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Abstract: In this preliminary work, we seek to present a brief historical review of the use of partitions in
music, to provide a concise introduction to the theory of partitions, and lastly, through an extensive biblio-
graphic revision and a thoughtful theoretical reflection, to lay the foundations of what we call partitional
harmony – a comprehensive harmonic conception which relates the theory of partitions to several fields of
post-tonal music theory. At the end, some basic operations (pitch, transposition, inversion, and multi-
plication) are defined and an illustrative musical application is provided, followed by our research prospects.
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I. Introduction

Partitions1 play important roles in several areas of mathematics such as combinatorics, Lie
theory, representation theory, mathematical physics, theory of special functions, and so on.
However, it is in the field of number theory [8, 80, 107] that they are investigated in greater

depth and where their fundamental studies and main theoretical advances are concentrated. The
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1Throughout this work, partitions refer mostly, but not exclusively, to integer partitions. For definitions, see Section II.
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simple notion of dividing an object into sub-objects makes partitions find use in the most varied
fields of knowledge, from, for example, non-parametric statistics to particle physics [9, pp. xv-xvi].

The use of partitions in music dates back to the incursion of mathematical combinatorics
into music theory in the 17th century [94, 127], and comprise a wide range of applications with
great potential for both musical composition and analysis. Among some of the works that
associate partitions and music in a more explicit way, we highlight the early studies of twelve-tone
partitioning, in particular the source set approaches of Babbitt [13, 14, 15], Perle [129, 130, 131]
and Martino [108], in addition to other studies in combinatoriality by Forte [56], Howe [85] and
Gamer [65]. In the same direction, we also mention the works of Wintle [175], Bazelow and
Brickle [20], Morris and Starr [117, 124, 161, 162, 163], Haimo and Johnson [77], and the further
partitional or mosaic approaches of Mead [110, 111], Kurth [97, 98, 99, 100], Morris and Alegant
[2, 3, 4, 5, 6, 122, 123]. Morris still uses partitions to shape some of his compositional designs,
especially the Design VI [118, pp. 265-270]. Although this is an extensive list, even chronologically
speaking, it is worth noting that most of these works employ partitions of the aggregate, or rather set
partitions,2 almost exclusively. Other relatively recent works present varied musical applications
for partitions with a more mathematical approach.3

In Brazil, a seminal work relating partitions to musical texture is the partitional analysis,
attributed to Gentil-Nunes [66], which consists of an original approach to musical composition
and analysis based on a convergence between the theory of partitions and the textural analysis
proposed by Berry [26]. Through an exhaustive taxonomy for the texture parameter, it offers a
topological and metric mapping of textural configurations, and presents formal structures that
can be applied to various fields of texture. It also includes some original concepts, such as the
agglomeration and dispersion indices, the partitional operators, as well as the software Parsemat® and
its graphical tools–the indexogram and partitiogram.

In the wake of partitional analysis, many other works have been carried out,4 especially within
the MusMat research group,5 associating partitions with varied musical parameters or aspects
such as rhythm, timbre, melody, contours, gestures, events, etc. Moreover, not only new tools have
been developed, but the theory itself has been considerably expanded, mainly by the recent works
of Gentil-Nunes [67, 68] and Sousa [157, 158, 159].

Given the strong influence of Berry’s textural approach, inherent to the very conception of
partitional analysis [69], it is natural that most of these works are concerned with musical texture
and its elements. Therefore, although Berry addresses harmony in the first chapter of his book
(tonality) and even in the second (texture)–precisely when discussing the concepts of density and
dissonance [26, pp. 209-213], essentially harmonic (vertical) aspects, or more specifically, aspects
related to the musical organization and structuring of pitches have not yet been deeply explored
in the light of partitional analysis.

In this regard, as Gentil-Nunes [67, p. 107] points out, “each partitioning has its own idiosyn-
crasy and has to be evaluated from scratch in this respect, since each handled material has its own
nature.” Bearing that in mind, we propose a way of conceiving harmony and harmonic relations
through the partitioning of pitch spaces. As we shall see, this comprehensive harmonic conception,
which we call partitional harmony, relates the theory of partitions to several fields of post-tonal

2Set partitions concern the ways in which a set of n elements can be split up into a set of disjoint subsets [9, p. 214]. A
partition of a set is “a collection of disjoint sets whose union is the given set” [86]. For example, the set {1, 2, 3} has 5 set
partitions: {1, 2, 3}; {1, 2}, {3}; {1, 3}, {2}; {2, 3}, {1}; {1}, {2}, {3}. An alternative representation may be: 123, 12|3, 13|2,
1|23, 1|2|3. See also [106].

