), and the eight
odd-numbered beat classes—the “ka” and “mi” in Takadimi—tie for the least strong metrical
accent (level 0). This mapping of beat-class number (x) to metric-accent level number (f1) can be
generalized for all “pure duple” meters (meters whose adjacent pulses relate by a factor of two)
as follows: for a measure of 2n units (n ∈ Z+), f1(x,n) = log2(gcd(2n, x)), where gcd stands for
“greatest common divisor.”4 For example, in a measure of sixteen units (n = 4), bc 4 has an accent
level of log2(gcd(24, 4)) = log2(gcd(16, 4)) = log2(4) = 2. Another way to define f1(x,n) is as the
number of contiguous rightmost zeros in a binary (radix-2) representation of x. For example, the
binary representation of 4 is 100, in which there are two contiguous rightmost zeros; therefore, bc
4 is on level 2.

For a common-time measure in Western classical music, Figure 2 displays a common ranking
of onset frequencies among the sixteen equidistant beat classes. In particular, this bar graph shows
in italics how many onsets occur in the sixteen beat-class positions for all of the string quartet
movements by Joseph Haydn in 4

4 assessable by computer [4]. These sixteen counts are then
ranked into levels. With such a large data set, such that the frequencies of onsets for two different
beat classes are highly unlikely to be the same, Figure 2 unsurprisingly has sixteen different levels,
numbered 0 to 15, unlike the five of Figure 1. Thus, when described as a function—I will call
it f2(x,n), parallel to f1’s definition—this mapping of beat class to level is bijective, whereas f1 is
surjective. However, despite the higher specificity, the ranking among these sixteen beat classes
tends to be the same or quite similar for other Western common-practice corpora of sufficient size.
One such instance appears in an article by David Huron and Ann Ommen [8] about syncopation
in American popular music: their tally of onsets among common-time monophonic songs in the
Essen Folksong Database well matches the rankings in Figure 2.5

The distribution of Figure 2 can be related to an understanding of Western common-practice
styles. First, an onset chosen at random in a work related to a corpus from which f2 values are
computed is more likely to appear at a beat class with a higher f2 value, regardless of whether the
music is polyphonic (like Haydn’s quartet movements) or monophonic (like the folksongs of the
Essen Database). Second, as shown in Figure 3, each of the sixteen levels in Figure 2 corresponds
to a rhythm within a 4

4 measure, composed of onsets on the beat classes on that level or higher. For
example, the level 13 rhythm is half-quarter-quarter, because these three onsets correspond to beat

1See [1] for a relatively early use of this term, although the concept is an older one.
2Here, “tactus” refers to a primary pulse near the range of 85 to 120 beats per minute. Justin London [14, pp.30-33]

provides a summary of the concept.
3Lerdahl and Jackendoff [13, p.19] provide a well-known example.
4Cohn [2, p. 194] coins the term “pure duple.”
5The published bar graph in [8, p. 215] does not contain specific counts. However, in June 2015 Huron kindly shared

his data with me, which I will call f3(x,4) = [19221, 24, 2116, 412, 10226, 25, 5661, 430, 14280, 24, 2380, 348, 13458, 39, 5964,
634]. Of the 120 pairs of 16 beat classes that be ordered, only two of these 120 between f2(x,4) (my Haydn count) and f3(x,4)
(Huron and Ommen’s Essen count) are not the same: f2(3,4) < f2(11,4) but f3(3,4) > f3(11,4), and f2(1,4) < f2(9,4) but f3(1,4)
= f3(9,4).

3
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Figure 3: Sixteen common rhythms in 4
4 , corresponding to the 16 levels and 16 beat classes from Figure 2.

classes mapped to levels 13, 14, and 15 in Figure 2. Each of these rhythms is relatively idiomatic
of, and rather common within, Western classical music. For example, in Johann Joseph Fux’s
1725 treatise Gradus ad Parnassum, when the student writes a quarter-quarter-half rhythm within a
common-time measure, the teacher gently recommends the half-quarter-quarter rhythm as a better
solution.6 These norms may be generalized by the time-honored preference for beginning longer
inter-onset intervals on metrically stronger moments, which pushes shorter durations toward the
end of metrical spans like measures, half-measures, and beats. To be sure, other rhythms besides
those of Figure 3 are also quite probable in Western common-practice music. However, I speculate
that, of two rhythms spanning the same kind of measure with the same number of onsets, the one
that is more common in Western common-practice music is more likely than not to be the one
whose sum of Figure-2 levels is higher.7

In the aforementioned article by Huron and Ommen, the authors note how two of their graphs,
which correspond to my Figures 1 and 2, “are similar though not identical” [8, p. 214] to each
other, acknowledging the imbalance between the frequency of onsets for the second and fourth
beats (bcs 4 and 12) that I also cited earlier. They nonetheless continue with the recognition of
“a notable correspondence between the hierarchy of event onsets [the counterpart of my Figure

6[5, p. 67].
7Temperley [17, p. 358] recognizes and addresses the shortcomings of this approach.

4
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2] and the conventional metrical hierarchy [the counterpart of my Figure 1].” However, “[t]he
causal relationship here is unknown” to the authors, although they speculate that “[i]t is possible
that the metrical hierarchy originates in the distribution of event onsets. . . or the distribution of
event onsets might simply reflect a pre-existing metrical hierarchy that influences the composition
of music.” The primary purpose of this article is to propose such a causal relationship between
Figures 1 and 2. My first step toward this proposal is to appreciate that both Figures 1 and 2 exhibit
comparable symmetries and formulaic generalizations.

II. Symmetries and Formulas for Each Function

When one looks at both bar graphs, Figure 1’s symmetry is probably discerned more immediately:
for example, all of its rankings invert around both bcs 0 and 8; that is, f1(x) = f1(0–x mod 16)
= f1(8–x mod 16). Put in colloquial terms, assuming that the beat-class assignment continues
cyclically into adjacent measures, Figure 1 exhibits a vertical mirror symmetry around both an
axis at bc 0 and an axis at bc 8. In other words, if two beat classes sum to 0 or 8 mod 16, then they
will have the same level in Figure 1. Moreover, Figure 1 admits formulation: earlier, I proposed
two formulas for f1(x,n), one using a logarithm and the other using binary representation.

It is quite reasonable to perceive and understand Figure 2 as a distortion of Figure 1, especially
with the latter’s conspicuous symmetry. It is even more reasonable to do so when the data of
Figure 2 is displayed on a vertical axis whose units are onset counts and not ranking levels, as
Huron and Ommen do in their article. From this vantage point, my Figure 2 may be seen as a
distortion not only of Figure 1 but also of the scale of the onset distribution: for example, bcs 7
and 15 are adjacent in the ranking (levels 6 and 7) and differ by 112 onsets, while bcs 15 and 8 are
also adjacent in the ranking (levels 7 and 8) but differ by 4758 onsets.

However, this recalibration of the graph’s range helps to reveal Figure 2’s own internal
consistency that is at once independent from that of Figure 1, while also obliquely affiliated with it.
For example, f2(x) = 15 – f2(1–x mod 16). In colloquial terms, assuming that beat-class designations
continue into adjacent measures, Figure 2 exhibits a vertical mirror symmetry around both the
point equidistant from bcs 0 and 1 and the point equidistant from bcs 8 and 9. In other words, if
two beat classes sum to 1 mod 16, then they correspond, not with the same ranking as they do
in the Figure 1 mirror, but rather opposite rankings. For one example, bcs 0 and 1 sum to 1 mod
16, and bc 0 hosts the most frequent onsets (level 15), while bc 1 hosts the fewest (level 0). For
another example, bcs 12 and 5 sum to 1 mod 16, and bc 12 hosts the third-most frequent onsets
(level 13) while bc 5 hosts the third-fewest frequent onsets (level 2).

Furthermore, f2 may be written formulaically. At the heart of one such formula is a function
from applied mathematics that also employs binary representation, a form of representation I used
earlier for a formulation of f1(x). This function is the bit-reversal permutation (revn), which maps
a set of integers 0, 1, . . . , 2n–1 (n ∈ Z+) to itself by mapping each integer to the reversal of the bits
in its binary representation.8 For example, rev4(12) = 3, because the four-bit binary representation
of 12 is 1100, and the retrograde of 1100 is 0011, which is 3 in decimal form. Generalized for any
span divided into 2n equidistant beat classes, f2(x,n) = (2n–1) – revn(-x mod 2n). Table 1 provides
the computation of this equation for n = 4 in particular, matching the mapping of beat classes to
the rankings of Figure 2.

8The bit-reversal permutation has been applied to FFT (Fast Fourier Theorem) algorithms, as demonstrated in [3, p.
918].

5
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Table 1: Demonstration of f2(x,n) = (2n–1) – revn(-x mod 2n), for n = 4.

III. Relating the Two Functions to Each Other

The resemblances between the manners in which I have described the symmetries and formulations
of f1 and f2 hint at, but do not themselves furnish, a deep-seated connection between them. The
use of binary representation in defining both f1 and f2 intimates a utility in a component-wise
disassembly and reassembly of both metrical and rhythmic wholes, and the different positions
of the f1 and f2’s axes of symmetry suggests that metrical symmetries hinge on the beat classes
themselves, while rhythmic regularities operate in between these beat classes somehow. My
investigation into a causal relationship between Figures 1 and 2 continues by revisiting Huron
and Ommen’s article. At one point, they set two psychological theories of temporal regularity
head-to-head:

Some psychologists have proposed that the metrical hierarchy arises from integrally-
related mental oscillators that coordinate auditory attending. However, recent psycho-
logical research more strongly suggests that rhythmic perceptions arise from simple
exposure to rhythmic stimuli rather than via mental oscillators. This research suggests
that patterns of auditory attending arise through the mechanism of statistical learn-
ing. Listeners are sensitive to the frequency of occurrence of sound events, and these
distributions appear to become internalized as mental “schemas.” [8, p. 214].

On the one hand, a series of synchronized mental oscillators operating at different frequencies,
all multiples of the downbeat frequency, correlate with metrical weighting schemes such as that in
Figure 1. On the other hand, the various schematized rhythms in Figure 3 that follow from the
statistical distribution of Figure 2 entrain an acculturated listener to a metrical orientation and
flow. The words “rather than” in the quotation above suggest that these two models are mutually
incompatible. But could they be mutually reinforcing? Is it possible to replace “rather than” with
“in addition to” or perhaps even “derived from”? I believe the answer to both of these questions
could be “yes.”

The use of a mental oscillator as a model for entrainment to a periodicity expresses not only
the regularity of this periodicity and its persistence in the absence of constant support, but also
the continuous nature of metric experience, in contrast to the discrete and discontinuous design of
Figure 1 and f1’s requirement of integer input. Meter has been characterized as the fluctuation of

6
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a listener’s attention [6]. The greater the metrical weight, the more a listener is paying attention.
This correlation probably stems from evolutionary efficiency. Changes in music, such as shifts to a
new harmony, often occur on metrically accented moments. Therefore, it one wishes to discern as
much information about the music as possible with the least amount of attentional energy, it makes
sense to attend considerably more to downbeats or downbeat-like moments in particular and
considerably less to the moments in between. But one cannot change this energy non-continuously.
Thus, the model of an oscillator—such as a spinning circle, a swinging pendulum, a vibrating
spring, and so forth—captures this continuous change, and has been called upon by scholars to
model meter, particularly in the work of Edward Large.9

A common visualization of such an oscillating function is as a continuous periodic wave,
peaking at the moment of greatest metrical weight and bottoming out at the moments of least
metrical weight (although this verticality metaphor has been, and could be, inverted). These waves
can be binarily categorized in two ways. First, music scholars have constructed these waves either
more causally as visual aids or precisely as mathematical functions. Second, music scholars have
constructed these waves so that either its curvature—that is, its second derivative—at any point
has the same sign or not. For example, the musicologist and conductor Viktor Zuckerkandl drew
inverted cycloid-like waves to depict the periodicity of the downbeat in Chopin’s “Military” Polon-
aise op. 40 no. 1.10 Although Zuckerkandl’s argument is more philosophical than mathematical,
his downbeats as the sharp points of an inverted cycloid’s maxima suggests the notion that the
rate in which one is gaining attentional energy as a downbeat approaches is always increasing.
This acceleration and sharpness appears to emulate an idealized metric state, such as the crispness
of a conductor’s beat pattern, in which the hand moves more quickly as it both approaches and
leaves a beat.

This sharpness qualitatively differs from modeling downbeats as the plateaus of a sine wave
or an iterated normal distribution, where the rate in which one is gaining attentional energy as
a downbeat approaches slows down at some significantly earlier point, which provides a better
model for how listeners might “hedge their bets,” adjusting to small fluctuations in a periodic
stimulus. The use of von Mises distributions [11] allows for a continuum between the two types of
curves: a wave with a high κ (its measure of concentration) produces sharp peaks whereas a wave
with a low κ creates gently sloped plateaus.

Large and co-author Caroline Palmer [12] also innovated the combination and display of
component waves into a composite wave that represents multiple periodicities of a metrical
hierarchy. For example, their model of triple meter combines two periodic von Mises distributions
of equal amplitude but with one distribution’s period three times as long as the other. In
an analogous fashion, Figure 4 models the 4

4 -plus-eighths-and-sixteenths meter of Figure 1
by combining—in the manner of Fourier synthesis—five periodic parabolic functions of equal
amplitudes but with periods two times as long as the next shorter function. These five periodic
parabolic functions signify the five metric levels in a 4

4 measure subdivided into sixteen equal
parts. While other types of waves—such as sine or von Mises—could be used for the components
of this composite metric function, the periodic parabolic wave has a constant second derivative, or
acceleration of attentional gain. This captures a general intuition that, as a relatively strong beat is
approached, the rate in which one is gaining attentional energy is always increasing. This intuition
aligns with a conductor-musician synchronization study that concluded that “absolute acceleration
along the movement trajectory. . . was the main cue used by participants to synchronize with the
conductors’ gestures” [15, p. 470]. (Zuckerkandl’s cycloid would also provide this continuous
acceleration and yield the same results below, but a parabolic function is mathematically easier

9[9], [10], and [11] are three early examples.
10[18, p. 171].
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Figure 4: Demonstration of the synthesis of a composite metric wave composed of five periodic parabolic waves at
different frequencies, with values for the 16 beat classes provided in italics, rounded to the nearest thousandth.

to work with.) This rate then drops non-continuously to a lower value when the strong beat
is passed, and then begins to rise once again in its approach to the next. I will generalize this
composite function as µ(x,n) for all pure duple meters that are 2n units long (therefore, Figure
4’s composite wave is µ(x,4)) as follows, where bc represents the floor function that produces the
function’s periodicity:

µ(x, n) =
n

∑
i=0

(⌊
−x
2i

⌋
+

x
2i +

1
2

)2

This composite wave is attractive to me as a musician and a theorist for multiple reasons,
which I will attempt to convey through a listening and kinematic activity that I encourage the
reader to try. (It is because of this activity and the ideas that stem from it that the customary
orientation of the vertical axis has been consistently reversed in all of my graphs.) Audiate a pure
duple meter with five different metric levels such that Level 0’s periodicity is somewhere between
200 beats per minute (closer to a 4

4 measure) and 30 beats per minute (closer to eight measures
of 4

4 ). Now, in time with the music, move your arm up and down within a range of one or two
vertical feet to connect the cusps of µ(x, 4) while flexing your wrist so that your hand (which is

8
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perhaps holding a baton) moves along the curves of µ(x, 4). First, despite its limitation to a single
spatial dimension, this still feels to me a lot like conducting, a gestural embodiment of the many
levels within the meter. Second, the vertical position of your hand at beat classes 0, 4, 8, and 12
corresponds exactly to the metric weight graphed in Figure 1, although the same cannot be said
for the other beat classes.

However, this non-correspondence of the other twelve beat classes sets up a third correspon-
dence. In a 4

4 conducting pattern, the downbeat is preceded by the largest descending motion of
the hand. In fact, in standard conducting patterns, the downbeat’s significance is experienced
somatically by the conductor and indicated visually to the ensemble not by the relatively low
position of the hand, but rather by the relatively large downward change of position that precedes
this low position. It is a downbeat, not a lowbeat. The same can be said for conducting µ(x, 4): from
the immediately preceding beat class, the arm descends the most into beat class 0 than into any
other beat class. The values for the 16 beat classes provided in Figure 4 help to see this distinction:
the ordered difference between µ(0, 4)(1.25) and the immediately preceding µ(15, 4)(≈ 0.645) is
≈ 0.605, which is larger than the next-largest ordered difference of 0.543 between µ(8, 4)(1) and
the immediately preceding µ(7, 4)(≈ 0.457). Described using terms from calculus, beat class 0 has
the highest backwards difference, or backwards discrete derivative (∇), of all 16 values in µ(x, 4):
∇µ(0, 4) > ∇µ(x, 4) for all x ∈ Z16, x 6= 0, where ∇µ(0, 4) = µ(x, n)− µ(x− 1 mod16, n).11

Beat class 0’s superlative position regarding ∇µ(x, 4) correlates with its highest level in both
Figures 1 and 2. While this correlation only extends to the second level in Figure 1, each beat class’s
ranking by ∇µ(x, 4) perfectly corresponds to its ranking by onset count shown in Figure 2. Table
2 shows this exact correspondence. In mathematical terms, for all x,y ∈ Z16, ∇µ(x, 4) > ∇µ(y, 4)
if and only if f2(x,4) > f2(y,4). In practical and embodied terms, the distance one’s hand travels
downwards to a beat class when conducting ∇µ(x, 4) matches the degree of likelihood that an
onset (or more onsets, if polyphonic) will occur at that beat class in a common-practice work.

This exact correspondence strikes me as more than coincidental. An even division of time
focuses a listener’s attention more toward some moments equidistant in time and less toward
other moments in between. This change of attentional degree is necessarily continuous to some
degree. Due to this constant flux, those moments of greater attention can be distinguished not only
by the absolute high state of attentional level but also by the change of this level from a preceding
moment on a lower level to the current moment on a higher level. For relatively strong beats
like downbeats, both the state of the moment and the change of state into the moment highly
correlate and become interchangeable as indicators. Multiple periodicities, each with their own
continuous attentional functions, constitute a composite attentional function. In such music with
multiple periodicities, certain points in time that are equivalent in their state of composite metrical
attention will nonetheless be preceded by different degrees of change of state of composite metrical
attention, differentiating them. Owing to an overgeneralization inherent in the aforementioned
interchangeability of state and change, it follows that a moment preceded by a greater change of
state—such as the fourth beat in a 4

4 measure—could be experienced as more downbeat-like than
a moment of equivalent state preceded by a lesser change of state—such as the second beat in a 4

4
measure.

Earlier, I quoted Huron and Ommen’s proposal that “patterns of auditory attending arise
through the mechanism of statistical learning” of common rhythmic patterns, such as those in
Figure 3 for common time. Nothing I have presented here calls this into question. However, I
hope that what I have presented here is a reasonable hypothesis for why at least one meter and its
constituent periodicities give rise to certain rhythmic patterns—and not others—affiliated with
this meter in the first place.

11Reale [16] offers a recent application of calculus’s backwards discrete derivative to metric dissonance.

9
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Table 2: Demonstration of correspondence between f2(x,4) and ∇µ(x,4).

IV. Extensions

I leave it as an exercise to the reader to adapt and extend f1, f2, and my proposed manner of
relating them to other common-practice meters besides common time, such as what Cohn [2] calls
“pure triple” (such as 9

8 ) or “mixed meters” (such 3
4 , 6

8 , and 12
8 ), each with a potential variety of

subdivisions. My preliminary forays into doing so are producing encouraging results. However,
to the reader interested in this exercise, I offer a recommendation that I have already built into
the present study: use continuous functions like periodic parabolic or cycloid waves. In my
initial research into correlating Figures 1 and 2, I built µ from constituent sine waves, and the
correspondence between f2 and ∇µ was just as exact. However, neither sine waves nor von Mises
curves—regardless of the value of κ—yield nearly as close of a correspondence for mixed meters,
at least when the amplitudes for each constituent function are the same, as periodic parabolic or
cycloid waves, two continuous functions that are arguably more in line with conducting motions.
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Abstract: The current tsunami of deep learning has already conquered new areas, such as the generation
of creative content (images, music, text). The motivation is in using the capacity of modern deep learning
architectures and associated training and generation techniques to automatically learn styles from arbitrary
corpora and then to generate samples from the estimated distribution, with some degree of control over
the generation. In this article, we analyze the use of autoencoder architectures and how their ability for
compressing information turns out to be an interesting source for generation of music. Autoencoders are
good at representation learning, that is at extracting a compressed and abstract representation (a set of
latent variables) common to the set of training examples. By choosing various instances of this abstract
representation (i.e., by sampling the latent variables), we may efficiently generate various instances
within the style which has been learnt. Furthermore, we may use various approaches for controlling the
generation, such as interpolation, attribute vector arithmetics, recursion and objective optimization, as
will be illustrated by various examples. Before concluding the article, we will discuss some limitations of
autoencoders, introduce the concept of variational autoencoders and briefly compare their respective merits
and limitations for generating music.

Keywords: Deep learning, Autoencoder, Latent variables, Music generation, Control.

I. Introduction

One of the first documented case of algorithmic composition (i.e., using a formal process, including
steps (algorithm) and components, to compose music), long before computers, is the Musikalisches
Wurfelspiel (Dice Music), attributed to Mozart. A musical piece is generated by concatenating
randomly selected (by throwing dices) predefined music segments composed in a given style
(Austrian waltz in a given key).

The first musics generated by computer appeared in the late 1950s, shortly after the invention
of the first computers. The Illiac Suite is the first score composed by a computer [12] and was an
early example of algorithmic music composition, making use of stochastic models (Markov chains)
for generation, as well as rules to filter generated material according to desired properties. Note
that, as opposed to the previous case which consists in rearranging predefined material, abstract
models (transitions and constraints) are used to guide the generation.