3See [43, 51, 61, 62, 63, 87, 91, 105, 109, 169].
4Publications related to partitional analysis are available on Gentil-Nunes’ personal website: https://pauxy.net/

partitional-analysis-publications.
5The list of works published by the group is available at: https://musmat.org/publicacoes-papers.
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music theory, especially pitch-class set theory, but also transformational theory and diatonic set theory,
showing great potential for integration with partitional analysis itself, in addition to other musical
and even mathematical theories. Last but not least, such a partitional approach to harmony allows
us to establish harmonic directionality and functionality in post-tonal musical contexts, paving the
way for the development of a post-tonal system, if we can speak of such a thing, and finally–in a
broader sense–a post-tonal harmony.

II. The Theory of Partitions

According to Andrews [8, p. 149], “the theory of partitions is an area of additive number theory, a
subject concerning the representation of integers as sums of other integers.” By his definition, a
partition of a positive integer n is a representation of n as a sum of positive integers, called summands
or parts of the partition, the order of which is irrelevant. More formally [9, p. 1], a partition of a
positive integer n is a finite non-increasing sequence of positive integers λ = (λ1, λ2, . . . , λk), such
that ∑k

i=1 λi = n. Each λi corresponds to a part of the partition and if λ is a partition of n, then we
write either λ ` n or |λ| = n. We call λ a k-partition if λ has k parts, and the number of parts of λ
is also called the length of λ, being denoted by `(λ) [160, p. 58].

The number of distinct partitions of a positive integer n is given by p(n), called the partition
function. So, for example, p(4) = 5, as there are altogether 5 different ways to write the number
4 as a sum of positive integers: 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. It is clear that
the partitions of n correspond to the set of solutions (j1, j2, . . . , jn) of the Diophantine equation
1j1 + 2j2 + . . . + njn = n [173]. Therefore, in our example, the partitions (4), (3, 1), (2, 2), (2, 1, 1),
(1, 1, 1, 1) correspond, respectively, to the solutions (j1, j2, j3, j4) = (0, 0, 0, 1), (1, 0, 1, 0), (0, 2, 0, 0),
(2, 1, 0, 0), (4, 0, 0, 0) of the equation 1j1 + 2j2 + 3j3 + 4j4 = 4. By definition, p(n) = 0, when n is
negative, and by convention, p(0) = 1, referring to the empty partition (with no parts). Table 1
shows the values of p(n) for each corresponding n.

Table 1: Values of p(n), for n = {0, 1, . . . , 12}.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77

The partition function, despite its conceptual simplicity, is not at all obvious or trivial. As
n grows, the number of partitions increases quite rapidly, making the calculation more and
more difficult and complex. For example, p(50) = 204226, p(100) = 190569292 and p(200) =
3972999029388. Not surprisingly, the study of this function has been an object of interest to notable
mathematicians since the mid-18th century, playing a central role in the development of number
theory. Among some of the most relevant works, we can highlight the generating function for p(n),
developed by Euler [53], the asymptotic formula by Hardy and Ramanujan [79], perfected two
decades later by Rademacher [137, 138], and–more recently–the algebraic formula by Bruinier and
Ono [34], which expresses p(n) as a finite sum of algebraic numbers, in addition to the discovery
of the “fractal behavior” of partitions by Folsom, Kent and Ono [55].

While p(n) comprises the set of all unrestricted partitions of n, other functions are limited to
subsets of restricted partitions, i.e., partitions whose parts satisfy some condition. A function like
p(S, n), for example, denotes the number of partitions of n that belong to a subset S of partitions
whose parts can be even, odd, distinct, prime, etc. [9, p. 2]. Other functions such as pk(n) and
p(j, k, n) denote, respectively, the number of partitions of n with exactly k parts and the number
of partitions of n into at most k parts, with largest part at most j [160, p. 58]. Still others may be
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constrained to even smaller subsets or establish even more specific conditions. Functions involving
restricted partitions can be simply represented by the generic formula p(n | [condition]) [11, p. 6]
– for example, p(n | odd parts), p(n | distinct parts in {3, 6, 12, 24, . . . }), p(n− r | all parts ≤ r),
and so forth. Table 2 shows the values of pk(12), or p(12 | k parts), for each corresponding k.