One important limitation is that the specification of such abstract models, being rules, grammar,
or automata, etc., is difficult (reserved to experts) and error prone. With the advent of machine
learning techniques, it became natural to apply them to learn models from a corpus of existing
music. In addition, the method becomes, in principle, independent of a specific musical style (e.g.,
classical, jazz, blues, serial). More precisely, the style is actually defined extensively by (and learnt
from) the various examples of music curated as the training examples.

12

mailto:Jean-Pierre.Briot@lip6.fr


Journal MusMat • June 2020 • Vol. IV, No. 1

The two main abstract models which can be induced by machine learning techniques are
Markov models and artificial neural networks1. Since the mid 2010s, deep learning – the 3rd wave
of artificial neural networks – has been producing striking successes and is now used routinely
for applications such as image recognition, voice recognition and translation. A growing area of
application of deep learning techniques is the generation of content, notably music but also images.
Various types of artificial neural network architectures (feedforward, recurrent, etc.) are being
used2. In this article, we will focus on a specific type of artificial neural network, autoencoders, and
how they turn out an interesting approach for generating music.

II. Related Work and Organization

A recent book about deep learning techniques for music generation is [2], with some shorter
introduction and survey in [1]. Some general surveys about of AI-based methods for algorithmic
music composition are [22] and [6], as well as books [4] and [21]. A complete book about deep
learning is [8]. There are various introductory books (and courses) about artificial neural networks,
e.g., a very good course named “Machine Learning”, created by Andrew Ng at Stanford, and
freely available on Coursera.

In this article, in Section III we will introduce the (actually very simple) concept of autoencoder,
the way to represent music and to train it on a corpus of Celtic melodies. Section IV will introduce
a straightforward way of using an autoencoder to generate new melodies, illustrated by various
examples. Section V will introduce and analyze various approaches for controlling the generation
of the melodies. Section VI will discuss some limitations and further developments, notably the
concept of variational autoencoder, and analyze its merits and limits concerning generation, before
concluding this article.

III. Autoencoder

i. Architecture

An autoencoder is a feedforward3 neural network with the following structural constraints:

• the size (number of nodes) of the output layer is equal to the size of the input layer;
• there is (exactly) one hidden layer; and
• the size of the hidden layer is smaller than the size of the input layer.

The output layer actually mirrors the input layer, creating its peculiar symmetric diabolo (or
sand-timer) shape aspect, as shown in Figure 1, with two components highlighted:

• the encoder component, composed of the input layer and the hidden layer (and their connex-
ions); and

• the decoder component, composed of the hidden layer and the output layer (and their
connexions).

1Some tentative comparison, pros and cons, of neural networks and Markov models for learning musical style and for
generation may be found in [2, Section 1.2.3].

2See a tentative classification and analysis, e.g., in [1].
3A feedforward neural network, also named multilayer Perceptron (MLP), is the most basic and common type of artificial

neural network. It is composed of an arbitrary sequence of layers composed of artificial neurons, where each successive
layer is analog to multiclass logistic regression. Computation proceeds by feedforwarding data from the input layer into the
successive layers, until reaching the output layer.
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Figure 1: Autoencoder architecture (with its encoder component in blue and its decoder component in purple)

ii. Training

An autoencoder is trained with each of the examples both as the input data and as the output
target, thus trying to minimize the difference between the reconstructed data and the original
input data. As the hidden layer has fewer nodes than the input layer, the encoder component must
compress information4, while the decoder component has to reconstruct, as accurately as possible,
the initial information. This forces the autoencoder to discover significant (discriminating) features
to encode useful information into the hidden layer nodes, considered as a vector of latent variables.

iii. Generation

Indeed the motivation for an autoencoder is neither in just learning the identity function and
nor in the direct compressing of data, as opposed to some experiments in using compression
for creating art, e.g., the compressed cars by the sculptor César in the 1960s and more recently
by the sculptor Ichwan Noor (see Figure 2). The latent vector of an autoencoder constitute a
compact representation (some kind of label [26]) of the common features of the learnt examples.
By instantiating this latent vector and decoding it (by feedforwarding it into the decoder), we can
generate a new musical content corresponding to the values of the latent variables and in the same
format as the training examples.

iv. Representation and Encoding

In order to use an autoencoder with music, we need to define a way to represent that music. As in
this article we focus on algorithmic music composition, we will consider a symbolic representation (of
notes and durations), as opposed to some audio representation (waveform signal or spectrum).
We choose a piano roll representation, for its simplicity. Piano roll (and its name) is inspired from
automated mechanical pianos with a continuous roll of paper with perforations (holes) punched

4Compared to traditional dimension reduction algorithms, such as principal component analysis (PCA), feature
extraction by an autoencoder is nonlinear, thus more general, but it does not ensure orthogonality of the dimensions, as we
will see in Section VI.iii.
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Figure 2: Compressed cars by César (left) and by Ichwan Noor (right)

Figure 3: Example of: (top) score; (middle) piano roll; (right) one-hot encoding – with a time step of a sixteenth note

into it. In practice, it is a two dimensional table with the x axis representing the successive time
steps and the y axis the pitch, as shown in Figure 3.

There is still an additional step from the representation to the artificial network input, this is the
encoding5 of a representation (of a musical content). It consists in the mapping of the representation
(composed of a set of variables, e.g., pitch or dynamics) into a set of inputs (also named input
nodes or input variables) for the neural network architecture. The most frequent type of encoding
is one-hot-encoding6, where a discrete or a categorical variable is encoded as a categorical variable,
through a vector with the number of all possible elements as its length. Then, to represent a given
element, the corresponding element of the one-hot vector7 is set to 1 and all other elements to 0.
For instance, the pitch of a note is represented as shown in the right part of Figure 38.

5Note that this stage of encoding is different and independent of the encoding that will be performed by the Encoder.
6The advantage of one-hot encoding over value encoding (direct encoding of a variable as a scalar) is its robustness against

numerical operations approximations (discrete versus analog), at the cost of a high cardinality and therefore a potentially
large number of nodes for the architecture.

7The name comes from digital circuits, one-hot referring to a group of bits among which the only legal (possible)
combinations of values are those with a single high (hot!) (1) bit, all the others being low (0).

8The Figure also illustrates that a piano roll could be straightforwardly encoded as a sequence of one-hot vectors to
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Figure 4: “The Green Mountain” (8 first measures)

Figure 5: “Willa Fjord” (8 first measures)

Note that a global time step has to be fixed and usually corresponds, as stated by Todd in [27],
to the greatest common factor of the durations of all the notes to be learned. In the case of the
corpus that we will consider, it is a sixteenth note. Also note that, there is no way to distinguish
between a long note and a repeated short note9. Therefore, we will use the solution proposed
in [10] to consider holding curent note (a hold) as a special kind of note (pitch). This solution is
simple, but its main limitation is that it only applies to the case of monophonic melodies10. We
will also consider silence (rest) as a special kind of note11. These two special cases will be added
to the set of possible note pitches for the one-hot vector.

v. Learning Celtic Melodies

In this article, we will use as corpus a set of Celtic melodies, selected from the folk music repository
“The Session” [14]. In practice, we selected 75 melodies, all in 4/4, in D Major key, and tagged
as “Reel” (a type of Celtic dance). Two examples, “The Green Mountain” and “Willa Fjord”, are
shown12 in Figures 4 and 5, respectively.

The shortest melody in the corpus is 8 measures long and the shortest note duration is a
sixteenth note. The lowest note pitch is G3 and the highest note pitch is B5. Thus, the number of
possible notes within the [G3, B5] interval is 29. The size of the final one-hot vector is thus 31 (after
adding the hold and rest cases). The size of the the input representation is therefore: 8 (measures)
× 16 (sixteenth notes per measure) × 31 (size of the one-hot vector) = 8 × 16 × 31 = 3,968.

vi. Architecture

Successive melody time slices are encoded into successive one-hot vectors which are concatenated
and directly mapped to the input nodes of the neural network autoencoder architecture. In Figure 6,
each blackened vector element, as well as each corresponding blackened input node element,
illustrate the specific encoding (one-hot vector index) of a specific note time slice, depending on its

construct the input representation of an architecture, as we will see in Figure 6.
9Actually, in the original mechanical paper piano roll, the distinction is made: two holes are different from a longer

single hole. The end of the hole is the encoding of the end of the note.
10Which is the case for Celtic melodies. Polyphonic music would need to be represented as different voices/tracks.
11For the reason discussed in [2, Section 4.11.7].
12Actually, only their 8 first measures, which is the actual length of the melodies that will be considered, as explained

just below.
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Figure 6: Autoencoder architecture for learning melodies

actual pitch (or a note hold in the case of a longer note). The dual process happens at the output.
Each grey output node element illustrates the chosen note (the one with the highest probability),
leading to a corresponding one-hot index, leading ultimately to a sequence of notes.

The input layer and the ouput layer of the autoencoder architecture have 3,968 nodes. The
hidden layer has an arbitrary number of nodes13, e.g., 1500 nodes. The output layer activation
function (as well as the hidden layer activation function) is sigmoid and the loss (reconstruc-
tion error) function is binary cross entropy14. The optimizer algorithm is ADAM and training
hyperparameters are: number of epochs = 100 and minibatch size = 20. We use the Keras frame-
work as front end, Theano platform as the back end and our own made representation library15.
Purposively, we do not use any additional optimization, as to keep it simple and generic.

Training the architecture proceeds by presenting an example of melody at the input layer and at
the output layer (as the target for the reconstruction)16. The training procedure will incrementally
adjust the connexion weights between neurons in order to minimize the reconstruction error.

IV. Generation

The model having being trained, it may be used for generation. As explained in Section III.iii and
shown in Figure 7, we instantiate the latent vector, usually denoted as z, and feedforward it into the

13Which will be varied, as we will see in Section IV.i.
14See, e.g., [2, Sections 5.5.3 and 5.5.4] for details about the reasons of these choices.
15It transforms a musical score into data for the architecture and vice-versa. We designed it for our course at UNIRIO

which is available at http://www-desir.lip6.fr/~briot/cours/unirio3/. It uses the Music21 symbolic music repre-
sentation library as pivot and also for reading MIDI and ABC music formats.

16Actually, a mini batch of examples, randomly selected from the training set, is used for each epoch.
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Figure 7: Generation of a melody by the decoder component of the autoencoder from a latent vector (random or given)

Figure 8: Example of melody generated from a random latent vector by the decoder component of the autoencoder
(h = 1500) trained on the Celtic melodies corpus

decoder component. This will reconstruct some melody corresponding to the compressed version.
Figure 8 shows an example of melody generated from a latent vector randomly generated17.

i. Size of the Hidden Layer

For simplification, we will name h the size of the hidden layer (which is also the size of the latent
vector z). Setting the value of h is an important decision. If h is large, close to the input (and
output) layer size, reconstruction will be almost perfect or even perfect, but there will be many
latent variables to be instantiated in order to generate melodies18. If h is small, the control of the
generation will be easier to understand, specially in the case of h = 2 where the latent vector can
be visualized in a 2D-figure19, as shown for each example of the corpus20 in Figure 9, but the
reconstruction will not be optimal.

Figure 10 shows the loss (the error of the reconstruction) and the accuracy (the precision of
the reconstruction), in function of h. Our experiment shows that h = 1.258 is the lowest value for
which the accuracy is equal to 1, that is, for which the reconstruction of all training examples is
perfect.

In Figure 11, we show the reconstruction by the autoencoder of “The Green Mountain” melody,
in function of the value of h. We could see that with h = 1000, the reconstruction is still perfect21.

17The ranges of the possible values for each latent variable may be determined by computing the lowest and the highest
values of latent variables for each training example, see Figure 9.

18And moreover, the autoencoder may not be enough forced to extract interesting features.
19Let us think of the analogy of approximating a 3D location on earth onto a 2D map and even onto a 1D road on this

map.
20To compute the value of z corresponding to a given melody, we just need to feedforward the melody data into the

encoder component of the autoencoder and retrieve the values of the hidden layer nodes, i.e. the latent variables.
21The reconstruction of “The Green Mountain” is perfect but it is not the case for all the training examples, otherwise
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Figure 9: Values of the latent vector (z) generated by the encoder component of the autoencoder (h = 2) for each of the
75 examples of Celtic melodies. Each dot and its color (from blue to yellow) corresponds to each melody of the
corpus (from #0 to #74)

Figure 10: (left) Loss and (right) Accuracy of the reconstruction by the autoencoder, in function of h

With h = 750, reconstruction has only a minor error: the last note of the 6th measure, a D quarter
note, has been substituted by D and B 16ths notes. With h = 500, some further errors and

the accuracy (for all examples) would have been equal to 1. Also note that, as opposed to the initial score of “The Green
Mountain” in Figure 4 which has a key signature (with two ], i.e. D Major) because the actual key was part of the
specification, the score of the reconstruction has no key signature but the notes are indeed equivalent. (We used MuseScore
to display the scores).

19



Journal MusMat • June 2020 • Vol. IV, No. 1

h = 1000

h = 750

h = 500

h = 250

h = 200

h = 150

h = 100

h = 2

Figure 11: (from top to bottom) Reconstruction by the autoencoder of “The Green Mountain” for h = 1000, 750, 500,
250, 200, 150, 100, 2

simplifications appear, although most of melodic motives are still preserved. It is from h = 150
that the melody starts being simplified, with from h = 100 a major simplification trend and quasi
stability.

It may seem surprising that, even with a small size of the hidden layer, the autoencoder could
reconstruct partially an initial melody. What does the autoencoder is in fact to map the various
dimensions corresponding to the various latent variables to some variational characteristics which
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vary among examples, e.g., main melodic motif, average duration of notes, etc.22 What is common
to all examples is stored into the connexion weights of the network, for it to be able to reconstruct
a melody. What is specific to examples is stored into the latent variables. Therefore, changing the
values of the latent variables will allow to change the melodies generated.

V. Approaches for Generation

i. Exploration

The latent space (the space of variation for z the latent vector of latent variables) may be explored
with various operations to control/vary the generation of content, e.g., as summarized in [24]:

• translation;
• interpolation;
• averaging;
• attribute vector arithmetics.

ii. Interpolation

We may for instance do interpolation (morphing) between two existing melodies, “The Green
Mountain” (see Figure 4) and “Willa Fjord” (Figure 5), with, e.g., 5 steps of linear interpolation. In
practice, as shown in Figure 12:

Figure 12: Generation of interpolation between two melodies by the autoencoder: 1) encode 1st melody into a latent
vector; 2) encode 2nd melody into another latent vector; 3) interpolate between them; 4) decode interpolated
latent vectors to reconstruct successive melodies

1. we compute the value of z resulting from feedforwarding “The Green Mountain” into the
encoder component of the autoencoder;

2. as well as the value of z resulting from feedforwarding “Willa Fjord”;

22As will be discussed in Section VI.iii.
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3. we compute the various values/steps for interpolating between the two values of z; and

4. we feedforward each value into the decoder component of the autoencoder to reconstruct
the corresponding successive melodies.

In the case of h = 1500, the resulting melodies are shown in Figure 13. We could see that the
interpolation, although correct (it maps the start and the target), is not uniform. Step 1 is equal to
start and step 4 is equal to target. This discontinuity limitation will be analyzed and addressed in
Section VI.i.

step 0: Start: The Green Mountain

step 1

step 2

step 3

step 4

step 5: Target: Willa Fjord

Figure 13: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the autoencoder (h = 1500), from
“The Green Mountain” to “Willa Fjord”

We can also do interpolation between arbitrary values of z. With h = 2, we interpolate the
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Figure 14: Values of z for the interpolation (5 steps) of z1 (from its min value (dark purple blue spot) to its max value
(yellow spot)), while z2 is constantly equal to its mean value

Figure 15: Melody resulting from the interpolation (5 steps) by the autoencoder (h = 2) of the value of z1 (from its min
value to its max value), while z2 is constantly equal to its mean value

value of z1 between its minimum value and its maximum value23, while z2 stays constant to its
mean value, as shown in Figure 14. Unfortunately, the resulting melody, shown in Figure 15,
is actually constant for all steps. The same happens, with a different generated melody shown
in Figure 16, when interpolating the value of z2. This is actually another illustration of some
limitation of the ways the autoencoder dispatches the melodies in the latent space, as will be
analyzed in Section VI.i.

23These values, as well as mean values, for all latent variables, are computed from the latent vectors for all training
examples.

Figure 16: Melody resulting from the interpolation (5 steps) by the autoencoder (h = 2) of the value of z2 (from its min
value to its max value), while z1 is constantly equal to its mean value
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Figure 17: Bach Chorale BWV 347 soprano voice (transposed into D Major key) (8 first measures)

Figure 18: Generation of the adaptation of a melody by adding an attribute vector to its encoded latent vector and
decoding the resulting latent vector

iii. Attribute Vector Arithmetics

In this approach, the idea is to specify some attribute vector capturing a given characteristic (e.g.,
long notes, high pitch range, etc.) and to apply it to an existing example in order to influence
it. An attribute vector is computed as the mean of the latent vectors of all examples sharing that
characteristic. As an example, let us augment the Celtic corpus with a set of (80) soprano voice
melodies from Bach chorales – an example, BWV 347, is shown at Figure 17 – and train the
autoencoder accordingly24. Let us compute the mean of latent vectors of all Bach chorales soprano
voices examples. Then, as illustrated in Figure 18:

• let us consider the Celtic melody “The Green Mountain” (shown in Figure 4);
• compute its latent vector;
• add the “Bach chorales” attribute latent vector (computed as the mean of latent vectors of all

Bach chorales melodies examples); and
• create the corresponding melody, shown in Figure 19.

We can see that the original melody has been simplified, with longer notes, such as in the
Bach chorales melodies corpus, while keeping the basic melodic motif. Figure 20 shows25 the
position of this chimera melody regarding the Celtic and Bach corpus. We can see that the original

24The training set of examples is the union of Celtic melodies and Bach soprano melodies. We transpose Bach soprano
melodies into the D Major key in order to be aligned with the Celtic corpus. Also, as some Bach melodies are outside of
the Celtic pitch range, the pitch range must be adjusted and as a consequence the one-hot vector size (and the autoencoder
input layer size) is adjusted.

25It uses the T-distributed Stochastic Neighbor Embedding (t-SNE) nonlinear dimensionality reduction machine learning
algorithm for visualization [28]. t-SNE models each high-dimensional object by a two (or three) dimensional point in
such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points. The
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Figure 19: “The Green Mountain” transformed into a Bach chorales-like melody by the autoencoder (h = 1500)

Figure 20: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots) – including “The
Green Mountain” (circled blue spot) –; Bach corpus (green spots); and “The Green Mountain Bach-ized”
(circled yellow spot) generated by the autoencoder (h = 1500)

“The Green Mountain” melody (circled blue spot) is on the left, within the main part of the Celtic
corpus (dark purple blue spots), while its “Bach-ized” version (circled yellow spot) is right at the
center of the Bach corpus (green spots).

We can also do the other way around, by selecting one of Bach chorales soprano voice, e.g.,
BWV 347; compute the mean of Celtic melodies latent vectors; add it to BWV 347 latent vector;
and obtain a melody, shown in Figure 21. The result of the transformation is much less obvious
than for previous case. But, by looking at Figure 22, we can see that the original BWV 347 melody
(circled blue spot) is actually already at the center of the Celtic corpus (dark blue spots), thus
minimizing the move to its “Celtic-ized” version (circled yellow spot), which results in very little
musical change.

difference with an autoencoder is that t-SNE does not try to minimize a reconstruction error but instead tries to preserve
the neighborhood distances.

Figure 21: Bach Chorale BWV 347 soprano voice transformed into a Celtic-like melody by the autoencoder (h = 1500)
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Figure 22: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots); Bach corpus (green
spots) – including “BWV 347” (circled blue spot) –; and “BWV 347 Celtic-ized” (circled yellow spot)
generated by the autoencoder (h = 1500)

iv. Recursion

Figure 23: Generation of a melody by the autoencoder by recursively feedforwarding into the autoencoder an initial
melody data (random or given) until reaching a fixed point

In [13], Kazakçi et al. proposed an original way of content generation from autoencoders.
The idea is to feedforward a random initial content (random melody representation) into the
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step 0: Start: Random Seed

step 1

step 2

step 3

step 4: Fixed Point

Figure 24: (from top to bottom) Example of successive melodies generated by the autoencoder (h = 1500) for each step
of the recursion

autoencoder and recursively feedforward the generated output as the input until the output gets to a
fixed point. They have experimented with a dataset of handwritten numerical digits (the MNIST
dataset for handwritten digits recognition) and generated new types of visual patterns that they
name “digits that are not”. We have applied their approach on our autoencoder trained on Celtic
melodies, as illustrated in Figure 23, with Figure 24 showing an example of progressive refinement
of a melody. Note that each melody generated corresponds to some attractor of the network and
their number is finite26.

26This is some kind of mode collapse, as for generation by generative adversarial networks (GAN) [16].
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v. Objective Optimization

Another approach is by controlling the exploration of the latent space (the input of the decoder)
by optimizing some property. This idea has been initially proposed in 1988 by Lewis and named by
him creation by refinement [18]. The idea is to “revert” the standard way of using gradient descent
for standard task – adjust the connexion weights in order to minimize the classification error –, into a
very different task – adjust the input in order to maximize an expected classification result27. This
approach can be seen as the precursor of various approaches for controlling the creation of a
content by maximizing some target property28, such as Deep Dream [20] and style transfer [7], see
more details in [1].

We apply this approach to optimize the value of the latent vector of the autoencoder to match
some objective29. In practice, a vector of random values is created, as initial values of the latent
vector. Then, an optimization algorithm30 is applied on the latent vector to maximize the objective, as
illustrated in Figure 25. We experimented with three different objectives for the melody:

Figure 25: Generation of a melody by the decoder component of the autoencoder by updating a latent vector (initially
random) in order to maximize some objective

• first note to be a C4
31, shown in Figure 26;

27In Lewis’ initial proposal, the neural network which is a feedforward binary classifier is at first trained with positive
and negative examples of what he names “well formed” melodies, defined as follows: 1) using only the unison, 3rd and
5th intervals between notes and 2) following some scale degree stepwise motion. Then, a vector of random values is used
as the initial input of the network and refined as to obtain a positive classification (i.e. a well formed melody). See more
details in [18].

28The target property may be of any kind as long as it may be measured and thus optimized.
29Sun [26] may have been the first author to propose this approach for autoencoders. In his experiments, the target

property is to generate a melody consonant to an existant melody. Note that he used stacked autoencoders, i.e. nested
autoencoders with a decreasing number of hidden layers.

30Gradient-based or even simple random generate-and-test.
31Note that the objective is not completely fulfilled. The first note of the generated melody is a D4. This makes sense

because the corpus of melodies is in the key of D Major and many of them start with a D. This is important to remember
that we can optimize some objective but within the boundaries of the representation that the autoencoder has learnt.
Opening up this structural restriction is possible but with another generation (and architectural) model, see, e.g., structure
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• maximize the number of hold (i.e. having notes as long as possible), shown in Figure 27; and
• minimize the number of hold (i.e. having notes as short as possible), shown in Figure 28.

Figure 26: Example of melody generated by the autoencoder (h = 1500) with the objective of its first note being a C4

Figure 27: Example of melody generated by the autoencoder (h = 1500) with the objective of maximizing the number of
hold

Figure 28: Example of melody generated by the autoencoder (h = 1500) with the objective of minimizing the number of
hold

VI. Further Developments

i. Variational Autoencoder

As noted in Section V.ii, although producing interesting results, the autoencoder suffers from
some discontinuity limitation. We could see that the interpolation, although correct (it maps the
start and the target), is not continuous and thus creates discontinuities in the generation when
exploring the latent space. The reason, as discussed in [25], is that the autoencoder is solely trained
to encode and decode with a minimal loss, no matter how the latent space is organized. The
approach is then to regulate the latent space to ensure that the latent space has better continuity
properties for the generation.

A variational autoencoder (VAE) [15] is a refinement of an autoencoder with the added constraint
that the encoded representation, i.e. the latent variables, follows some prior probability distribution32,
usually a Gaussian distribution. This regularization ensures two main properties: continuity (two
close points in the latent space should not give two completely different contents once decoded)
and completeness (for a chosen distribution, a point sampled from the latent space should provide
a “meaningful” content once decoded) [25]. The price to pay is some larger reconstruction error,
but the tradeoff between reconstruction and regularity can be adjusted depending on the priorities
(as we will see in Section VI. iii).

imposition with a restricted Boltzmann machine (RBM) [17].
32This constraint is implemented by adding a specific term to the cost function which computes the cross-entropy

between the distribution of latent variables and the prior distribution. The model and implementation is actually more
sophisticated, instead of an encoder encoding an input as a single point, a variational autoencoder encodes it as a
distribution over the latent space, from which the latent variables are sampled, as explained in [25].
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autoencoder variational autoencoder
interpolation between Figure 13 Figure 29
existing melodies good reconstruction better continuity

but some discontinuity but imperfect reconstruction
interpolation between Figures 15 and 16 Figures 30 and 31
min and max constant (no interpolation) almost continuous interpolation
vector arithmetics Figure 19 Figure 32

convincing result ok result
recursion Figure 24 Figure 33

convincing result convincing result
objective optimization Figures 26, 27 and 28 Figures 34, 35 and 36

convincing results ok objectives but bad style

Table 1: Comparison of generation approaches with autoencoder and variational autoencoder

ii. Generation

Figure 29 shows the melodies generated by the variational autoencoder with h = 1500 by interpo-
lation between “The Green Mountain” and “Willa Fjord”. By comparing it with the generation by
the autoencoder (Figure 13), we could see that the interpolation is more continuous, at the price of
some imperfect reconstruction of the two original melodies.

In the case of h = 2, we may compare the melodies generated by the variational autoencoder
for the interpolation of values of z1 and of z2

33 (shown in Figures 30 and 31, respectively), to the
melodies generated by the autoencoder (Figures 15 and 16).

Let us now compare in Table 1 the results of the various approaches for generation (interpola-
tion, vector arithmetics, recursion and objective optimization) by a variational autoencoder to the
case of an autoencoder. These simple experiments suggest that a variational autoencoder may not
necessarily lead to an improvement in the quality of the generation, depending on the generation
approach34.

iii. Interpretation and Disentanglement

Another issue is that the characteristics (meaning, e.g., note duration range, note pitch range,
motif, etc.) of the dimensions captured by the latent variables are automatically “chosen” by
the autoencoder architecture (variational or not), in function of the training examples and the
configuration. Thus, they can only be interpreted a posteriori. For instance, in Figures 30 and 31,
we can observe that z1 seems to capture the range as well as the average of note durations, while
z2 captures refinements of the melody motif. This actually heavily depends on the set of training
examples and the way they vary35.

Furthermore, as for the mapping between a genotype and a phenotype, there may be a many-
to-many mapping between latent variables and characteristics. In fact, the dimensions captured
by the latent variables are not independent (orthogonal), as in the case of Principal component

33We use a straightforward linear interpolation of z1 or of z2. However, decoding a straight line in the latent space does
not necessarily produce melodies whose attributes vary uniformly. See, e.g., [9] for a discussion and a proposed solution.

34As pointed out in Section VI.i, there is a tradeoff between continuity and reconstruction. Also, as pointed out in [8,
Section 20.10.3], there are still some troubling issues about variational autoencoders.

35For instance, when using Bach chorale melodies, the result is different: z1 captures mostly the range of note durations,
while z2 captures the pitch range.
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step 0: Start: The Green Mountain

step 1

step 2

step 3

step 4

step 5: Target: Willa Fjord

Figure 29: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 1500), from “The Green Mountain” to “Willa Fjord”

31



Journal MusMat • June 2020 • Vol. IV, No. 1

step 0: Start: z1 = min(z1)

step 1

step 2

step 3

step 4

step 5: Target: z1 = max(z1)

Figure 30: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 2) of the value of z1 (from its min value to its max value), while z2 is constantly equal to its mean value
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step 0: Start: z2 = min(z2)

step 1

step 2

step 3

step 4

step 5: Target: z2 = max(z2)

Figure 31: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder
(h = 2) of the value of z2 (from its min value to its max value), while z1 is constantly equal to its mean value

Figure 32: “The Green Mountain” transformed into a Bach chorales-like melody by the variational autoencoder
(h = 1500)
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Figure 33: Example of melody generated by the variational autoencoder (h = 1500) by recursion

Figure 34: Example of melody generated by the variational autoencoder (h = 1500) with the objective of its first note
being a C4

Figure 35: Example of melody generated by the variational autoencoder (h = 1500) with the objective of maximizing
the number of hold

Figure 36: Example of melody generated by the variational autoencoder (h = 1500) with the objective of minimizing the
number of hold
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analysis (PCA). However, various techniques36 have being recently proposed to improve the
disentanglement of the dimensions (see, e.g., [19]). Some recent approaches also propose to “force”
the meaning of latent variables, by splitting the decoder into various components and training
them onto a specific dimension (e.g., rhythm or pitch melody) [29].

iv. RNN Encoder-Decoder and Variational Recurrent Autoencoder (VRAE)

Figure 37: RNN Encoder-Decoder architecture. Inspired from [3]. The hidden layer he
t of the RNN encoder acts as a

memory which iteratively accumulates information about the successive elements xt of an input sequence
read by the RNN encoder; resulting in a final state he

N ; which is passed to the RNN decoder as the summary
c of the whole input sequence; which then iteratively generates the output sequence by predicting the next
item yt given its hidden state hd

t and the summary c as a conditioning additional input

A practical limitation of an autoencoder is that the size of the input (and output) layer is fixed
and as a result also the length of the music generated. The solution is to combine: the generative
property of the autoencoder with the variable length property of a recurrent neural network (RNN)
architecture (see [2, Section 6.5]). The idea is to embed a recurrent network (RNN) within the
encoder and a similar RNN within the decoder (thus, named an RNN Encoder-Decoder [3]), as
shown in Figure 37.

A natural further step is to combine this with the variational characteristic of a variational
autoencoder, resulting in what is named a variational recurrent autoencoder (VRAE) [5]. We will
not further detail VRAE architectures here because of space limitation. Please see, e.g., the
MusicVAE architecture and details on generation experiments presented in [24] and, e.g., [2] for
some comparative analysis of various architectures.

VII. Conclusion

The use of artificial neural networks and deep learning architectures and techniques for the
generation of music (as well as other artistic contents) is a very active area of research. In this
paper, we have introduced and illustrated the use of autoencoders to generate music. Various

36Two examples of approaches are: 1) increasing the weight of the prior distribution conformance (the β-VAE approach)
[11]; 2) ensuring that for a given dimension no other dimension will be present by using a classifier to check the
equiprobability among the classes along other dimensions (the antagonist approach) [23].
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approaches, simple conceptually and to implement, have also been discussed to control the
generation. Some lesson from these simple experiments shows that a variational autoencoder,
although providing some important improvements on the continuity of the latent space, also suffers
from some reconstruction imperfection. Therefore, depending on the generation approach and the
priorities, one may consider better using a simple autoencoder. We hope that this article will help
at showing the potential of using autoencoders for music generation. MIDI files of examples may
be found at: http://www-desir.lip6.fr/~briot/dlt4mg/Papers/compress-to-create-midi/.
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Abstract: In this paper the theory of compositional systems is described in detail, taking as a starting
point the theoretical framework inherent to systems science. The origins of this science and the definitions
of its fundamental concepts are provided in the first part of the article, illustrated with musical examples.
The central part of the article contains the definition of the concept of compositional system, its typology,
and a series of tools that are useful for implementations. Finally, the design of three types of systems (open,
semi-open and feedback) are carried out in order to produce small illustrative musical fragments.

Keywords: Compositional Systems. Systems Science. Systemic Modeling. Probability.

I. Introduction

Systems are ubiquitous in various human activities. However, despite the common-sense
familiarity with systems in our everyday life, its concept is far from trivial and the attempts
to define it has given rise to a large amount of studies, trends, and quarrels1. As pointed

out by Robert Rosen [35], “the word system is never used by itself; it is generally accompanied by
an adjective or other modifier: physical system; social system”, etc. In this paper I am concerned
with a special type of system: the compositional system. I start with a brief survey on systems
theory, which includes historical aspects and definitions. This will lay the theoretical framework
so that the concept of compositional system can be introduced and musical implementations can
be performed.

II. A brief survey on systems theory

In this section, I will introduce some historical marks and basic concepts associated with the notion
of system, in the general sense, and lay the foundations for the next section, which deals with a
particular type of system: the compositional system. For the sake of clarity, I will demonstrate
some systems concepts with musical examples, although the literature on systems focus especially
on highly complex structures, such as living organisms, society, or even reality. This section will
cover the motivations for the development of systems science as well as some of its historical
marks (??) and definitions of the concept of system (i).

The roots of systems science are mathematics, computer technology, and a group of ideas
known as systems thinking [16, p.19]. It emerged from the necessity of dealing with organized

1Lars Skyttner [38] has organized a survey on several trends in the field of systems science that includes Klir, Boulding,
Laszlo, and many others.
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Figure 1: Organized complexity between its extremes: organized simplicity and disorganized complexity.

complexity, a category in which is located the vast majority of human problems, including music
analysis and composition. In the extremities of this category are, on one side, organized simplicity,
which consists of deterministic problems, involving up to four variables, that can be handled, for
example, by calculus and differential equations, and, on the other side, disorganized complexity,
which involves the use of probability and statistics to deal with an astronomical number of
variables (Figure 1). As pointed out by Weaver, in the first half of the 20th century,

One is tempted to oversimplify, and say that scientific methodology went from one extreme
to the other—from two variables to an astronomical number—and left untouched a great
middle region. The importance of this middle region, moreover, does not depend primarily
on the fact that the number of variables involved is moderate—large compared to two, but
small compared to the number of atoms in a pinch of salt. The problems in this middle
region, in fact, will often involve a considerable number of variables. The really important
characteristic of the problems of this middle region, which science has as yet little explored
or conquered, lies in the fact that these problems, as contrasted with the disorganized
situations with which statistics can cope, show the essential feature of organization. In
fact, one can refer to this group of problems as those of organized complexity [42, p.539].

The limitation of dealing with a great number of variables is a cognitive feature inherently
human. According to Halford et al [13, p.70] “a structure defined on four variables is at the limit
of human processing capacity”.2 Moreover, structures with five variables are already at the chance
level. A computer can make it easier to investigate complex systems involving a large number of
variables. Therefore, the computer became a fundamental tool for investigating systems in the
realm of organized complexity and its evolution has had a clear impact on systems science.

Besides mathematics and computer technology, a body of ideas connected with systems think-
ing were crucial to the emergence of systems science. Those ideas include holism, isomorphism,
general systems, and cybernetics. Holism, an antithesis of reductionism3, already known to Greek
and Chinese philosophy, reappeared at the beginning of the 20th century in a branch of psychology
known as Gestalt theory. It became present also in the field of biology, around the same time, in
the organismic biology proposed by Paul Weiss and Ludwig von Bertalanffy [3]. Phillips [29, p.6-7]

2In music analysis and composition variables may be associated with attributes or parameters of a musical sound:
pitch (pitch class and register), rhythm (attack point and duration), dynamics, articulation, and timbre. I have proposed
the expansion of parametric repertory by introducing the concept of abstract parameter that includes inversional axis,
rhythmic partition, degree of harmonic endogeny [32], melodic contour, and so on [33]. Those abstract parameters (except
contour) are not easily detected by perception in the superficial level.

3Linked with the analytical method, i.e., a piecemeal approach in which an object is divided into its simple constituent
elements.
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A = (p,r,a,d,f)
function
dynamics

rhythm{attack point
duration

pitch {pitch-class
register

articulation

A41 = (69, (4,    ),   ,   ,    )
A42 = (69, (4,    ),    ,    , 7(B7))
A43 = (69, (4,    ),    ,    , 3(F))

Figure 2: Three situations in which pitch A4 appears: as an isolated pitch, as part of a B7 chord, and as part of an F7
chord.

connects holism directly with Hegel’s principle of internal relations and, thus, with 19th century
organicism. He enumerates its five characteristics4 :

1. The analytic approach as typified by the physicochemical sciences proves inadequate
when applied to certain cases—for example, to a biological organism, to society, or
even to reality as a whole.

2. The whole is more than the sum of its parts.
3. The whole determines the nature of its parts.
4. The parts cannot be understood if considered in isolation from the whole.
5. The parts are dynamically interrelated or interdependent.

The principle of internal relations appears as well in the writing of neo-idealists like Francis
Bradley (1846-1924), who enunciates three key points: 1) Relations between entities are possible
only inside a whole; 2) Those related entities are altered by the relationships; and 3) Those entities
qualify the whole, which, in its turn, qualify them [29, p.8].

The second point is "the heart of the theory of internal relations" [29, p.8] and will be exem-
plified here by a musical note in three out-of-time contexts5. In the first situation, pitch A4 is
isolated from any system. In order to categorize it, let us assign to it the following parameters:
pitch (pitch class and register)6, rhythm (duration and attack point), articulation, dynamics, and
function, (p,r,a,d,f). Therefore, this isolated A4, which will be labeled A41, can be represented by
the expression A41 = (69, (4,∅),∅,∅,∅), meaning that it has information on pitch (MIDI number
69) and duration (4 quarter-notes), but no information on attack point, articulation and dynamics.
Also, its isolated state deprives it of a chordal function. This is shown in Figure 2. In the second
situation, the same A4 plays the role (or has the function) of the seventh of a B7 chord and will be
assigned articulation and dynamic values. It is ontologically the same A4 but it is a different entity
in the context of the system7 formed by the other pitches encapsulated to form a more complex
entity: the B7 chord. Its representation, therefore, will be A42 = (69, (4,∅),>, m f ,∅). Figure 2

4Throughout his book, Denis Phillips, an adversary of inflexible holism, examines the validity of each one of those
characteristics. He classifies Holisms in three types (p.36): I, II, and III. Holism I is the one firmly attached to the five
aforementioned characteristics of organicism. Holism II and Holism III gradually accepts some kind of compromise with
analytical methods.

5Contexts in which the attack (or time) points are not defined and therefore temporal order is disregarded.
6Or MIDI number (C4 = 60)
7As it will be seen later in this paper, a system consists of interrelated objects.
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shows yet another chord to which the A4 belongs and functions as its third: F7. For Bradley, A4 is
a part of the B7 chord (which is a system), but when removed from it becomes simply an artifact,
something like a dead and functionless entity.

Additionally, Phillips describes connections between systems theory and the philosophy of
John Dewey (1859-1952)8 , whose influence on musicologist Leonard Meyer (1918-2007) is already
acknowledged in the literature [34]9. Phillips also identifies association between systems theory
and structuralism, especially in the works of Levy-Strauss (1908-2009)10 and Jean Piaget (1896-
1980)11. Structuralism has a methodological impact in the field of music analysis by introducing
the synchronic perspective (as a complement to the diachronic one). As Piaget said, “structuralism
is chiefly a departure from the diachronic study of isolated linguistic phenomena which prevailed
in the nineteenth century and a turn to the investigation of synchronously functioning unified
language systems” [30, p.4]. Lévy-Strauss adds:

Hence the hypothesis: What is patterns showing affinity, instead of being considered in
succession, were to be treated as one complex pattern and read as a whole? by getting
at what we call harmony, they would then see that an orchestra score, to be meaningful,
must be read diachronically along one axis—that is, page after page, and from left to
right—and synchronically along the other axis, all the notes written vertically making up
one grs constituent unit, that is, one bundle of relations. [20, p.212]

Another issue related to systems thinking is isomorphism (or analogies). In its etymology,
isomorphism means simply a similarity of form. It is a concept that permeates several fields of
knowledge such as biology, chemistry, sociology, and mathematics, for which it has a particular
meaning: bijective correspondence and structure-preserving mappings12. In the field of music
theory and analysis, for example, isomorphism is one of the formal supports for pitch class set
theory, since pitch class space is isomorphic to the Abelian group (Z,+) and, therefore, may
inherit the algebraic structure related to groups.

Besides these internal aspects of isomorphism, systems science considers also a larger per-
spective on isomorphism, that is the connections among different areas. Klir [16, p.32] brings the
example of generalized circuit, "a framework within which well-developed methods for analyz-
ing electric circuits were transferred through established isomorphies to less advanced areas of
mechanical, acoustic, magnetic, and thermal systems."

Consequently, isomorphism had as a natural result the increasing of interdisciplinarity, which,
by its turn, led to the development of the concept of general systems, by Ludwig von Bertalanffy
(1968), who was aligned with Kenneth Boulding, Ralph Gerard, and Anatol Rapoport. Klir [16,
p.16] defines a general system as “a standard and interpretation-free13 system chosen to represent
a particular equivalence class of isomorphic systems”. The theory of general systems is extensively
discussed in Bertalanffy’s book General Systems Theory [4].

Besides holism, isomorphism, and general systems, cybernetics was also a key factor for the
development of systems science. According to Klir [16, p.37], "cybernetics is a subarea of general
systems research that focuses on the study of information processes in systems, particularly

8Dewey and Bentley [8, p.509] mention that the world is historically presented to humans in three levels: 1) Self-action:
isolated things; Inter-action: things in causal relationships; 3) things and relations forming an unbreakable whole. This last
level is clearly related to the idea of system, as understood in a holistic fashion.

9Many references to the term system and style-system can be found in Meyer’s Emotion and Meaning in Music (1957)
[26].

10As pointed out by Wilcken [44, p.140], “as its core, structural linguistics worked with a simple, yet revolutionary
idea: the notion that language consisted of a formal system of interrelated elements, and that meaning resided not in the
elements themselves, but in their relationships to one another.”

11For Piaget [30, p.5],“a structure is a system of transformations”.
12An isomorphic relation is equivalent, i.e., it is reflexive, symmetric, and transitive.
13Represented by integers or real numbers.
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communication and control". It was created by Norbert Wiener, who defines it as "control and
communication in the animal and in the machine"14. Cybernetics was highly benefited by the
theory of information, developed by Claude Shannon and Warren Weaver. As pointed out by Eco
[9], communication is an essential factor for cultural phenomena as well as for many scientific
fields: Psychology, Genetics, Neurophysiology, etc.

i. Definitions of system

Probably, the earliest (explicit) definition of system comes from the French philosopher Étienne
Bonnot de Condillac (1715-1780): “a system is nothing other than the arrangement of the different
parts of an art or science in an order in which they all support each other, and where the latter are
explained by the former. Those who give reason to others, are called principles; and the system is
all the more perfect, as the principles are fewer: it is even to be hoped that they will be reduced to
one”15. In his definition it is possible to clearly identify two aspects: parts and principles.

For Bertalanffy [4, p.55-56] "a system can be defined as a complex of interacting elements.
Interaction means that elements, p, stand in relations, R, so that the behavior of an element p in R
is different from its behavior in another relation, R′. If the behaviors in R and R′ are not different,
there is no interaction, and the elements behave independently with respect to the relations R and
R′". Similarly to Condillac’s definition, two aspects are also identified here: elements and relations.
Bertalanffy went further and specified how should be the interaction of elements within a system.
In order to illustrate his definition, consider the set of pitch classes J = {B, C[, D], E[, F], G[, A}
in which two quaternary relations 16 with one element each are defined: R = {(B, D], F], A)} and
R′ = {(C[, E[, G[, A)}.17 The behavior of pitch class A (the element p in Bertalanffy’s definition)
in R is different from its behavior in R′, since R progresses harmonically to an E chord (set K) and
R′ progresses harmonically to a B[ chord (set K′). This is shown in Figure 3.

George Klir [16, p.4-9], inspired, according to himself, by a standard dictionary definition,
proposes that a system is “a set or arrangement of things so related or connected as to form a
unity or organic whole”. I have highlighted in this definition three keywords: things, related, and
whole. The latter corresponds to the system itself: it is the whole that emerges from the interaction
of things and relations, which, in their turn, constitute the system’s components. Klir formalizes
this definition in Equation 1, in which S stands for system, T for things, and R for relation.18 It is
noteworthy to verify that for Klir the relational component (R) seems to be the essence of a system,
since he associates it with the very property of systemhood. In other words, a set of unrelated
things becomes a system when (and only when) these things are connected through some kind
of relation. Figure 4A shows a collection of things (T1, T2, and T3). This collection of things is
understood as a system when one finds relationships among them. In Figure 4B, the relations are

14This definition is on the very title of his 1948 book: Cybernetics or control and communication in the animal and in the
machine [43]. In his book he covers topics such as the concept of time in Newtonian and Bergsonian terms, statistical
mechanics, Gestalt theory, and information, language and society.

15In the original one can read: «un système n’est autre chose que la disposition des différentes parties d’un art ou d’une
science dans un ordre où elles se soutiennent toutes mutuellement, et où les dernières s’expliquent par les premières.
Celles qui rendent raison des autres, s’appellent principes ; et le système est d’autant plus parfait, que les principes sont en
plus petit nombre : il est même à souhaiter qu’on les réduise à un seul » [7, p.1].

16A relation may be presented by enumerating its elements in the form of sets, through a matrix, a graph, or even, when
the case applies, by its analytical expression.

17In the equal temperament tuning system applied to western concert instruments, like the piano, these two chords
(represented by relations R and R′) sound the same.

18T can be any arbitrary set, including the power set, or even other systems. A n-ary relation R on sets A1, A2, ..., An is
formally defined as a subset of a Cartesian product A1 × A2×, ...,×An.
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Figure 3: pitch class A as part of a B7 chord (which resolves to an E chord) and as part of a German sixth chord in b[
(which resolves to B[). These chords correspond respectively to relation R and R′
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Figure 4: In A, there is a set of things {T1, T2, T3} and, in B, a system with three things {T1, T2, T3} and two
relations, R1 = {(T1, T2)} and R2 = {(T1, T3)}.

R1 = {(T1, T2)} and R2 = {(T1, T3)}.

S = (T, R) (1)

Thus, a collection of pitches in a musical score is not a system per se. Only when one identifies
some kind of relationship among those pitches a system is cognitively established.19 If fact, this
identification is “the most fundamental act of system theory, the very act of defining the system
presently of interest, of distinguishing it from its environment” [12, p.32]. Such identification is an
individual task and depends upon the analytical repertory and also the particular choices of the
observer. Therefore, different observers may define different systems from the same set of things.

The musical fragment shown in Figure 5 can be understood as different systems. A first
analysis can understand the fragment as a melodic line in which the pitch content consists of a

19This is a key point in systems science: the musical score exists in the real world independently of our observation
but our knowledge about it is only established through the epistemological attitude of making distinctions. This is, as
mentioned by Klir [16, p.12], a constructivist perspective and could be traced as early as mid-17th century, in the works of
Giambattista Vico (1668-1744). In the 20th century, the works of Jean Piaget (1896-1980), Ernst von Glasersfeld (1917 -2010),
Humberto Maturana (1928- ), and Francisco Varela (1946-2001) are connected with this epistemological view of the world.
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Figure 5: A musical fragment with intervallic profile (+5,-4,+6,-5,+4,+5,+5,-6,-2,-5,+5).
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Figure 6: The same musical fragment of Figure 5 understood now as a self-similar trichordal structure.

twelve-tone row with intervallic profile (+5,−4,+6,−5,+4,+5,+5,−6,−2,−5,+5).20 Given the
initial pitch, the entire collection can be reconstructed even though information about rhythm
(duration and attack points), articulation, dynamics, and tempo is lost.

A second analysis could reveal inner relationships from which one perceives a self-similar
structure. This structure is formed by trichords connected to each other through internal transposi-
tional functions21 that hold their elements together. Figure 6 shows that pitch class set {(0), 1, 5}22 ,
with 0 (inside parenthesis) arbitrarily defined as the main pitch class, and transpositional functions
T5 and T1 form a system; set {(7), 2, 6} and transpositional functions T−5 and T−1 form another
system, and so on. A closer look at the four systems reveals that the interval class23 from their
main pitch class to the other two pitch classes are always 5 and 1. This means that all four systems
consist of set class 015. Furthermore, the main pitch classes of the four systems relate to each
other through the same transpositional functions used internally. Therefore, they can be grouped
together to form a larger system similar to each one of its subsystems.

A third analysis could disregard absolute pitch or pitch class values and consider only the
melodic contour of segments. In Figure 7, the melodic line was segmented into four parts and
to each part was assigned a contour. It is easy to verify that they can all be related to the initial

20The numbers inside parenthesis indicate the chromatic semitones between two pitches. Ascending and descending
intervals are indicated with + and −, respectively.

21According to Halmos [14, p.30], “if X and Y are sets, a function from (or on) X to (or into) Y is a relation f such that
dom f = X and such that for each x in X there is a unique element y in Y, with (x, y) ∈ f .”

22In this paper, a pitch class set will be represented within braces, its normal form within parenthesis, and its prime
form within brackets. A set class is represented unframed.

23The interval class (ic) is the smaller distance between two unordered pitch classes (a, b). Formally,

ic(a, b) =

{
12− |a− b| if (a− b) > 6
|a− b| if b ≤ 6.

(2)
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R(C) <210>
ROT1(R(C)) <102>
ROT2(R(C)) <021>

ROT2(C)C ROT1(C) ROT1(R(C))

Figure 7: The same musical fragment of Figure 3 understood now as chain of inter-related melodic contours.

contour by rotation (ROT) and retrogradation (R).24 Therefore, the second contour, <201> is the
second rotation of the original contour, <021>, and so on.

Those three above systems were the result of examinations of a melodic line. From the
observations I have proposed three different models.25 However, a system can also be designed
from scratch. In this paper, there is a differentiation between systemic designing and systemic
modeling. The latter consists of proposing a model by capturing the architecture of a structure
already in place with the purpose of understanding its rules of organization in such a way that it
could be replicated or expanded; the former consists of defining a structure of objects and relations
from the ground up.

Klir divides systems into five epistemological levels. The most basic level, the source system,
consists of a set of variables (with no particular values) and potential states.26 “When the source
system is supplemented with data, i.e., with actual states of the basic variables within the defined
support set” [17, p.13], the first level, the data system, is reached.27The data may come from
modeling or designing. If information is given on the data generation (deterministic or stochastic),
the system is on the generative level. So, at this level there are models capable of generating
information. Higher levels include the structure system, which is a set of generative systems
working cooperatively, and metasystems, which are systems that describe changes within structure
systems (relations of relations).28

III. Compositional Systems

Approaches to musical composition through a systems science perspective, although rare, are
already known in the scope of music research. Probably, the most comprehensive one is the
extensive paper written in the 1990s by Romanian scholars Cosmin and Mario Georgescu [10],
which brings strong and innovative associations between music and systems science. They identify
several systemic features within a musical work: wholeness, hierarchical order, individualization,
and centralization.29 The last two are mostly useful to explain the appearance of stylistic common
practices and the departure from them. They see the musical language as a result of stochastic

24Those operation will be formally defined later in this paper.
25“Model is a physical, mathematical, or otherwise logical representation of a system, entity, phenomenon or process"[2,

p.3]. “Models in ordinary language have their place in systems theory. The system idea retains its value even where it
cannot be formulated mathematically, or remains a ‘guided idea’ rather than being a mathematical construct” [4, p.24].

26This is also called a dataless system [16, p.49].
27It is interesting to find an example of data systems in terms of musical analysis in Klir [17, p.64-67].
28Metasystems are particularly important to monitor morphogenetic systems, a concept that will be defined below.
29A musical work, for them, "is a set of sound objects and processes, organized in a certain way so as to meet an

objective–particular overall finalities of a communicational-aesthetic purport" [10, p.17].
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procedures and fuzzy indeterminacy and highlight a strong contextual dependency of a musical
work with its historical epoch, general trends and individual style. The authors consider that a
musical system is, at least through the historical point of view, an open system30, i.e., a system that
interacts with the environment. In fact, they go even further and regard any musical composition as
the result of tensions between a structural level and the environment, which produces bifurcation
points, zones of uncertainty and fluctuations. Within this context, a key concept is presented:
morphogenetic music. In contrast with structurally-stable music (the vast majority of Western concert
music production), morphogenetic music has a structure that changes drastically over time. It is
closely related to catastrophe theory, in which "abrupt changes of state are the result of smooth
alteration of the control parameters" in dynamical systems [19, p.359]31. In terms of Western
concert music, the morphogenetic type is present in the transitional periods. If music leaves a
steady-state, the bifurcation point leads either to negative entropy or to positive entropy. In the
latter, a destructuring process moves towards a white noise state; in the former, a neostructuring
process moves towards upper musical states. The operas Agamenon and Oeumenides, by Romanian
composer Aurel Stroe, are respectively examples of both cases, according to the authors. It is
noteworthy, however, that, in their article, the term "compositional system" appears only once and
no definition is given32.

A definition for the term compositional system was given (maybe for the first time) in Flávio
Lima’s dissertation [22, p.63], written under my supervision: a compositional system is “a set of
guidelines, forming a coherent whole, which coordinates the use and interconnection of musical
parameters, with the purpose of producing musical works”. Later [31, p.69], I have proposed the
inclusion of the word "materials" in the definition in order to considers also the materials as a
whole, without breaking them into their various parameters. Therefore, the present definition
of system is: a set of guidelines, forming a coherent whole, which coordinates the use and
interconnection of musical parameters and materials, with the purpose of producing musical
works. The idea of purpose (or function) is inspired by Meadows [24, p.11], for whom “a system
must consist of three kinds of things: elements, interconnections, and a function or purpose”.

A formal definition of compositional system S is given by the expression S = (O, R), in which
O corresponds to objects, i.e., materials or parameters (abstract or concrete) and R to relations
(or functions, operations, and transformations). Differently from Klir’s definition (Equation 1),
relations here may be represented both in the form of subsets of a Cartesian product of the elements
of O and by their analytical expressions.33 Furthermore, the idea of purpose is embedded in the
definition and clearly appears during the process of designing a system, as it will be seen next.
Why was the word thing (stated in Equation 1 by Klir) translated as object in the initial moments
of the foundation of the theory of compositional systems? During the bibliographic research phase
for Flávio Lima’s dissertation [22], I came across the book Teoria dos Objetos, by Abraham Moles
[28]. In this book, Moles makes a distinction between the concepts of thing and object. The first is
natural, the second is artificial, that is, produced by humans. Thus, as Moles says, a “stone will
only become an object when promoted to paperweight, and when equipped with a label: price ...,
quality ..., inserting it in the universe of social reference” [28, p.26]. In addition, Moles associates

30The concept of open system differs from the concept of open compositional system, as it will be seen later in this
paper.

31Compositional experiments with catastrophe theory have been made by composers Ann Warde [41] and Fani Kosona
[19].

32The authors frequently use the term "musical system", which appears 22 times.
33Relations are used for musical contexts in which an element of a certain domain is mapped onto two or more elements

of the range. Functions are used for single parametric elements (a pitch class, a duration, etc.). Operations are functions
applied to sets (a pitch class set, for example). Transformations are reserved for operations associated with Lewin’s GMIT
[21].
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the term object with the concept of system when he states that “the whole set of elements or
objects linked by functional relations can be considered as a system (...)” [28, p.28]. It is worth
mentioning that this author collaborated with Pierre Schaeffer in the definition of the term sound
object, which is a second use of the term object. Schaeffer divides this term into two categories: 1)
musical object, which “is treated as the object of the language established between the composer
and the listener (...). It is the spokesman for the musical language” [25, p.59]; 2) sound object,
which is related to the sound itself (as much of the so-called musical sounds as of the noises). “The
sound object emerges in the functions ’to perceive aurally / to hear (to pay attention)’, while the
musical object, inserted in a language, fits in the function ’to understand’"[25, p.65].34. Schaeffer
relies heavily on Husserl’s phenomenology to arrive at the essence of sound. A third strand for
the term object can be found in computer science, more precisely in the programming paradigm
known as OOP (object-oriented programming), which deals with the interaction between basic
units called objects. Long after the foundation of the theory of compositional systems, there was a
happy coincidence in the use of the term object (and not thing) in an article by Goguen [11] that
deals with the formalization of musical systems (the second section of this work by Goguen is
precisely entitled "Objects and Relations"). The term object in the theory of compositional systems
is associated with very specific elements stated in the very fundamental definition of the theory.
Objects are parametric structures (concrete, such as pitch, duration, register, harmonic entities,
etc., or abstract, such as textural partitions, degree of harmonic endogeny, contours, inversional
axes, etc.) or raw materials (fragments extracted from original works). The objects described in
the theory of compositional systems encompass Schaeffer’s sound and musical objects and are
flexible to the point of encompassing, at least potentially, elements that do not directly involve
sound, including elements of a spatial nature.

Compositional-system methodology considers the holistic phenomena (as described earlier
in this paper) in a very loose manner—in a more flexible fashion that the third type of holism
described in Phillips [29]35. Therefore, analytical methods are largely employed and even regarded
as essential procedures, especially for modeled systems. In terms of design, a compositional
system may emerge from a series of formal declarations, diagrams, tables, and computational
programs.

With respect to typology, I define three types of compositional systems: open, semi-open, and
feedback [33]. Different combinations of these three types yield systems with higher complexity.
It is noteworthy to emphasize that our classification is from a different nature when compared
with systems science’s typology, that is, it is not associated with the concepts of open and closed
systems defined by Bertalanffy [4, p.121], for whom “a system [is] ‘closed’ if no material enters or
leaves it; it is called ‘open’ if there is import and export of material”36.

34Schaeffer defines four functions of listening: "écouter", "ouïr", "entendre", and "comprendre" [36]. I am using here the
suggestions given by North and Dack in the 2017 English translation of the "Traité des objets musicaux"[37]

35See note 4
36The dicothomy open/closed systems in the context of social sciences is discussed in length by Luhmann [23]: “Physics

has come to the understanding that the universe is a closed system that cannot accept any kind of input from an order
that is not contained in itself and that, there, the law of entropy is inexorable. But if this is valid for the physical world, it
is not the case for the biological or social order. Hence, the physical lock of the universe was denied as a phenomenon
representative of other orders. So it was thought that these different systems would have to be fundamentally open, capable
of developing neguentropia. This being open explained the effort of organisms (if you think of biology) to overcome,
even partially, the entropic law of the universe. In the original one reads: “La física ha llegado a la comprensión de que
el universo es un sistema cerrado, que no puede aceptar ningún tipo de input de un orden que no esté contenido en él
mismo y que, allí, la ley de la entropía es inexorable. Pero si esto es válido para el mundo físico, no lo es, sin más, para
el orden biológico ni el social. De aquí que la cerradura física del universo se negara como un fenómeno representativo
de otros órdenes. Entonces se pensó que estos sistemas distintos tendrían que ser fundamentalmente abiertos, capaces
de desarrollar neguentropía. Este ser abiertos explicaba el esfuerzo de los organismos (si se piensa en ia biología) por
sobreponerse, aunque fuera parcialmente, a la ley entrópica del universo” [23, p.47].
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Basically, in this methodology, open systems have input and output, semi-open systems have
only output of data (although it may have some kind of control operators), and feedback systems
have the data reinserted into its input. Before proceeding with designs for those three types of
systems, it will be necessary to define some operations to be applied to musical parameters and
materials.

i. Operations used in the design of compositional systems

In this subsection I will describe several operations that can be applied to parameters and materials
in the realm of compositional systems. I will define fourteen operations, some of them original
proposals that have already been experimented with compositional students and during my own
compositional designs. The list is not exhaustive and their combination are encouraged in order
to create compound operations. Some operations have effect only on the surface level (such as
transposition, for example), while others (such as retrogradation) have a severe cognitive impact.
Some of them are already incorporated in computer applications, such as the Lewin Calculator,
developed by Barbosa, Santos, and Pitombeira [1].

1. Transposition (Tn) – rewriting of a segment at another pitch level. Intervallic relationships
(and therefore contour) as well as rhythmic structure are preserved. It can be performed in
terms of a diatonic set (in this case it is rotation through a modular space).

2. Inversion (In) – generates a mirrored outline (in a chromatic context) around the first pitch.
The index n is a transpositional factor. It can also be performed diatonically.37

3. Prolation (Pt) – temporal expansion/contraction. It consists in rewriting a segment with
longer or shorter durational values, according to factor t. Temporal expansion is traditionally
known as augmentation and contraction as diminution.

4. Ambitus (Ai) – intervallic expansion/contraction. The line is rewritten with expanded or
contracted intervals, according to factor i. Melodic contour and rhythm are preserved.

5. Retrogradation (R) – line (pitches and rhythmic values) rewritten backwards. One can
also retrograde just one of the parameters. Although the original material can be visually
identified, this transformation drastically changes the profile of the material from an auditory
perspective, depending on the number of elements involved.

6. Rotation (ROTk) – rotation of the elements of a pitch class set. The number of possible
rotations depends on set cardinality.38

7. Multiplication – I use three types:

(a) Boulez (Mb) – the intervallic profile of a set is applied to each element of another set.

(b) Rahn (Mk) – a set (or an entire segment) is multiplied by a constant value (k).

(c) Rahn expanded (Mr) – the elements of a pitch class set in normal form are concatenated
to form an integer (base 12). For example: J = {10, 1, 2} −→ J = A12; then, this set is
multiplied by another set in the same format following the rules of regular arithmetic
multiplication of two numbers.39

37This is different from the Tn I operation of the pitch class set theory, which first inverts around 0 and then applies the
transpositional factor.

38Rotations and Reflections are the two types of Permutation of a dihedral group, such as a Tn/Tn I group. Reflections
here are obtained by applying Rotations to Retrogradations.

39This is an original contribution of the present author to the multiplication of pitch class sets.
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8. Addition/subtraction of elements (A/S) – insertion of elements (interpolation) or simplifica-
tion of a line by removing elements.

9. Parametric fixation (P f ) – the pitch structure is maintained and the rhythmic structure is
changed or contrariwise (without the obligation to maintain the same contour). Evidently,
this concept can be applied to transformations that involve other parameters (density, contour,
dynamics, articulation, ...).

10. Octave offset (O f ) – consists of a free octave displacement applied to some pitches of a
segment.

11. Filtering (Ft) – consists of filtering the notes through a different scale than the one used in
the original construction (eliminating those that do not belong to the filter).

12. Conversion (C) – consists of filtering the notes through a scale different from that used in
the original construction and converting the notes that do not belong to it (taking this new
scale as a reference).

13. Permutation (P) – changes in the order of individual segments or elements.

14. Fragmentation (Fg) – free and repeated use of small portions of the original segment in its
original or altered fashions.

I have designed a short example of an open compositional system (with input and output)
using only the first six operators mentioned above: Transposition (Tk), Inversion (In), Prolation
(Pt), Ambitus (Ai), Retrogradation (R), and Rotation (ROTk). A diagram of this system is shown
in Figure 8. The operators, except for R, need to be supplied with control factors (k, n, t, i, k). The
first step consists of arbitrarily choosing a small musical fragment (original or taken from another
work), in MIDI or musicxml format, and insert it into the system. Seven external keys controlled
by the composer command the sequence of activation of each operator. They cannot be activated
simultaneously. The original fragment as well as the output of each operator are appended to a
temporal concatenator that sends the final stream to the system’s output. The form of the piece is
obtained by the gradual concatenation of the results of each operator. This system, implemented
in Python, is a work in progress.40 One possible musical result is shown at the bottom of Figure 8.

This output 41 may be used as the initial idea for a new composition, after some polishing,
or even be reinserted into the system to generate a larger musical segment. I have chosen the
first case, made small adjustments in the fragment, assigned it to a musical instrument (clarinet),
and added a piano accompaniment. The adjustments are indicated in Figure 9: 1) Operator A/S
(addition of elements) – two sixteenth notes (E and D) at the end of measure 2 to connect with the
C in measure 3; 2) Rebar of measure 4 to follow the 3/4 metric; and 3) Operator T−4 (transposition
a major third down) applied to ROT1. For the piano, I have decided that its pitch classes come
entirely from the clarinet’s melody (except for measure 2, in which the embellishing note E was
added to the original melodic line). Also, I have used the operation called Fragmentation (F) in
order to assign the three first figures of measure 4 to the piano’s left hand, but adapted to the
harmonic constraints. The result is shown in Figure 9, in which the normal forms of the pitch
class sets for each measure are indicated below the score.

The way harmony was generated for this excerpt42 is called Endogenous Harmony.43 It is
possible to define other types of harmonic configurations in relation to a given melodic line.

40https://gitlab.com/musmat/open-compositional-system
41A midi rendition of this fragment is available at https://gitlab.com/musmat/open-compositional-system/-/

blob/master/melodiaresultadosistema1.wav
42A midi rendition for this fragment is available at https://gitlab.com/musmat/open-compositional-system/-/

blob/master/melodiaresultadosistema1harmonizada.wav
43This is a pedagogical tool created by the present author for his introductory compositional courses.
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Figure 8: Diagram of an open compositional system built with six operators and a temporal concatenator.
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Figure 9: Use of the fragment produced by the open compositional system in the beginning of a piece for piano and
clarinet.
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Figure 10: Types of harmonic configurations derived from a given melodic line.

Semi-endogenous harmonization takes place when the melody’s pitch classes are partially applied
to the harmony or when additional pitch classes are included. This type can be divided into three
subtypes: a) Incomplete — the melodic pitch classes are partially used (in the example of Figure
10 only the pitch classes C and E are used in the harmony, leaving out the D, which is also part
of the melodic line); b) Expanded — inclusion of additional notes (in the example Figure 10 all
the pitch classes, but the added F, belong to the melodic line); c) Incomplete and Expanded – a
combination of the previous subtypes (in Figure 10 the lower pitch class, F, does not belong to the
melodic line, whereas the other two belong; but the D is missing). If the harmony is designed
as a complement to the melody’s pitch classes, with respect to some larger set, it is said that the
harmony is Complementary. In the example of Figure 10 the harmony is the complement of the
melody with respect to the whole tone scale C, D, E, G[, A[, B[. Finally, if the harmony does not
have any connection with the melodic line it is called Exogenous.

As an example of a semi-open compositional system, I have designed a system in which the
internal data is generated through probability: a binomial distribution for the pitch parameter and
a uniform distribution for the rhythmic structure. In the uniform distribution all the outcomes have
the same probability. The binomial distribution is a discrete distribution that counts the amount
of "successes" or "failures" in binary experiments. If n is the number of trials of a probabilistic
experiment, p is the probability of success of each outcome, and k is the number of desired success,
the probability of k is given by Equation 3.

P(X = k) =
(

n
k

)
pk(1− p)n−k (3)

For example, if one flips a coin eight times to obtain “heads”, a binomial experiment is taking
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Figure 11: Flowchart for a semi-open compositional system.

place. Its parameters are 8 (number of trials) and 0.5 (probability that a head will occur in a single
attempt). If one wishes to know the probability of having three successes the result will be given
by Equation4:

P(X = 3) =
(

8
3

)
0.53(1− 0.5)8−3 (4)

The flowchart for the semi-open compositional system is shown in Figure 11. It starts by
uniformly randomizing a poset formed by the compositions44 of integer 4, which are isomorphic to
the eight possible integer subdivisions of a quarter note (Figure 12).45 The composer chooses the
number of randomizations (j). The result is transformed into a flat list, i.e., without the separation
of rhythmic figures (which are already guaranteed through the ordered randomization). An
arbitrary rhythmic figure of half note is appended at the end of the list (called ritmos) to promote
a rhythmic cadence and the result is sent to the note module of the music21 Python package.46

44Posets are partially ordered sets, i.e., sets in which the elements are ordered but not all of them required to be
hierarchically comparable. Compositions are partitions in which the order is essential. The number of compositions (C) of
an integer n is given by Cn = 2n−1 .

45The operation that connects the nodes from the bottom (1.1.1.1) towards the top composition (4) is the sum of
consecutive parts. Therefore for a composition Ci = p1, p2, . . . , pn, with n parts, a composition Cj, with n − 1 parts
isCj = p1, p2, . . . (pk + (pk+1)), . . . , pn. So, the composition 1.1.1.1 may progress to 2.1.1, which is the sum of its first and
second parts (1 + 1) or may progress to 1.2.1, which is the sum of its second and third parts, and so on.

46The music21 package is a Python library to handle musical objects developed by Michael Cuthbert, at the MIT, and
available at https://web.mit.edu/music21/
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Figure 12: Two isomorphic Hasse diagrams: the compositions of integer 4 and the eight possible rhythmic integer
subdivisions of a quarter note.
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Figure 13: A melodic fragment generated by the semi-open compositional system for j = 12, n = 100, and p = 0.5.
The numbers below each note indicate the corresponded pitch class in integer notation.

Each value of the list will be assigned to the note.Note.quarterLength object.
The length of the list ritmos will be passed as a parameter (size) to the binomial module of the

system, which is responsible for the pitch configurations. The size corresponds to the number of
tests. Two other parameters are inserted into the binomial (or pitch) module by the composer:
the number of trials of each experiment (n) and the probability of each trial (p). The result is
filtered through an octatonic converter and through a mod 12 operator. These modules perform
respectively the conversion and the octave offset operations previously defined at the beginning of
this section47. The result will also be inserted into the note.Note object of the music21 package.

In order to generate a melodic fragment, I have chosen j = 12, for the uniform distribution
module (assigned to rhythm), and n = 100 and p = 0.5, for the binomial distribution module
(assigned to pitch). This is analogous to a probabilistic experiment consisting of flipping a coin
100 times. If this experiment is performed size times, one may ask how many times the result will
be 1 head, 2 heads, 3 heads, and so on. As I have mentioned, the value of size in this system comes
from the rhythmic module. The result is show in Figure 13. A histogram of the output reveals a
shape typical of a binomial distribution. From this histogram one can easily recognize a centricity
in A.

As it was done with the fragment for the open system, I also propose to harmonize this
fragment. This time, for clarinet trio (two B[ clarinets and a B[ bass clarinet). The harmony will be
extracted from the melodic line using the criteria of complementary harmony taking as a reference
the same octatonic scale of the melodic line. The window size will be one measure, which means
that every measure will have an octatonic aggregate, i.e., the entire octatonic scale used in the
melody. The result is show in Figure 15.48

The third type of compositional system, according to our taxonomy, is the feedback system.

47Those are respectively operations 12 and 10 in the list of operations given at the beginning of this subsection
48A midi rendition is available at https://gitlab.com/musmat/open-compositional-system/-/blob/master/

binomiamelodia2_.wav

54

https://gitlab.com/musmat/open-compositional-system/-/blob/master/binomiamelodia2_.wav
http://www.musmat.org
https://gitlab.com/musmat/open-compositional-system/-/blob/master/binomiamelodia2_.wav


Journal MusMat • June 2020 • Vol. IV, No. 1

Pitch-class

Q
ua

nt
ity

Figure 14: The histogram of the system output revealing the binomial archetype and indicating a centricity in A.

%

%

>

31

31

31

Clarinet in Bα 1

Clarinet in Bα 2

Bass Clarinet

œ œ œα œα œ

œ œα
œ œ∀

Ε

q = 60

Ο

Ο

cresc.

œ œ œα œ œα

˙α

œ œ∀ −
œ

œ œ œ œα

ιœ −œα

−œ∀ Ιœ

ε
œα −œ œα

œ− œ− œα œ− œ

œ− œ− œ œ∀ − œα

Ο

ο

ο

cresc.

cresc.

cresc.

œ œ œ œ œα

œα − œα − œ œα − œα

œ− œα − œα œα − œ

œα −œ œα

ιœ œ, ιœα

Ιœ œ, Ιœα

œµ œ
Τ

œ œ œα œα
Τ

œ œα œα
Τ

ε

Ε

Ε

rit.
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Figure 16: A feedback compositional system with an addition operator

This type of system has the output reinserted in the input, establishing what is known as
iterative process.49 There are two possible subtypes of input: a stream of information (a MIDI
file, for example) or an initial trigger (an initial value employed only to start the process). The
compositional system shown in Figure 16 has as its input a MIDI file (the melodic line of the
previous example will be used). The output of the system is reinserted into its input. Both the
MIDI file and the feedback information are controlled by transmission gates.50 A square wave
controls the cycle input/output of the system, in such a way that when its value is 1, the input and
feedback ports are allowed to flow into the system and the output is blocked; when its value is 0
the input is blocked and the output flows. The system has one only operator that adds both the
MIDI file and the feedback and apply mod 12. Figure 17 shows a step-by-step cycle of operation
for the first five pitch classes inserted into the system. At the start, the MIDI file has pitch class 0
and, as the feedback has no value yet, an initial temporary value is given (0). These two values
enter the system and are added, yielding 0. This value flows to the output and is sent back to
the input. At this point the MIDI file has the pitch class 9, which is added with 0 (feedback
value) yielding 9, which is sent to the input again and added with the next pitch class read from
the file (10), yielding 7 (19 mod 12), and so on. Figure 18 shows the fragment produced by this
compositional system. The contours of both melodic lines (input and output) are shown in Figure
19. In those graphs, the x-axis corresponds to each event (i.e., first pitch class, second pitch class,
and so on) and the y-axis corresponds to the pitch class value.

The other subtype of feedback compositional system falls into a category known as chaotic
maps. Those maps may be classified in terms of the number of their space dimension. This is
an important factor for musical applications because the system’s output may be mapped onto
musical parameters. The output of a bidimensional chaotic map can be assigned to pitch and
rhythmic parameters, for example. With a four-dimensional map one may have pitch, rhythm,
dynamics and preset timbres controlled by its output. There are several known chaotic maps:
one-dimension (Gauss, Logistic, Lambic, etc.), two-dimension (Hénon, Mandelbrot, Lozi, etc.),
three-dimension (Lorenz, Ueda, Shimizu-Morioka, etc.) and four-dimension (Hyper-Lorenz,
Hyper-Rössler).51

49According to Miranda (2004, p.83), “an iterative process is defined as a rule that describes the action that is to be
repeatedly applied to an initial value x0. The outcome of an iterative process constitutes a set, technically referred to as the
orbit of the process”[27].

50A transmission gate works as an AND logic gate through which regular information (besides binary information) may
flow.

51It is also possible to find five-dimension implementations[40]
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Figure 17: Tracing the pitch class data within a feedback compositional system.
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Figure 18: The output fragment of our feedback compositional system using as input the melodic fragment of the

previous compositional system.
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Figure 19: The contours of the original melodic line inserted into the input of the feedback compositional system (left)
and the resulted melody (right)
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Table 1: The values of f (z) for c = 1 and c = −1.

c = 1 c = −1
zn zn+1 zn zn+1
0 1 0 -1
1 2 -1 0
2 5 0 -1
5 26 -1 0
26 677 0 -1
677 458330 -1 0

I will select the Mandelbrot map, which has already been largely applied to the musical domain
([5], [39], [15], [18]). The Mandelbrot map is a representation in the complex plane of a Mandelbrot
set M, “which is defined as the set of c ∈ C for which the sequence c, c2 + c, (c2 + c)2 + c, ... does
not tend to ∞ as n tends to ∞” [6, p.75]. Graphically, this set is located inside the black region
of the fractal structure shown in Figure 20, which is built computationally through the iteration
of the function zn+1 = z2

n + c. For z0 = 0, in each iteration, if f (z) does not tend to infinity c is a
member of the Mandelbrot set.52 Table 1 shows the values of zn+1 for c = 1 + 0j and c = −1 + 0j.
In the first case the function tends quickly to infinity and, therefore, 1 + 0j does not belong to the
set; in the second case the function is bounded and, so, −1 + 0j belongs to the Mandelbrot set.
Algorithm 1, shown below, receives the real and imaginary components of a complex number,
tests if this number makes the function "to explode" under a certain number of iterations (which
is also a value sent to this function), and returns the number of iterations, the complex number
and its modulus. The number of iterations will be used to fill in an array which will correspond
to the color of pixels in a screen. The black pixels correspond to the complex numbers that keep
the modulus of z equal or smaller than 2 under iteration. The real and imaginary components
of the members of the Mandelbrot set are extracted and assigned to pitch and duration (after a
normalization). The result (after metrical adjustments) is shown in Figure 21. One can clearly see
the intrinsic symmetry of the melodic line, a characteristic already presented in the fractal (Figure
20).

Algorithm 1 Mandelbrot’s algorithm

1: procedure Mandelbrot (R, I, max_iter)
2: c← complex(R, I)
3: z← 0.0j
4: counter ← 0
5: while abs(z) <= 2 and counter <= max_iter do
6: z← z2 + c
7: counter ← counter + 1
8: return count, c, abs(z)

52It is important to mention that if the modulus of z ever becomes larger than 2, the result will escape to infinity.
Therefore, the set is formed by the complex numbers that remain inside a region centered at the origin with radius 2 [6,
p.81].
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IV. Concluding Remarks

I have walked through various topics related to systems science and compositional systems. As
it happens to all theories developed by humans, the theory of compositional systems, which
appeared around 2009, is a work-in-progress and constantly benefits from the academic and
artistic interchange with researchers and composers, as well as from the contributions given by
my undergraduate and graduate students, who constantly collaborate with new ideas and pose
new questions and challenges that require adjustments and yield expansions. Therefore, I believe
that a mature formalization of this theory will be proposed in the near future. At this moment,
our role is to support it with experiments, research, and reflections in order to gradually bring it
to a more comprehensive, embracing and flexible state. One must remember that arithmetic and
probability were formalized as late as 1889 and 1931, respectively by Peano and Kolmogorov.

At this point, the focus is primarily the steady-state compositional systems in open, semi-open
and feedback formats. Exceptions are the few experiments with permutation systems (mobile
forms) conducted by one my graduate students.53 However, in those permutation systems, the
score, once produced, is fixed, and the various possibilities appear only during a performance. A
future goal includes research toward an elaboration of a score that could present changes over
time.

Finally, I am very grateful to my friends in mathematics and music research who solved many
of my questions related to formalization and notation during the process of writing this paper:
Petrucio Viana (UFF), Carlos Almada (UFRJ) and Francisco Aragão (UFC), who read the text and
sent detailed suggestions, and mainly Hugo Carvalho (UFRJ) who, in addition to reading the
entire text, carefully studied several mathematical aspects and discussed the best strategies to
make the formalizations clear and precise.
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Abstract: This essay intends to demonstrate that the very system that codified the rhythmic subdivision
subsumed to the metronome’s beat or pulse might offer, through its own mechanisms, a window to its
deconstruction and yet, to a new, intrinsic, development. When metric subdivisions occur that are farther
away from the metronomic beat’s referential, (as when rhythmic deviations by many sub-ratios accumulate
underneath a certain rhythmic figure), the performer experiences a cognitive loss in the sense of immediate
metronomic adjacency. New ways to perform a certain rhythmic outcome buried within the grounds of
complex subdivisions require mechanisms to momentarily suspend the main, overarching, beat, to impose
emergent, micro-metronomes. These devices are codifiers of speeds whose regularity opens up terrain for
new, rhythmical deviations and sub-ratios. They also allow the performer to negotiate between rhythms
that present diverging metric configurations, linking their speeds, through rhythmic bridges. As the
performer reaches these bridges, located at a deeper level of rhythmic subdivision, he/she ought to return to
the main metronomic surface using the speed managed within these momentary micro-metronomes. Such
performative and cognitive inversion, lies at the center of the Micro-Metric Modulation Theory.

Keywords: Micro-Metric Modulation. Ratios and Sub-ratios. Complex Rhythms. MicroMetronomes.
Diverging Metric Configurations. Commutative and Associative Properties of Rhythm.

I. The Metric Paradigm and the counting of beats

This paper intends to bring to the fore an unusual aspect of the metric unfolding: the one that
is not associated to an immediate correlation to the metronomic pulse. One that suspends the
rhythmic anchor of the pulsating metronome that regulates durations and rhythms in order

to negotiate new rhythms that are farther away from the metronomic reference, but encapsulated
in the inner musical fabric. What I am trying to show is that our usual way to deal with rhythms
offers implicit mechanisms that can be of great help to achieve a broader understanding of the way
the pulse is relative to its context and not an absolute construct that precedes every performative
action. When complex rhythmic situations are at play, performers deviate continuously from the
beat in order to go deeper within the interstices of a given rhythm. Consequently, a sudden loss of
correlation between macro (metronomic) and micro (ratios and sub-ratios) tempi, starts to tear the
musical logic of a predominant (above all) pulse, to entertain proximal references regarding the
agency of a neighboring subdivision. It is necessary, at farther deviations from the main beat or
metronomic pulse, to create emergent, new sub-metronomes that will function as an instantaneous
metric basis to perform a sound rhythmic correlation with the rhythm that immediately preceded
it. 1

*This article is one of the publications related to the III Congress of the Brazilian Association of Musical Theory and
Analysis (TeMA) / IV International Congress on Music and Mathematics, held in Rio de Janeiro, from October 21 to 25,
2019. Full information about the event can be accessed at https://ppgm.musica.ufrj.br/tema-musmat-congress/

1The system and concepts presented in this paper are developed from the author’s theoretical work on rhythm (i.e.,
Micro-Metric Modulation), and reflect some of his compositional and poetic practices (see [6] [7] [8] [9]).
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i. Il Tempo de la figura (after Ferneyhough)

Figures 1 and 2 demonstrate the way a rhythm grid appears to an interpreter firstly anchored in
the metronomic pulsation to slowly loose its reference relative to the said pulsation when new
subdivisions farther away from the reference beat, start to appear.
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= 40�
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Figure 1: Stronger to weaker relation to the Metronome given pulse/speed. However, they keep their tight correlation
with the initial metronomic pulse as they present a clear base 2 subdivision with the initial beat/speed

Note at Figure 1 that all the subdivisions are tightly correlated with the pulsation or the feeling
of the main beat, which is the metronome. Even when smaller subdivisions are required they
keep a strong reference to the metronome marking because a) they are direct subdivisions (halves
and halves of halves) of the metronomic beat and b) because they act as a perceptual gestalt, that
re-spells the main beat through a regular span (or distance) whose return is clearly expected even
when smaller subdivisions are at play. Although rhythmic unfolding within a regular beat might
contain irregular pulsations (i. e., a 2/4 bar can also be felt as the conjunction of a 3 + 5 rhythmic
accentuation of dislocated sixteenth-notes) they are still under the spell of a propulsive metronomic
regularity that reaffirms itself at each rhythmic cycle. This is extremely important for performers,
since they can coordinate their respective and independent inner rhythms, the micro-fluctuations
that their parts might contain, with a projected sum given by the main metronomic beat.
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Figure 2: Levels of subdivision: a) Zero or Neutral Level. b) First level of subdivision. c) Second level of subdivision.
d) Third level of subdivision. e) Fourth level of subdivision.

At Figure 2, a similar process is at play initially. Even if irregular subdivisions of the main beat
(like 3 eighths in the space of 2 eighths) appear, this first deviation is still strongly related to the
speed of the metronomic beat. Only when the process starts to acquire a further redundancy and
the deviations are compressed towards an irregular part of the figure (like the ones found on the
second, third and fourth levels of subdivision) then our notion of a projected beat defaulted by
a predictable rhythmic regularity of the figure starts to weaken. As the main metronomic beat
suffers an acceleration when novel subdivisions are formed, we are caught between two metric
pulls: a suspended beat coming from the metronomic speed, and the inner metric subdivisions of
the rhythmic figure. Notice that the metric figure is not a slow accelerando politely written and
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following therefore an even scale of speed. It is a metric route that demands specific rhythmic
contours. To recap: while the metronomic beat acts as a frame of metric reference towards
which all rhythms are subsumed, it is, nevertheless, slowly suspended when new metric deviations
are called forth. Thus, in order for the performer to mediate between the idea of an even out
acceleration whose purpose is just to cover the space of the metronomic beat, she/he will have
to articulate such acceleration according to specific rhythmic demands written within it. This
dichotomy between prospective, overarching beat, and the inner complexity of figural speeds,
entails a mechanism that must be accounted for when there is the need of any type of rhythmic
carving in the path of performing the figure and thus, crossing the span/speed of the metronomic
beat.

� �� � � � � � � � � � � � �
7��
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a) b) c)

Figure 3: Differing levels of speed to traverse the second half-note beat of the bar: a) First level of subdivion accelerates
from metronomic beat’s speed. b) Second level of subdivion decelerates (slower pulse than 1st level). c) Third
level of subdivion accelerates. Faster pulse than the second level.

What exactly does that mean for the mind of the performer? It means, as shown in Figure
3 at second half-note beat, that a gestaltian comprehension of the path to be covered can’t be
solely overcome by the maintenance of the metronomic beat irrespective of the inner mediations
of figural demands. Thus, a new concept emerges here where the prospective acceleration must
be halted by the understanding of which speed exactly is the performer deviating from. As we
can see, the performer can’t simply accept that all rhythms accelerate towards a prospective beat
in a random, or regular, speed. She/He ought to consider which speeds are being required so
that every step is compatible with the inner logic, or rhythmic design, of the figure. Therefore, a
new strategy to cross a specific metric figure emerges, one that creates instantaneous spans similar
to the metronomic beat, that again, offers to the performer a new metric hierarchy from which
a specific rhythmic speed will be articulated and properly fit. Notice too, another tantamount
aspect regarding the flexibility of the rhythmic figure within this process. At the second-level
of subdivision (4 notes in the time of 5’s ratio) the rhythmic figure acquires a distinct metric
configuration and it is shown as a quarter-note value instead of an eighth-note. This might seem
to contradict somehow, at the level of figural representation, the first ratio layer, which is supposed
to be slower than the second. Here, it is necessary to understand that similarities between figural
representation and a hierarchy of speeds is illusory within the very system of metric subdivision.
That’s a lesson hard to be understood by the performer’s intuitive grasp of rhythm, many times.
It comes from the simple principle that any metric figure maintains its figural identity until it is
twice as fast or twice as slower than its current configuration. Thus, a stream of sixteenth-notes,
for instance, starting with 4 sixteenth-notes, won’t change its configuration till it reaches a speed
twice as fast, becoming finally a thirty-second note rhythmic figure. The same process happens in
the slower direction. So, for instance, when a triplet that fits a quarter-note’s duration is shown as
a rhythmic figure comprising 3 eighth-notes and not 3 sixteenths it is because the quarter-note
is first divided in half by two eighth-notes, then in three equal parts by 3 eighth-notes, and only
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when it has to fit 4 notes it acquires the figural representation of the sixteenth-note since it is twice
as fast as the eighth-note. This logic serves for us to understand that when a slower tempo is
called forth, as in the second-level of Figure 3, it is a consequence of similar process. It is easy to
understand such process just noticing that the 5 eighth-notes (span of the ratio) might only double
its figural configuration when reaching a next level of sixteenth-notes. Till then, it maintains the
same eighth-note configuration. Only at the point that 10 sixteenth-notes occupy the same space
as 5 eighth-notes, a new rhythmic configuration is formed. Thus, 4 quarter-notes belong to a
metric hierarchy that precedes the rounding off tempo of 5 eighth-notes, as they come from a
slower figural configuration. (Figure 4).

a) b)

c)

Figure 4: a) Span of the figure (5 eighth-notes). b) It will only change its rhythmical configuration when it reaches a
speed twice as fast becoming a sixteenth-note (10/16 bar). Thus, it is possible to see that the 4 quarter-notes
placed as sub-ratio (see Figure 3), are simply the twice-slower configuration of the 8 eighth-notes of the 8:5
ratio. c) 4 quarter-notes from a slower rhtyhmic layer forming the ratio 4:5 instead of the 8:5 above

While in Figure 3 a constant negotiation between accelerandos and decelerandos is shown in order
to cover the whole span of the beat, at Figure 2 a straight metric acceleration proposes a diverse
rhythmic trajectory. Both examples, however, oblige the performer to halt the speeding up strategy
according to an emergent metronome found at a deeper level of the rhythmic unfolding.

Thus, as we can observe at the last quarter (beat) of Figure 2, there are four types of metric
accelerations being woven by the performer to cross this figure.

a) At the first-level of subdivision the performer is deeply connected with the metronomic beat
from which rhythmic deviations are managed;

b) At the second-level of subdivision a new span hierarchy is at place: the performer has to
mediate between the span of the metronomic beat, and the span of a part (two-thirds) of the
triplet that was just managed at the first level of subdivision. At this point, a new quarter-note
emerges. It is the result of the addition of the last two eighth-notes of the triplet. Note
that this emergent quarter-note is not subsumed to the metronomic hierarchy’s immediate
subdivision, and therefore exhibits a different span/speed, even if its figural embodiment
has an identical metric/figural correspondence with the metronomic quarter-note;

c) At the third-level of subdivision, the new triplet is found when the performer carves a new
span or a new frame of metric reference out of the last two eighth-notes (or legs) of the
triplet (located at second level of subdivision) in order to be able to fit its new triplet within
these last two eighth-notes or legs of the figure. Again, this is managed through a similar
method used above to acquiring a new quarter-note span out of the last two eighth-notes of
the second-level triplet;

d) At the fourth level of subdivision the same method ensues. However, at this time, a new
metric configuration is called forth. One that requires a quintuplet-sixteenth as the last
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rhythmic subdivision before a new prospective beat at the upper or neutral-level of the
metronome marking is reached.

The propelling energy of the metronomic span encapsulates a regularity that coordinates all
types of subdivisions found within a regular beat. Only when under the spell of a metronomic
regularity we manage to pre-calculate the necessary steps we will need to cross it, no matter if
these steps are built with regular or irregular subdivisions of the beat. Thus, with the reference of
the metronomic beat it is equally possible to envision a strategy, given a certain amount of time or
a specific span, for taking for instance, either seven steps (septuplet-sixteenths) or four steps (four
regular sixteenths) to effectively cross the proposed beat or the metronomic span.

To make things transparent, under a certain metronome we have regular subdivisions of
eighths, sixteenths, thirty-seconds, sixty-fourths or, for that matter, even slower values like the
half and whole, notes, as shown in Figure 1. This simple fact underlies a theoretical construct
that foments rhythmic contrast and diversity within the combinatorial vectors of the Western
Music’s rhythmic practice. They act as well as a great cognitive glue to arrange packets of diverse,
albeit limited, number of figures in repetitive gestural ‘condensates’ which reinforces mechanical
associations with a cemented understanding of rhythm.

Nevertheless, it is possible to combine these regular subdivisions of the main beat to forge
a rhythmic discourse of highly contrasted semantic outcomes. More, these rudimentary tools
of treating time as a regular multiple or divisor of the main beat, entail a huge combinatorial
output. However, as much as the contrasting potential amounts to a great metric flexibility of
the rhythm, they reveal, as well, an underlying understanding of meter that becomes detached
from the way Time, as a general and multidimensional phenomenon, behaves and unfolds. In
fact, they promote a deviation from the rhythmic units that, in themselves, are just isolated
syllables of a yet non-spelled aggregate. In order for these rhythmic units to transpose their mere
mechanical and arithmetic relationship they need to create a hierarchy of figures that become
associated with gestures that fit the metronomic span. For instance, they can unite to create diverse
arrangements of the units used for subdividing time: syncopations, an eighth-note followed by
two sixteenth-notes, four sixteenth/thirty-second/sixty-fourth-notes in a row, among innumerable
arrangements. They start to point to a state-of-affairs where the very apprehension of time is
mediated by the perceptual gestalt of the figure as a unit. As they condense the inner rhythmic
flexibility given by isolated subdivisions of the beat (no matter which particular one is being
used), a higher order of hierarchy is foregrounded to the performer’s perceptual apprehension.
Some of these units, when placed together, or adjacent to each other, form gestures that suspend
momentarily the counting of micro-rhythms derived from the beat’s speed. They enhance the view
of a larger or higher gestural coherence, creating a quasi-mnemonic association with a specific
rhythmic object. Similar to the way we understand words within a phrase. We are not spelling
every letter in order to construct the word. We are apprehending a syntactical rule that underlies
such construction or correlation. In fact, seeing a known arrangement of rhythmic units can be
compared to dealing with pieces of legos. These small pockets of information become, by and
in themselves, the very underlying fabric of rhythmic construct. As we can see, there is a slight
departure of the metric subdivision principle, to favor the faster apprehension of information as a
whole. One that is build (or cemented) in known monads of gestural and figural detachment. The
cognitive apparatus of the interpreter apprehends such new metric hierarchies as a gestalt, and it
is brought, by fastidious practicing, to the level of ergonomic memorization. Scales and phrases
are formed to guarantee the agreement of a diverse arrangement of these types of second-order
metric aggregates. Consequently, an aesthetic is built based in the modular rationalization of
information into contrasting and yet, repetitive possibilities. Such state-of-affairs is none but the
embodiment of a comprehensive, privileged, view, that divides the world into poles of assimilation
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and irrelevance. There is much more in the story/history of rhythmic unfolding than a mere
theoretical construct of base two might address in spite of its arithmetical neutrality. And I advance,
that no system, no matter how comprehensive, will be able to provide a complete apprehension of
time within any graphic or written, representative, model.

ii. Towards a parametric interchangeability of tempo, meter, figure and duration

After the above intro and a rudimentary demonstration of the evolving state of metric subdivi-
sion within Western Music, emphasizing the very system’s apprehension and appropriation of
time/duration, it is possible, at least tentatively, to peruse a more general understanding of some
of the implications of metric subdivisions. Regarding new possibilities of the metric unfolding it is
important to understand the contrasting and very practical aspects that differentiate the concept or
parameter of span from the concept or parameter of rhythm. Span means, literally, the full extent of
something from end to end; or, in other words, the full amount of space that something covers. In
musical terms, span might be seen as accretions of rhythms whose durational trajectory traverses
a certain amount of time. For our purposes in this paper we will simply state that the accretion of
speeds that differ from each other in terms of non-correspondent numerical/rhythmical scales are
boundaries that lie outside the scope of a specific, regular, stream or span. A span must have an
underlying common denominator speed that is graspable by a specific rhythmic figure. While
we can measure the span that a regular pulsation of sixteenth-notes covers (for example, 3, 4
or 7 sixteenth-notes, at Figure 5a), we can’t possibly grasp (within the musical framework) the
durational span that starts, say, at the third quintuplet-sixteenth of a quintuplet rhythm and stops
at the 5 th septuplet-sixteenth of a septuplet rhythm (see Figure 5b). The latter does not cohere
as a regular totality from which we can calculate a homogeneous quantity having a common,
underlying rhythm.

Figure 5: a) Representation of a regular span from which a new subdivision might occur. a1) Metric span coherent to
be notated as one isolated, whole, rhythmic figure, a dotted-eighth in this case. We can add any amount of
notes from this regular pulsation of sixteenth-notes to create a regular stream/span from which new rhythms
can be inferred from. b) Undefined metric span not coherent to be notated as one isolated rhythmic figure.
b1) What’s the size and figural representation of this span? With which coesive and regular rhythmic figure
you can cross this span? Not possible since it accelerates and looses common ground from which you could
deviate from. b2) Undefined metric span not coherent to be notated as one isolated, whole, rhythmic figure.
While the total of the span can be thought of as an addition of two distinct rhythmic figures they can’t cohere
into a specific rhythmic unity since they belong to two differing metric hierarchies or two unrelated scales of
speed.
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The second parametric aspect of time is rhythm. Rhythm cannot be understood as a diverse
pull of quantifiable elements forming disconnected aggregates. It is not a mere game of accretions
and eliminations whose parametric independence might be measured as an isolated layer of
materials. As said before, all elements of duration are interconnected. (We also know that we
can define rhythm as the speed of frequencies that, if above a certain acoustic threshold, enables
the perceptual foregrounding of pitch, another parametric strata of time.) At a very basic level,
rhythm is but the intervallic obviation of flowing time, not its concrete representation. It is
possible to demonstrate even rudimentary that rhythm can be understood, at a primary level, as a
metric concomitance with the metronomic speed. At that point, the metric parallelism between
metronome and rhythmic pulse is leveled. Both are heard as one. The maintenance of musical
duration is given by a periodicity that needs to reenact itself to reacquire musical pertinence. In
order to re-potentialize the audibility of a repetitive chunk of information that otherwise would
fade in the acoustic background, it is necessary the introduction of small disturbances. Therefore,
whenever a rhythmic deviation from the beat is introduced we start to hear back the very beat.
The idea of rhythm as an intervallic default of the metronomic is more akin of my understanding
of the concept of rhythm. And it makes it less petrified and more fluid to the idea of parametric
interchangeability. Between the vertical prospectiveness of the metronomic and the horizontal
filling of micro-units of time, lies no boundaries. The musical figure might be re-contextualized
and detach from the grip of the regular metronomic subdivision when the metric figure itself
contributes to create an independent, asymmetric level of perceptual spans that neutralizes, at
least temporarily, the regularity of the overarching, metronomic, beat/speed.

Figures 6 and 7a illustrate two instances of parametric interchangeability: one of metric subor-
dination (Figure 5, where rhythm is presented as a polyphonic strand), the other of detachment
(between metronomic prospectiveness and rhythm-as-new-metronome), where the eruption of
asymmetric figuration starts to impose itself as perceptual irregularities. At Figure 6 two scales of
metric units are at play: one (sixteenth-notes) belongs to a regular, repetitive unit, that divides
the metronomic beat into small equal parts. Running in parallel and below it (bass line), we
find rhythmic figures of differing spans. These figures present either regular or irregular sizes
or durations. However, under the performer’s perspective, these accretions of notes are not
immediately perceived as a metric discrepancy weakening the main beat’s coordinates. They are
polyphonic strands still subsumed to the underlying stream of sixteenth-notes and therefore seen
(or read) as a part of the beat’s metric unfolding and regularity.

Figure 6: Polyphonic strand of linked rhythms forming the bass line. They are just regular and irregular spans
subsumed to the beat’s subdivisions. Because of their strong connection with the Metronome’s pulse they are
not seen as detached, independent, isolated, rhythms yet.

Notice, at Figure 7a, that when the bass line is written in such a way as to tentatively forge
independent, more autonomous rhythmic figures, a new layer of information erupts, one that
departs from the immediate tutelage of the counting beat. Their sudden graphic autonomy forming
a metric scale that begins at an eighth-note and reaches the doubled-dotted quarter-note shows the
totality of a rhythmic figure not obviously subscribed to a part of the beat’s metronomic pulsation.
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This clearly points out to a privileged stance of parametric interconnectedness: the rhythmic figure
carved out of the metronomic pulse might acquire an implicit role as potential new metronomic
span. Here, a new paradigm is at play that although not contradicting the pulsation of the main
beat or metronome marking, weakens nonetheless, the feeling of regularity and prospectiveness.
Thus, they can be suddenly understood as irregular accretions, becoming somehow anti-intuitive
for the performer and consequently, not necessarily being felt as part of the metric narrative of the
metronomic beat.

a)

b)

Figure 7: a) The rhythmic figure within a specif metronomic marking (bass line) might be seen as a potential new
Metronome Marking (MM). b) Below the bass line detached from the sixteenth-notes’ context shows a clear
independence and can acquire the dimension of durational span itself.

These new durations might be considered as a quasi second-level of rhythmic deviation and
are, in themselves, spans that might function as the base or reference for further deviation. In
fact, the perception of fertile ground for deviation indicates that an independent terrain is available
to insert novel rhythmic variations. They are the result of a cognitive inversion where the inner
time of rhythmic units starts to be perceived as nodes of metric coordination, or small metronomic
fields. What was initially seen as the very codification of purely gestural affairs, acquires now a
privileged, metric, autonomy where new materials will reinstate with devious, clever, features, a
subliminar metronomic pulse, reenergizing the underlying pertinence of the metronomic beat and
the coherence of the musical.

Again, at Figures 7a and 7b the metronome marking placed below each rhythmic figure
indicates, precisely, the amount of time necessary to cross a certain sum of sixteenth-notes under
a specific, overarching, metronome marking. Thus, each MM can be understood within two
immediate levels:

a) They reflect the speed of the sixteenth-note (taken here as a temporary figural unit) under a
certain metronome marking (in this case quarter = 72);

b) They can also become in themselves, a sudden metronome, whose figural representation
might be equally seen as a new quarter-note if there is a metric modulation to the span
shown by them. For instance, a dotted eighth-note under the metronome marking of quarter
= 72, shows a (faster) sum of MM = 96. Its figural representation is, therefore, of a dotted
eighth-note. However, if I want to metric modulate to quarter = 96, the figural representation
of these three sixteenth-notes’ aggregate that fill the dotted-eighth under MM=72, ought
to suffer a new figural representation when addressed as quarter = 96 and, under such
metronomic beat, it will be seen as an eighth-note triplet (Figure 8).
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Figure 8: Metric equivalency between distinct rhythmic figures: a dotted-eighth MM = 72 is rhythmically identical to
a quarter = 96. Thus, the sixteenth-note and the triplet share a similar rhythmic speed

There are three variables that work together to coordinate rhythmic hierarchies. At the primary
level of duration, we will encounter the metronome marking variable, setting the overall speed of
the (regular) beat, under which all other rhythmic elements will be subsumed. The second element
is the meter (time signature) where a certain amount of rhythmic information will be squeezed
into such that it creates perceptible (or countable) frames of reference to the fluency of musical
materials. It functions as a type of sieve (filter) where groups of notes can comfortably fit and
accommodate a certain number of beats, or part of it. It promotes the understanding of phrasings
as well, as it helps to pack rhythm in diverse monads of energy, justifying the underlying waves
of the text’s semantic fluency and rationalizes the distribution of information. The third aspect
is the musical figure (i.e., rhythm) as the residual consistency of periodic quantities whose fast
parametric coordination exhibits the most condensed way to join spans of divergent speeds. It
works by conjoining or atomizing a diverse array of durations derived from subdivisions of the
main beat, forming small groupings of regular or irregular assemblages. These variables, seen
initially as independent parameters, are co-dependent and work as the underlying fabric of our
apprehension of time and durations. Figure 9 shows the parametric exchange between rhythmic
figures.

Figure 9: Parametric exchange between rhythmic figures.

If every span derived from Figure 9 is understood as a new metronome marking, and not
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uniquely as a rhythmic figure merely subsumed to the metronomic time, whose intrinsic duration
covers a certain amount of sixteenth-notes, then we are forced to reconfigure the two other
variables of meter and rhythm in order to create a new environment and presentation for that
specific durational quantity. Thus, while the equivalency of durational quantities is maintained
across two different rhythmic configurations (or metronome markings), their figural and metric
representations are now re-contextualized under a new beat or metronomic speed.

Notice, at Figure 9, how we depart from the very tiny figure of the sixteenth-note under the
metronome marking of MM=72 to a first equivalency that transforms the speed of the note (that
runs at a speed of 288 beats per minute, which is 4 x 72) into a new metric coordinate redressed as
metronome marking. Not only that, we decided arbitrarily and for the sake of clarity, to suppose
that this new metronome is relative to a quarter-note figure. (We certainly could have decided
that it belongs to any other figural equivalency: either an eighth-note, a dotted-eighth-note, a
whole-note, etc. And this would imply a distinct reconfiguration of meter and rhythm, obviously.)
The new metronomic quarter-note that beats at the speed of 288 beats per minute, has to manifest
itself under a new metric and figural representation. Having a metronome of 288 implies that
the quarter-note is fitted under a specific metric frame that is subsumed to a clear metronomic
correlation. Thus, I could choose any time-signature that has the capacity to encapsulate such
quarter-note. I can fit it in a 1/4, 2/4, 3/4, 4/4, etc., bar, under MM=288. I choose a 4/4 bar
to keep a strong equivalency to the metronome marking’s span of 72 where 4 sixteenth-notes
suffice to be encapsulated in the total metronomic span. The next figure which transforms the
speed of the note into a new metronome, has similar characteristics, as it is strongly related to a
regular part of the beat. The same operation ensues (2 x 72 or 288/2 = MM=144). Here, the span
acquired is equivalent to the exact span of 2 sixteenth-notes under MM=72. Again, I create a new
quarter-note metronome and consequently a new metric frame of reference in order to fulfill an
entire beat. My choice of bar is relative to context but is still strongly related to the beat hierarchy
as it maintains a regular coordination with it. Again, under MM=144, I choose a 2/4 bar, since a
quarter-note in MM=144 fills the equivalent span of an eighth-note under MM=72. But since I
want to cover the MM=72 span I add to the bar one extra quarter-note/beat. Next, I have a dotted
eighth-note, an irregular quantity formed by the sum of 3 sixteenth-notes under MM=72. The
span of such figure is MM=96 (MM 72 x 4/3). This span can also be converted into a quarter-note
durational/metronomic span. Such choice is deliberate in order to exemplify a new exchange that
happens this time at the level of the figure itself. When choosing to represent a dotted, irregular
figure, into an equivalent one however subsumed to a regular representation (a quarter-note), I am
obliged, as well, to reconfigure the rhythmic figure and the time signature in order to fit it within
this new metronomic marking. So, if my new quarter-note metronome indicates a speed of MM
= 96 beats per minute, I have to fit 3 notes under this beat. When my metronome marking was
MM=72, I needed 3 sixteenths-notes to fill that figure. As my new metronome marking is quarter
equals MM=96, the three sixteenth-notes have to change their figural representation in order to
acquire a metric correlation with the new metronome. Thus, if three equally spaced rhythms have
to fit this new quarter, I can only place an eighth-note triplet as a valid figural equivalency with
the speed of three sixteenth-notes under MM=72.

The precedent demonstration brings us home towards the understanding of the equivalencies
and discrepancies between rhythms and metric figures. It implies the parametric interchangeability
as a temporal given under which the hierarchization of figures and speeds are subsumed to a
flexible coordination of variables. When one aspect of the durational hierarchy is changed all
others follow suit and exhibit a novel configuration either at the metronomic, metric or rhythmic
levels.

Figure 10 illustrates a typical metric modulation between MM=60 and MM=75. To pass from
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Figure 10: Realization of sharing possibilities between meter, rhythms and metronomes and calculating the parametric
exchange between the components of duration.

the first MM to the next, it is necessary to understand how these two metronomes connect through
a common denominator’s speed. For that, it is necessary to factor each metronomic number
in order to find how they are formed and their numerical similarities. Below, the resulting
factorization of each MM: 60

75 = 2235
355

Since we are going from MM=60 toward MM=75, we are trying to subdivide 60 into 75. Or to
be more transparent, we are trying to figure what type of operation will enable us to match their
speeds. When numbers are factorized they exhibit the building blocks of their total span/speed.
For example, 60 is first divided by 2, resulting in = 30; then it is again divided by 2, because 30
is still a multiple of 2 and therefore can be divided by it which results in = 15. At this point the
smallest prime factor of 15 is 3, (not 2) which results in = 5; finally, 5 is only divided by 5, which
brings the division to an end, as it results in = 1. If you do the same operation for the denominator
which is 75, you will obtain the three lower numbers in the fraction above (3, 3, 5). At this point
we can see how these numbers match into each other. Thus, if a fraction contains 3 at the top
and 3 at the bottom these numbers can be scratched off as they cancel each other. The same
happens with the 5 located at both, the top and bottom of the fraction. What is left is the most
condensed form of the fractional expression between both, numerator and denominator, which
is 4

5 because we can’t eliminate the 2’s in the numerator as there are no 2’s in the denominator
neither the 5 in the denominator for similar reason. The 2’s in the numerator are then multiplied
and become a 4. At the denominator, the only number left is the 5 as the other one was previously
cancelled by its counterpart at the numerator. Now, we can clearly see through this fractional
expression, that in order for one to go from MM=60 to MM=75 and even out their speeds, or, in
other words, to match them, it is necessary to multiply (or accelerate) MM=60 by the 4

5 fraction.
That amount will suffice to find common rhythmic ground between both metronomic speeds.
I want to use the example just discussed to call attention for the final figural representation of
both bars shown. If I may use a bit of poetic license to illustrate the operation, I could describe
it by saying that an invisible knob was turned so that MM=60 is now suddenly seen as MM=75.
What happens next with the other parameters when basic speed information is changed? The
metric machine is now obliged to convert meter and rhythm as well in order to convey the same
relationships we found previously when our metronomic beat’s pulse was at a slower speed. Note
that at MM=60 we have a meter/bar of 2/4 (that could be either 8/16 or 4/8), and a rhythmic
stream of quintuplet-sixteenths. On the side of MM=75 we will encounter a completely different
configuration for meter and rhythm. This points already to the fact that the rhythmic figures
that exhibit dissimilarities in their presentation or configuration, are not necessarily implying
discrepancy of speeds. An eighth-note under a certain metronomic speed or under a sub-ratio
(which can be seen as another buried manifestation of a metronome) might be faster than a sixteenth
note under a slower metronomic tempo or a comparative rhythmical (sub-ratio) speed.
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There are many strategies for sharing rhythms and we could therefore program them in endless
ways (Figures 11, 12, 13, and 14).

Figure 11: Micro-Metric Modulation: The exile of the metric in the dance of pulsation

The sharing strategy is a fundamental feature to understand the unfolding of the rhythmic
parameter within the Western Music’s practice. At Figure 11 we are showing the distributive aspect
of factorization. This means that I can express the metronomic speed using any number’s product
within the smallest prime numbers found within a metronome’s factorization. Without changing
the total of the factored number it is possible to show any arrangement of numbers that presents
the same result, if multiplied. This implies a very important feature inscribed in the factorization:
that the amount of numbers found within it reveals the maximum levels of subdivision within
which such number can be dismembered. Thus, at Figure 10, the factorization of both metronomes
(MM= 40 and MM=63) shows the smallest prime numbers for each of these speeds: 40

63 = 2225
337 .

Initially, the factorization shows that there are at least four layers of possibilities to account for in
the distribution of the metronomic fraction. (These layers by the way, map the numerator into the
denominator, as I will soon show.) No matter how we shuffle their order of appearance, we will
have a maximum of fractional configurations conditioned by the metronome which presents a
larger amount of numbers. To exemplify:

a) Layers of configuration and mapping: The fractional configuration that maps 40 into 63 can
be expressed into a maximum of these four levels: 40

63 = 2
3 · 2

3 · 2
7 · 5

1 . Shuffling imparts no
alteration of results for mapping 40 into 63. Thus, the above fraction could also have an
alternate order: 40

63 = 2
7 · 2

3 · 5
1 · 2

3 . Obviously, that this is a mathematical redundancy. But in
musical terms some aspects of this mathematical nonsense can be extremely fertile as it will be
soon shown, and express a new layer of information buried within a new metric shift, or
configuration.

b) The distributive factor: Taking these numbers into account means that every arrangement
of them is a valid configuration of the total of the metronome’s product. At the first
numeric row at the Figure 11, we can clearly see that we had distributed the factors of both
metronomes into two fractions, each being a part of the total product found within their
respective numbers. Since the order of the factor does not alter the final product, we are able
to exchange their positions at will. Again, what is a mathematical redundancy becomes a
fertile strategy to deal with rhythmic outcomes. Figure 12 illustrates the 4 possibilities of
distribution found within the arrangement of the fractions. Note that there are 4 rotations
for the fraction:
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Figure 12: Fractional Rotations and novel rhythmic outcomes.

At the examples of Figures 11 and 12, all the operations are done in order to alter the speed
of MM= 40 such that a certain rhythmic output is generated that maps this metronome’s speed
onto the other. However, such mechanism can be easily distributed between both metronomic
speeds such that operations are equally shared between both sides of the metronomic chain. To
recap, from MM= 40 to MM= 63 we kept the numerator as the departure metronome and the
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denominator’s speed as the arrival point. The arrival metronome didn’t go through any type of
metric alteration to match the departure metronome. In order to distribute the rhythmic layers
between both we need also to create the conditions to map the MM= 63 speed onto the MM= 40
metronomic speed. As we invert the metronomic positions (numerator goes to denominator and
vice-versa) we are able to forge a rhythmical bridge towards the slower metronome. 63

40 = 337
2225 . It

is important to see that mapping one number onto another implies cancelling each other’s till no
number is left. Figure 13 shows some examples where both metronomes are rhythmically twisted
such that the resulting speeds of each separate rhythmical configuration maps onto one another.
This is the principle of Micro-Metric Modulation as we have more than one layer to map at the
sub-ratio level and we are not necessarily addressing just metronomic changes.

a)

b)

Figure 13: Mapping strategies to bridge speeds between both sides of the rhythmic chain. a) The two-level ratio at the
MM= 40 maps onto the one level ratio at MM= 63.Note that instead of simply matching the Metronome’s
speed at the other side/bar, the two-level figure at he first bar addressed the one-level, irregular, rhythmic
figure, at the other side under a distinct metronomic speed. b) The one-level ratio under MM= 40 maps
onto the two-level ratio at MM= 63. Note that the rhtyhm is distributed between both metronomic speeds.
Beyond that, the metric figure at the first bar does not match a similar rhtyhmic figure at the other. Its
eighth-note configuration does not match the quarter-note figure on the other side, even if their speeds are
the same.

Whichever fraction is used in one side it is immediately cancelled or eliminated on the other.
Above, the first two fractions at the 40

63 side are used to form both ratios (3 eighth-notes in the space
of 2 eighth-notes); thus, they are scratched at the 63

40 side. At the second bar we used the 7
5 fraction

cancelling out these numbers at the left side ( 40
63 side). Proceeding that way, all the numbers that

map one metronome onto the other were used in a distributive fashion. Such operation opens up
huge metric possibilities using an elegant formula to bridge rhythms that present distinct metric
configurations. And this led us to the Micro-Metric Modulation perspective/theory.
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The method for finding similar speeds or a numeric equivalency between rhythms is clearly
demonstrated by a simple mathematical device: the commutative and associative properties. Any
number can be dismembered in smaller multiples. As seen in the previous examples, when
fractional representation of larger sums were shown as the product of smaller quantities it became
clear that in order to bridge and match rhythmic speeds, it was necessary to coordinate variables
found within the metronomic pulse, the meter, and the metric figure context in order to bridge
speeds and irrespective figural configurations. Mathematically, the commutative and associative
property guarantees that the order of factors will not alter the final product. Therefore, [4 x 5/6]
= [4 x 6/5] = 30 for both. The final product of both equations can be easily seen represented in
Figure 14.

Figure 14: Commutative and associative properties applied to rhythm: equivalency of speeds on both sides of the ratio
chain.

At the first quintuplet figure the following result was produced: MM60 x 5 quintuplet-sixteenths
= MM=300 for each “leg” of the quintuplet sixteenth. Then, we need to acquire the span of 2
quintuplet-sixteenths to fit 3 sixteenth-note triplets within the same space. The span will be twice
as slower 300/2 = 150. After that, we multiply the span of 150 x 3 sixteenth-note triplets = 450.
That’s the maximum speed reached by the first quintuplet figure. The same is done with the next
6:4 ratio. MM60 x 6 = 360/4 (to calculate the span of 4 sextuplet-sixteenths = 90. Within this
span we need to fit 5 quintuplet-sixteenths. 90 x 5 = 45 which again confirms the matching of the
sub-ratios’ speed at both sides of the ratio chain. The operation illustrated above, a typical example
of Micro-Metric Modulation, exemplifies some of the most important attributes of rhythmic/metric
unfolding:

a) The common route or rhythmic bridge between apparently differing configurations is able
to link rhythmically these configurations, offering enough ground for further subdivisions
to occur since all the rhythms conjoined by the total span located between both rhythmic
configurations can be subsumed to rhythmic deviation, or new metric subdivisions.

b) That in order to enter the next ratio (6:4) a new perspective is given to the performer. She/He
has to be able to lift the overall metronomic pulse to blindly enter the next sub-ratio and
consequently, the terrain of the next rhythm, attaching him/herself to the speed generated by
the sixteenth-note triplets located under the first quintuplet figure. That way the performer
can be sure that rhythmic precision linking both configurations is attained. As she/he enters
the next rhythm through a sub-ratio the performer will be forced to reconfigure the span
to be crossed. In the above case, when she/he enters the 6:4 ratio at the right through a
sub-ratio of quintuplet sixteenths, it will be necessary to figure the “emergent/temporary
metronome” of a quarter-note since she/he is crossing exactly 4 sixteenth-notes belonging to
the 6:4 ratio above. At this point, there is a strategic counting inversion taking place. In order
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to reach back to the rhythmic surface the performer has to understand that the emergent
quarter-note just crossed indicates the rhythmic equivalent of 4 sixteenth-notes under a 6:4
ratio. But being currently subsumed to a subdivision that fits the surface’s ratio rhythmic
grid, it becomes easier to calculate the speed of the last two sixteenth-notes at the end of the
6:4 ratio - as they belong to the surface level of the very ratio (first level of subdivision).

The theory of Micro-Metric Modulation has a huge wealth of resources to bridge dicothomic
figures of regular or irregular configurations as it calculates common rhythms with corresponding
speeds. The most important feature opened up by such technique, one that brings immense
possibilities to the development of Western Music’s rhythmic canon, relates to the passage of
sub-ratios between differing ratios’ configurations. That is a first in Western Music showing the
flexibility not yet thoroughly exploited within the musical metric system. I would like to end this
essay with an example of this very last, unique rhythmic feature, I used in several of my pieces. 2

In the piece “. . . B. . . ” for 10 instrumental soloists, video and electronics premiered in 2012 in
Darmstadt by the Linea Ensemble of Strasbourg, it is possible to notice the passing of sub-ratios
within sub-ratios as the common rhythm between these configurations was known (Figure 15a
and 15b). First an isolated case to make the feature clear and subsequently the first metric page
of the score where these novel rhythmic techniques are used simultaneously by the instrumental
forces (Figure 16).

a)

b)

Figure 15: Fragment of “. . . B. . . ” for 10 instrumental soloists, video and electronics (2012) from the horn and the
trumpet parts. Premiered by Linea Ensemble of Strasbourg - Darmstadt (2012). Differently from the
crossing of the sub-ratio at the top staff, the bottom staff places its sub-ratio of three sixteenth-notes triplet
crossing two distinct metric figures: under the 7:6 ratio (where the triplet starts) we see a sixteenth-note
rhythm (shown by the little pause above). On the other side at the top ratio configuration of 7:4, we see
a dotted sixteenth-note (shown as well by a dotted sixteenth-note little pause). After factoring both top
ratios, mapping one onto the other (as it was shown on previous examples), an important feature of MMM
is foregrounded: one that clearly demonstrates the rhythmic flexibility of the figure, proving its rhythm is
relative to context and not a cemented, given, rhythmic speed: both notes while exhibiting a diverse rhythmic
configuration, have, nonetheless, the same speed.

2For detailed assessment of similar resources in other pieces, see [1], [2], [3], [4], [5], and [10],
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Abstract: General scale systems are defined to be linearly ordered finite sets of musical objects. Apart from
the common pitch scales we may also speak of duration and interval scales, major and minor scale schemes,
ancient greek trope scale schemes. The fundamental groups of a scale (clock group and group of rows)
are discussed. The principal counterpoint triple of a scale Σ consists of the operators RΣ (Σ-retrograde),
TΣ (Σ-transposition) and IΣ (Σ-inversion). The group they generate will be referred to as a counterpoint
group of Σ. A wide class of counterpoint triples is presented extending the composition material of n-tone
music. Variations of twelve tone pieces may be derived by applying these triples. Counterpoint spaces
(CP-spaces) are reachable left actions of counterpoint groups. Such an action is actually simply transitive.
Major and minor chords are defined with respect to a pair (p, q) of natural numbers playing the role of
major and minor thirds respectively. It is shown that (p, q)-consonant chords in a CP-space constitute a
CP-space as well.

Keywords: Scale, Clock and Row Groups of a Scale, Counterpoint Groups, Counterpoint Spaces.

I. Introduction

Scale is a generic notion in music theory ([4], [5], [6], [8]). Mathematically speaking, a scale
Σ is a linearly ordered finite set of musical objects called degrees of the scale

Σ : σ0 < σ1 < · · · < σn−1

This general consideration allows us to unify various musical scale type situations: pitch scales
(chromatic, diatonic, pentatonic, whole-tone, octatonic etc.), scales of durations and intervals,
major and minor scale schemes, ancient greek trope scale schemes (section 2). The set of degrees
Σn = {σ0, σ1, . . . , σn−1} with the clock addition

σκ ⊕ σλ =

{
σκ+λ if κ + λ < n,
σκ+λ−n if κ + λ ≥ n

form the first fundamental group G1(Σ) of Σ. Transposition TΣ (one step shift upwards) and
inversion IΣ (reflection with respect to a fixed center) are exclusively defined in terms of G1(Σ):

TΣ(σκ) = σκ ⊕ σ1, IΣ(σκ) = −σκ = σn−κ , 0 ≤ κ ≤ n− 1

A Σ-row is a permutation of the set of degrees of a scale Σ ([7], [9]). The set S(Σ) of all Σ-rows is
closed under composition and constitutes the second fundamental group of Σ, G2(Σ) = (S(Σ), ◦).
(RΣ, TΣ, IΣ) is the principal counterpoint triple of Σ, where RΣ is the mirror image operator on
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Σ-rows. Scales with the same height have isomorphic the respective fundamental groups. This
leads to the notion of the scale type Zn : 0 < 1 < · · · < n− 1 (section 3).

Groups generated by retrograde, transposition and inversion operators are the subject of section
4. The counterpoint group (r/t/i) is the free group generated by three letters r, t, i subjected to
the axioms.

r2 = 1 = i2, rt = tr, ri = ir, it = t−1i.

(r/t/i) has three remarkable subgroups:

• (r/i), copy of the Klein four group Z2 × Z2 ([9], [7]),
• (r/t), copy of the commutative group Z2 × Zn, provided t has order n,
• (t/i), copy of the dihedral group D2n, provided t has order n ([2], [3]).

Section 5 is devoted to exhibit new counterpoint triples which enrich the musical material
permitting to compose extensive twelve tone structures. By construction, the chromatic scale

C = {c, c], d, d], e, e, f , f ], g, g, g], a, a], b}

is the disjoint union of the diatonic scale

D = {c, d, e, f , g, a, b}

and the pentatonic scale
P = {c], d], f ], g], a]},

so that apart from the counterpoint triple (RC, TC, IC) mainly used in twelve tone music, we obtain
two partial counterpoint triples

(R1 = RD ∨ idP, T1 = TD ∨ idP, I1 = ID ∨ idP)

(R2 = idD ∨ RP, T2 = idD ∨ TP, I2 = idD ∨ IP)

where TD ∨ idP, ID ∨ idP are the operators on C12 given by

(TD ∨ idP)(x) =

{
TD(x) if x ∈ D7

x if x ∈ P5

(ID ∨ idP)(x) =

{
ID(x) if x ∈ D7

x if x ∈ P5

Moreover, RD ∨ idP reverses the longest substring of D7 inside a string of C12

(RD ∨ idP)(w0s1w1 · · ·wk−1skwk) = w0skw1 · · ·wk−1s1wk.

Composing termwise the previous triples we get the triple

(RD ∨ RP, TD ∨ TP, ID ∨ IP)

whose group has 140 elements instead of 48 elements of the group (RC/TC/IC) used in twelve
tone composition. On the other hand the group generated by

(R1, R2/T1, T2/I1, I2) =

{Rκ1
1 ◦ Rκ2

2 ◦ Tλ1
1 ◦ Tλ2

2 ◦ Iµ1
1 ◦ Iµ2

2 | 0 ≤ κ1, κ2, µ1, µ2 < 2, 0 ≤ λ1 < 7, 0 ≤ λ2 < 5}
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and so the cardinality of this group is 22 · 7 · 5 · 22 = 560. Extension to arbitrary scales is provided.
In section 6 we introduce the notion of counterpoint space in order to describe various musical

structures in an abstract setting. A rti-space is a triple A = ((r/t/i), A, a0) consisting of a left
group action and an element a0 from which all elements of A are reachable, that is

A =
{

tk · a0, rtk · a0, rtki · a0, tki · a0 | k ∈ Z
}

.

Actually, the above action is simply transitive. Major and minor chords are defined with respect to
a pair (p, q) of "intervals". We show that (p, q)-consonant chords in a counterpoint space constitute
a counterpoint space, as well.

II. Scale Systems

i. Definition and Examples

A scale of height n is a linearly ordered set of musical objects

Σ : σ0 < σ1 < · · · < σn−1.

The objects σ0, σ1, . . . , σn−1 are the degrees of Σ.
Common pitch scales:

• the chromatic scale

C : c < c] < d < d] < e < f < f ] < g < g] < a < a] < b,

• the diatonic scale

D : c < d < e < f < g < a < b (white keybords),

• the pentatonic scale

P : c] < d] < f ] < g] < a] (black keybords),

• the whole-tone scale
H : c < d < e < f ] < g] < a],

• the octatonic scale
O : c < d < d] < f < f ] < g] < a < b.

Durations and intervals may be organized into scales

• DUR(n) : 1
2n−1 < 1

2n−2 < · · · < 1
2 < 1

• INT : 1p < 2m < 2M < 3m < 3M < 4p < 4+ < 5p < 6m < 6M < 7m < 7M < 8p
(p=perfect, m=minor, M=Major, 4+=augmented)

Any increasing sequence of indexes 0 ≤ i0 < i1 < · · · < iκ < n induces the subscale of Σ

Σ[i0, . . . , iκ ] : σi0 < σi1 < · · · < σiκ .

For instance D, P, H, O are subscales of C:

D = C[0, 2, 4, 5, 7, 9, 11], P = C[1, 3, 6, 8, 10], H = C[0, 2, 4, 7, 9, 11], O = C[0, 2, 3, 5, 6, 8, 9, 11]
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ii. Scale Schemes

Let s, t be two symbols connected with the ordering s < t meaning "s smaller than t". Any string
of {s, t}∗

w = w1w2 · · ·wκ , wi ∈ {s, t}

is called scale scheme; it generates by "prefix ranking" the scale

1 < w1 < w1w2 < · · · < w1w2 · · ·wκ .

For instance, the major and minor scale schemes are

M = ttsttts and m = tsttstt

respectively.
An interpretation of schemes into a scale

Σ : σ0 < σ1 < · · · < σn−1

is a right action
Σn × {s, t}∗ → Σn

fully determined by the assignments

(σ, s) 7→ σs, (σ, t) 7→ σt (σ ∈ Σn).

Then the scale of root σ ∈ Σn with respect to the scheme w above, is

σ < σw1 < σw1w2 < · · · < σw1w2 · · ·wκ .

Implementing s and t in C as "semitone" and "tone" respectively, we get the ordinary major
and minor scales with root σ ∈ C.

M(σ) : σ < σt < σtt < σtts < σttst < σttstt < σttsttt < σttsttts,

m(σ) : σ < σt < σts < σtst < σtstt < σtstts < σtsttst < σtsttstt.

The ancient greek trope schemes (GTS) are lexicographically ordered from top to bottom with
respect to the relation s < t meaning that s is smaller than t:

s t t s t t t : Locrian scheme (LO)
s t t t s t t : Phrygian scheme (F)
t s t t s t t : Aeolian scheme (A)
t s t t t s t : Dorian scheme (D)
t t s t t s t : Mixolydian scheme (M)
t t s t t t s : Ionian scheme (I)
t t t s t t s : Lydian scheme (LY)

That is
GTS : LO < F < A < D < M < I < LY

([10]).
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III. The Fundamental Groups of a Scale

i. The Clock – Group

Consider the scale
Σ : σ0 < σ1 < · · · < σn−1.

The clock group of Σ is G1(Σ) = (Σn,⊕), with Σn denoting the set of degrees, Σn = {σ0, . . . , σn−1}
and the binary operation

⊕ : Σn × Σn → Σn, (σκ , σλ) 7→ σκ ⊕ σλ

is the clock addition

σκ ⊕ σλ =

{
σκ+λ if κ + λ < n,
σκ+λ−n if κ + λ ≥ n.

The neutral element is σ0 and the opposite of σκ is σn−κ , −σκ = σn−κ , κ = 0, . . . , n− 1.
Transposition and Inversion with respect to Σ are exclusively defined in terms of G1(Σ).

Precisely
TΣ, IΣ : Σn → Σn, TΣ(σk) = σκ ⊕ σ1, IΣ(σκ) = −σκ , 0 ≤ κ ≤ n− 1.

We observe that TC( f ) = f ] and TD( f ) = g and TP(c]) = d] and TC(c]) = d, etc. Likewise,
IC(d) = a and ID(d) = g, IP(a]) = d] and IC(a]) = d, etc

Proposition 1. Consider two scales of the same height

Σ : σ0 < σ1 < · · · < σn−1, Γ : γ0 < γ1 < · · · < γn−1.

Then the function
φ : Σn → Γn, φ(σκ) = γκ (κ = 0, 1, . . . , n− 1)

is an isomorphism of G1(Σ) onto G1(Γ) preserving transposition and inversion

φ ◦ TΣ = TΓ ◦ φ, φ ◦ IΣ = IΓ ◦ φ

where "◦" designates function composition performed from right to left.

Proof. We are going to show that φ preserves the clock addition, i.e. that

φ(σκ ⊕ σλ) = φ(σκ)⊕ φ(σλ) for all κ, λ.

Indeed, if κ + λ < n, then

φ(σκ ⊕ σλ) = φ(σκ+λ) = γκ+λ = γκ ⊕ γλ = φ(σκ)⊕ φ(σλ).

In the case κ + λ ≥ n, then

φ(σκ ⊕ σλ) = φ(σκ+λ−n) = γκ+λ−n = γκ ⊕ γλ = φ(σκ)⊕ φ(σλ).

The rest of the proof is straightforward.

According to the previous result, scales with the same height behave alike from the transposi-
tion/inversion point of view.
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ii. The Group of Σ-rows

Rows in an arbitrary scale will be discussed below. A pivotal axis of twelve-tone music is the
restriction in the repetition of each of the twelve pitch classes. In a twelve-tone sequence, a
pitch class cannot reappear before the remaining eleven pitch classes are heard, thus creating a
permutation of twelve different pitch classes ([7], [9]). An n-row or n-aggregate is a rearrangement
of the numbers 0, 1, . . . , n− 1, that is a bijective function p of Zn onto itself that can be represented
by a matrix of the form

p =

(
0 1 2 · · · n− 1

p(0) p(1) p(2) · · · p(n− 1)

)
or shortly

p = (p(0), p(1), p(2), · · · , p(n− 1)) .

Transposition and inversion can be pointwise extended on rows:

T (p(0), p(1), . . . , p(n− 1)) = (T(p0), T(p1), . . . , T(pn−1))

= (p(0)⊕ 1, p(1)⊕ 1, . . . , p(n− 1)⊕ 1) ,

I (p(0), p(1), . . . , p(n− 1)) = (I(p0), I(p1), . . . , I(pn−1))

= (−p(0),−p(1), . . . ,−p(n− 1)) .

Retrograde is the mirror image operator

R (p(0), p(1), . . . , p(n− 1)) = (p(n− 1), . . . , p(1), p(0)) .

(R, T, I) will be referred to as a counterpoint triple. The set Sn of all n-rows is closed under
composition

(p(0), p(1), . . . , p(n− 1)) ◦ (q(0), q(1), . . . , q(n− 1)) = (p(q(0)), p(q(1)), . . . , p(q(n− 1))

and constitutes a group (Sn, ◦).
Given a scale of height n

Σ : σ0 < σ1 < · · · < σn−1

a Σ-row is a rearrangement of the elements σ0, σ1, . . . , σn−1 represented as

π =

(
σ0 σ1 · · · σn−1

σp(0) σp(1) · · · σp(n−1)

)
or shortly

π = (σp(0), σp(1), · · · , σp(n−1)),

where (p(0), p(1), . . . , p(n− 1)) is in Sn.
The set S(Σ) of all Σ-rows is closed under composition

(σp(0), σp(1), . . . , σp(n−1)) ◦ (σq(0), σq(1), . . . , σq(n−1)) = (σp(q(0)), σp(q(1)), . . . , σp(q(n−1)))

and constitutes the second fundamental group of Σ, G2(Σ) = (S(Σ), ◦).

Proposition 2. If Σ, Γ are scales as in the statement of Proposition 1, then the assignment

(σp(0), σp(1), . . . , σp(n−1)) 7→ (γp(0), γp(1), . . . , γp(n−1))

is an isomorphism of G2(Σ) onto G2(Γ).
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These data lead to introduce the notion of scale type, a means to classify scales. We call type of
height n the scale

Zn : 0 < 1 < 2 < · · · < n− 1.

Its associated group (Zn,⊕) is the well known group of modulo n integers. For instance the types
of the scales C, D, P, H, O are

Z12 : 0 < 1 < 2 < · · · < 11,

Z7 : 0 < 1 < 2 < · · · < 6,

Z5 : 0 < 1 < 2 < · · · < 4,

Z6 : 0 < 1 < 2 < · · · < 5,

Z8 : 0 < 1 < 2 < · · · < 7,

respectively. If two musical scales have the same height, then the isomorphisms of their corre-
sponding fundamental groups describe equivalent musical mathematical structures besides the
nature of the objects they act upon.

The triple (RΣ, TΣ, IΣ) defined below is the principal counterpoint triple of Σ:

RΣ(σp(0), σp(1), . . . , σp(n−1)) = (σp(n−1), . . . , σp(1), σp(0)),
TΣ(σp(0), σp(1), . . . , σp(n−1)) = (σp(0) ⊕ 1, σp(1) ⊕ 1, . . . , σp(n−1) ⊕ 1),
IΣ(σp(0), σp(1), . . . , σp(n−1)) = (σ−p(0), σ−p(1), . . . , σ−p(n−1)),

where ⊕ is the modn addition and −p(k) is the opposite of p(k) with respect to this addition.

Proposition 3. In a scale Σ of height n the following equalities hold

R2
Σ = id = I2

Σ, Tn
Σ = id, RΣ ◦ IΣ = IΣ ◦ RΣ,

RΣ ◦ TΣ = TΣ ◦ RΣ, IΣ ◦ TΣ = Tn−1
Σ ◦ IΣ.

Proof. We only establish the last equality. First we show that for every σκ ∈ Σn we have

(IΣ ◦ TΣ) (σκ) =
(

Tn−1
Σ ◦ IΣ

)
(σκ).

Indeed

(IΣ ◦ TΣ) (σκ) = IΣ (TΣ(σκ)) = IΣ(σκ ⊕ σ1) = −(σκ ⊕ σ1) = (−σκ)⊕ (−σ1) =

= (−σκ)⊕ σn−1 = Tn−1
Σ (−σκ) = Tn−1

Σ (IΣ(σκ)) =
(

Tn−1
Σ ◦ IΣ

)
(σκ).

Furthermore, for every (σp(0), σp(1), . . . , σp(n−1)) ∈ S(Σ) we have

(IΣ ◦ TΣ) (σp(0), σp(1), . . . , σp(n−1)) =
(
(IΣ ◦ TΣ) (σp(0)), . . . , (IΣ ◦ TΣ) (σp(n−1))

)
=

=
((

Tn−1
Σ ◦ IΣ

)
(σp(0)), . . . ,

(
Tn−1

Σ ◦ IΣ

)
(σp(n−1))

)
=
(

Tn−1
Σ ◦ IΣ

)
(σp(0), σp(1), . . . , σp(n−1))

hence the desired result.

Remark. Given that the diatonic scale may be constructed with fifths or fourths, the pentatonic
with stacked fifths, etc. the scales listed in II.i can all be considered as symmetrical generated
constructions. As Andreatta points out, group is the dominating algebraic structure utilized to
describe symmetry in music ([1]).
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IV. Counterpoint Groups

They are groups generated by retrograde, transposition and inversion operators playing a signifi-
cant role in serial composition. More precisely, the (r/t/i)–group is the free group generated by
three letters r, t, i subjected to the axioms

r2 = 1 = i2, ri = ir, rt = tr, it = t−1i. (1)

Its elements are of the form
tκ , rtκ , rtκ i, tκ i (κ ∈ Z).

Three subgroups of the above group are of interest: (r/i), (r/t) and (t/i). The first one (r/i) =
{1, r, iri} is isomorphic to the Klein four group Z2 ×Z2 ([7], [9]). The other two groups are
(r/t) = {tκ , rtκ | κ ∈ Z} and (t/i) = {tκ , tκ i | κ ∈ Z}.

Notice that the groups (r/t/i), (r/t) and (t/i) are infinite unless t has finite order, say n, in
which case (r/t) and (t/i) coincide with the commutative group Z2 ×Zn and the dihedral group
D2n respectively ([2], [3]). In addition card(r/t/i) = 4n, card(r/t) = 2n = card(t/i). In the sequel
we deal with left group actions of the form

(r/t/i)× A→ A, (u, a) 7→ u.a

Due to the free character of the group (r/t/i) the above action is completely determined by the
values r.a, t.a, i.a (a ∈ A) compatible with equalities (1), which means that

r2.a = a = i2.a, ri.a = ir.a, rt.a = tr.a, it.a = t−1i.a, (2)

for all (a ∈ A).

Examples. The operation of row composition defines a left action of (r/t/i) on Sn in the following
manner:

r.p = R ◦ p, t.p = T ◦ p, i.p = I ◦ p,

for all p = (p(0), p(1), . . . , p(n− 1)) ∈ Sn. For n = 12, choosing the Schoenberg op.36 aggregate
p = (0, 1, 6, 2, 7, 9, 3, 4, 10, 11, 5, 8) we get

r.p = (8, 5, 11, 10, 4, 3, 9, 7, 2, 6, 1, 0)

i.p = (0, 11, 6, 10, 5, 3, 9, 8, 2, 1, 7, 4)

t3i.p = (3, 2, 9, 1, 8, 6, 0, 11, 5, 4, 10, 7).

More generally, for any scale Σ the relations

r.τ = RΣ ◦ τ, t.τ = TΣ ◦ τ, i.τ = IΣ ◦ τ (τ ∈ S(Σ))

actually define an action of (r/t/i) on S(Σ).
Further actions:

• (r/t/i)×Z∗12 → Z∗12 with

r.s = sκ · · · s2s1, t.s = (s1 ⊕ 1)(s2 ⊕ 1) · · · (sκ ⊕ 1), i.s = (12− s1)(12− s2) · · · (12− sκ),

for all s = s1s2 · · · sκ in Z∗12

Likewise

• (r/t/i)×Z∗ → Z∗, with

r.s = sκ · · · s2s1, t.s = (s1 + 1)(s2 + 1) · · · (sκ + 1), i.s = (−s1)(−s2) · · · (−sκ),

for all s = s1s2 · · · sκ in Z∗.

In all these cases the conditions (2) are verified.
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V. Partial Counterpoint Operators

The aim of this section is to present new counterpoint triples, which enrich the musical material
permitting to compose extensive twelve tone structures. By construction, the chromatic scale is the
disjoint union of the diatonic scale and the pentatonic scale, C = D ∪ P.

Therefore, apart from (RC, TC, IC), we obtain two partial counterpoint triples

(RD ∨ idP, TD ∨ idP, ID ∨ idP) and (idD ∨ RP, idD ∨ TP, idD ∨ IP), (3)

where TD ∨ idP (resp. idD ∨ IP) is the operator on C12 coinciding with TD (resp. TP) on the
set D7 (resp. P5) and leaving unchanged the elements of C12 − D7 (resp. C12 − P5). Likewise,
(ID ∨ idP)(x) = ID(x) if x ∈ D7, = x, else. Finally, RD ∨ idP reverses only the longest string of D∗7
occurring inside any string of C∗12

(RD ∨ idP)(w0s1w1 · · ·wκ−1sκwκ) = w0sκw1 · · ·wκ−1s1wκ

for all si ∈ D7, wi ∈ (C12 − D7)
∗. Similar definitions for idD ∨ IP and idD ∨ RP can be stated. In

the context of mod12 integers the above data are encoded as follows:

0 1 2 3 4 5 6 7 8 9 10 11

RD ∨ idP = (11, 1, 9, 3, 7, 5, 6, 4, 8, 2, 10, 0)

TD ∨ idP = (11, 1, 0, 3, 2, 4, 6, 5, 8, 7, 10, 9)

ID ∨ idP = (0, 1, 11, 3, 9, 7, 6, 5, 8, 4, 10, 2)

0 1 2 3 4 5 6 7 8 9 10 11

idD ∨ RP = (0, 10, 2, 8, 4, 5, 6, 7, 3, 9, 1, 11)

idD ∨ TP = (0, 3, 2, 6, 4, 5, 8, 7, 10, 9, 1, 11)

idD ∨ IP = (0, 1, 2, 10, 4, 5, 8, 7, 6, 9, 3, 11)

Furthermore, composing termwise the triples (3), we get the triple

(RD ∨ RP, TD ∨ TP, ID ∨ IP)

where

(TD ∨ TP)(x) =

{
TD(x), if x ∈ D7

TP(x), if x ∈ P5

and so on.
In terms of pitch classes

RD ∨ RP = (11, 10, 9, 8, 7, 5, 6, 4, 3, 2, 1, 0)

TD ∨ TP = (11, 3, 0, 6, 2, 4, 8, 5, 10, 7, 1, 9)

ID ∨ IP = (0, 1, 11, 10, 9, 7, 8, 5, 6, 4, 3, 2)

Obviously TD ∨ TP 6= TC, ID ∨ IP 6= IC, RD ∨ RP 6= RC. The order of TD ∨ TP into the group S(C)
is 7 · 5 = 35 and so the group (RD ∨ RP/TD ∨ TP/ID ∨ IP) has 4 · 35 = 140 elements instead of 48
elements of the group (RC/TC/IC) used in twelve tone music. Consequently, we are able to speak
of a multiple enrichment of the organisation of the pitch material, beyond the already known ways
of managing it in twelve-tone music and without the encroachment of its main principles.
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Our next task will be to determine the group generated by the six partial operators

R1 = RD ∨ idP, R2 = idD ∨ RP,

T1 = TD ∨ idP, T2 = idD ∨ TP, (4)

I1 = ID ∨ idP, I2 = idD ∨ IP.

By taking into account that generators (4) commute to each other except that

I1 ◦ T1 = T−1
1 ◦ I1 = T6

1 ◦ I1 and I2 ◦ T2 = T−1
2 ◦ I2 = T4

2 ◦ I2

we get

(R1, R2/T1, T2/I1, I2) =

=
{

Rκ1
1 ◦ Rκ2

2 ◦ Tλ1
1 ◦ Tλ2

2 ◦ Iµ1
1 ◦ Iµ2

2 | 0 ≤ κ1, κ2, µ1, µ2 < 2, 0 ≤ λ1 < 7, 0 ≤ λ2 < 5
}

and thus
card(R1, R2/T1, T2/I1, I2) = 22 · 7 · 5 · 22 = 560.

Let us discuss more complex situations. Suppose that (A1, . . . , Aκ) is a partition of a scale Σ

Σn = A1 ∪ · · · ∪ Aκ , Ai ∩ Aj = ∅ for i 6= j

and denote by Āi the set complement of Ai in Σn, Āi = Σn − Ai, 1 ≤ i ≤ κ. Since subsets of Σ are
scales with the induced ordering, we may define the counterpoint triples

Ri = RAi ∨ idĀi
, Ti = TAi ∨ idĀi

, Ii = IAi ∨ idĀi
, 1 ≤ i ≤ κ.

Theorem 4. The cardinality of the group generated by the above operators is

card((Ri)i/(Ti)i/(Ii)i) = 2κ · ord(T1) · · · ord(Tκ) · 2κ

where ord(Ti) is the order of Ti in the group S(Σ).
In another direction we may replace Ri, Ti, Ii by a triple of permutations (ρi, τi, ιi) on Ai, 1 ≤ i ≤ κ.

VI. Counterpoint Spaces

The algebraic structure of counterpoint space (CP-space) is proposed, in order to found basic
musical notions in a formal framework.

An rti-space is a triple A = ((r/t/i), A, a0) formed by a left group action

(r/t/i)× A→ A

and an initial element a0 ∈ A (playing the role of the pitch c).
These data must comply with the following axiom:

S) the elements of A are accessible from a0, that is

A =
{

tk · a0, rtk · a0, rtki · a0, tki · a0 | k ∈ Z
}

.

The ti-spaces are formulated as before except we replace (r/t/i) by the group (t/i). Axiom S)
takes the form

A =
{

tk · a0, tki · a0 | k ∈ Z
}

.
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Examples. • A = ((r/t/i), An, (0, 1, . . . , n− 1)), where

An = {Tκ , R ◦ Tκ , R ◦ Tκ ◦ I, Tκ ◦ I | κ = 0, 1, . . . , n− 1}
Special case A12 = ((r/t/i), A12, (0, 1, . . . , 11)).

• Given an arbitrary scale Σ of height n, we have the following CP-space

AΣ = ((r/t/i), AΣ, (σ0, σ1, . . . , σn−1)) ,

where
AΣ = {Tκ

Σ, RΣ ◦ Tκ
Σ, RΣ ◦ Tκ

Σ ◦ IΣ, Tκ
Σ ◦ IΣ | κ = 0, 1, . . . , n− 1}

Standard CP-spaces:
• Zn = ((t/i), Zn, 0) instances n = 12, 7, 5
• Z = ((t/i), Z, 0)

Remark. It should be noticed that the last two examples of actions in section 4 can not be organized
into CP-spaces since they are deprived initial elements.

Simply transitive actions are often encountered in mathematical music theory ([3]). Recall that
a left group action

G× A→ A, (g, a) 7→ ga,

is simply transitive whenever for any pair (a1, a2) ∈ A2 there exists a unique g ∈ G so that a2 = ga1.

Proposition 5. If A fulfils the additional axiom

S’) the function g 7→ ga0 is injective,

then the action (r/t/i)× A→ A is simply transitive.

Proof. We follow the guideline proof arguments of the corresponding result in [3]
(Existence). According to the axiom S) any pair (a1, a2) ∈ A2 is written a1 = g1a0, a2 = g2a0

and so a0 = g−1
1 a1 and a2 = g2g−1

1 a1.
(Uniqueness). Assume, now, that a2 = u1a1 = u2a1 then u1g1a0 = u2g1a0 and so by axiom S’)

u1g1 = u2g1 and by right cancellation u1 = u2.

Corollary 6. The counterpoint spaces An, AΣ, Zn, Z fulfill the axiom S’) and thus the corresponding
actions are simply transitive.

We are going to indicate how basic musical notation can be defined in the setup of counterpoint
spaces. In the traditional context consonant chords are built by overposing thirds. A chord is a
triple of simultaneously played pitches. A major (resp. minor) chord consists of a root pitch, a
second pitch four (resp. three) semitones above the root and a third pitch seven semitones above
the root. Major (resp. minor) chords are successive transpositions of the C-major chord (0, 4, 7)
(resp. f -minor chord (5, 8, 0)). Moreover (5, 8, 0) is the inversion of (0, 4, 7):

I

T

T

T

T

T

T

C = (0, 4, 7) (5, 8, 0) = f

C] = (1, 5, 8) (6, 9, 1) = f ]

D = (2, 6, 9) (7, 10, 2) = g

...
...

B = (11, 3, 7) (4, 7, 11) = e
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The foundation of chord theory can be realized in a ti-space A = ((t/i), A, a0). First we need a
building pair (p, q) of natural numbers abstracting the pair (4, 3) for thirds. Now, the (p, q) major
chords in A are all triples of the form (tκ · a0, tκ+p · a0, tκ+p+q · a0), κ running over the set Z of
integers. The (p, q)-minor chords in A are all triples of the form (tκ i · a0, tκ+qi · a0, tκ+p+qi · a0),
κ ∈ Z.

All together (p, q)-major chords and (p, q)-minor chords form the set (p, q)− CC(A) of (p, q)
consonant chords in A

(p, q)− CC(A) = (p, q)−MC(A) ∪ (p, q)−mC(A),

where (p, q)−MC(A), (p, q)−mC(A) stand for the sets of major and minor chords in A respec-
tively.

Remark. Since an ordinary chord consists of simultaneously sounding pitches it is not necessary
to insist on a particular ordering of the pitches inside a chord. We adopt this mathematical abuse
also in our general setting, i.e. any chord (a1, a2, a3) will be identified with the chord (a3, a2, a1)

The following result confirms that the group (t/i) acts on the left on (p, q)− CC(A).

Proposition 7. i) Left multiplication by i changes the arity of the chords, that is converts major to
minor chords and vice versa.

ii) Left multiplication by t preserves the arity of chords.

Proof. Indeed, if (tκ · a0, tκ+p · a0, tκ+p+q · a0) is in (p, q)−MC(A), then

i(tκ · a0, tκ+p · a0, tκ+p+q · a0) = (itκ · a0, itκ+p · a0, itκ+p+q · a0)

(+)
= (t−κ i · a0, t−κ−pi · a0, t−κ−p−qi · a0)

Remark
= (t−κ−p−qi · a0, t−κ−pi · a0, t−κ i · a0) ∈ (p, q)−mC(A)

where equality (+) comes from the axiom it = t−1i. The other assertions can be proved by similar
arguments.

Proposition 8. If A = ((t/i), A, a0) is a ti-space, then

(p, q)− chord(A) =
(
(t/i), (p, q)− CC(A), (a0, tp · a0, tp+q · a0)

)
is also a ti-space. Moreover, if A satisfies the axiom S’), then (p, q)− chord(A) also satisfies S’).

Proof. First we show that all major chords are accessible from the initial major chord (a0, tp ·
a0, tp+q · a0):

(tκ · a0, tκ+p · a0, tκ+p+q · a0) = tκ(a0, tp · a0, tp+q · a0).

On the other hand, minor chords are accessible from the generic minor chord (t−p−qi · a0, t−pi ·
a0, i · a0):

(t−κ−p−qi · a0, t−κ−pi · a0, t−κ i · a0) = t−κ(t−p−qi · a0, t−pi · a0, i · a0).

Notice that when κ runs over Z, the minor chord (t−κ−p−qi · a0, t−κ−pi · a0, t−κ i · a0) runs over the
whole set (p, q)−mC(A).

Finally,
(t−p−qi · a0, t−pi · a0, i · a0) = i(a0, tp · a0, tp+q · a0).
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Hence axiom S) is valid in (p, q)− chord(A). To establish S’) we have to show the injectivity of
the function u 7→ u(a0, tp · a0, tp+q · a0). We have

u1(a0, tp · a0, tp+q · a0) = u2(a0, tp · a0, tp+q · a0) implies

(u1a0, u1tp · a0, u1tp+q · a0) = (u2 · a0, u2tp · a0, u2tp+q · a0) implies

u1 · a0 = u2 · a0

which, by axiom S’) for A, gives u1 = u2 and the proof is achieved.

Corollary 9. The action
(t/i)× (p, q)− CC(A)→ (p, q)− CC(A)

is simply transitive, provided A satisfies S’).

Proof. It is a consequence of proposition 3.

VII. Conclusion-Future Work

A generic notion in music theory is that of a scale. It refers to a finite linear ordered set of musical
objects called degrees of the scale. This definition covers various musical scale situations. Basic
tools in this setup are the fundamental groups of a scale: clock group and group of rows. Scales are
classified according to their cardinality: two equivalent scales have isomorphic their corresponding
fundamental groups.

Major and minor scale schemes as well as ancient greek musical trope schemes are discussed.
Groups generated by retrograde/transposition/inversion operators are used to enrich twelve tone
composition techniques. Essentially, a novel view of partiality of the twelve-tone aggregate is
proposed, which is not based on the division of the chromatic pitch set into trichords, tetrachords
or hexachords, but on the partition C = D ∪ P. Counterpoint spaces are domains suitable to
develop an abstract music theory. The main result is that consonant chords in such a space form
also a counterpoint space. A future task will be the study of neo-Riemannian theory in the present
general context, which will provide a novel view of the relationship between voice-leading and
counterpoint. Infinite scales could have also interest to be investigated.
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