Table 2: Values of pk(12), for k = {1, 2, . . . , 12}.

k 1 2 3 4 5 6 7 8 9 10 11 12

pk(12) 1 6 12 15 13 11 7 5 3 2 1 1

In general, partitions are represented as arithmetic series, with terms (parts) arranged in
non-increasing order. However, they can also be represented with more convenient configurations
[174], depending on the context and their applications. The most common form is the standard
or natural representation which simply gives the sequence of numbers in the representation–e.g.,
(2, 1, 1) for the number 4 = 2 + 1 + 1. The multiplicity representation instead gives the number of
times each number occurs together with that number–e.g., (2, 1), (1, 2) for 4 = 2 · 1 + 1 · 2. Besides
that, the parts may also be grouped into sequences, lists, tuples or vectors, may or may not be
enclosed in brackets, be separated by commas, periods or spaces, or even have no separators.
Their order can be increasing or non-increasing, decreasing or non-decreasing, lexicographic or
anti-lexicographic, etc. Furthermore, partitions can be written even more concisely, through the
frequency representation (“power notation”), in which the number of occurrences of each part is
denoted by a corresponding exponent.6 Table 3 presents some possibilities of representing the
partition 7 + 5 + 5 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 of 30.

Table 3: Possible representations of 7 + 5 + 5 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1.

(7, 5, 5, 3, 2, 2, 2, 1, 1, 1, 1) (1, 1, 1, 1, 2, 2, 2, 3, 5, 5, 7)

(7 5 5 3 2 2 2 1 1 1 1) (1 1 1 1 2 2 2 3 5 5 7)

(75532221111) (11112223557)

(7152312314) (1423315271)

(75232314) (14233527)

Apart from such numerical configurations, the partitions can also be represented graphically,
through the Ferrers diagram or the Young diagram, in which the parts correspond, respectively, to
dots or squares distributed horizontally and vertically in the plane, according to their size and
multiplicity. As an example, the graphical representations of the partition 4 + 3 + 3 + 2 + 1 of 13,
in the respective diagrams, are shown in Figure 1.

Graphical representations are often useful for illustrating or performing transformations
in partitions and also for demonstrating certain properties called partition identities [1]. These
identities consist of correspondence or congruence relations between restricted partitions. One
of the simplest identity can be obtained through conjugation, a transformation of the partition
operated in the Ferrers diagram, in such a way that the rows of the first diagram become the
columns of the second (and vice versa), resulting in a partition with the greatest part equal to the
number of parts of the original partition, i.e., p(n | k parts) = p(n | greatest part is k) [11, p. 17].

We can notice in Figure 2 that the transformation by conjugation corresponds to the rotation of
the original diagram around its diagonal axis (highlighted by the darker dots). In this way, the parti-

6When a part occurs only once its exponent may be omitted.
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(a) Ferrers diagram (b) Young diagram

Figure 1: Graphical representations of (43221).

Figure 2: Conjugation between partitions (43221) and (5431).

tions (43221) and (5431) map to each other and are therefore called conjugate partitions.7 It is worth
pointing out that the sum of the parts of the conjugated partitions is always the same, which means
that they are invariably partitions of the same positive integer. Finally, from other conjugation
properties, we can come to new partition identities [11, pp. 17–18]–for example, p(n | ≤ k parts) =
p(n | all parts ≤ k), p(n | distinct parts) = p(n | parts of every size from 1 to the largest part),
p(n | self-conjugate) = p(n | distinct odd parts), and so on.

Many other identities can be obtained in a similar way or through more sophisticated mathe-
matical methods. Moreover, other graphic representations, such as Young’s lattice, Young tableaux,
Hasse diagram, Durfee square, etc., are equally useful and have numerous applications. However, we
limit ourselves here to just mentioning them, since the description of their attributes would go
beyond the scope of this preliminary work.

As we have seen, the order of the parts of a partition is irrelevant, which characterizes an
unordered partition. On the other hand, when the order of the parts is considered, then we have
what we call an ordered partition or, simply, a composition8 [9, p. 54]. Thereby, a composition

Table 4: Values of c(n), for n = {0, 1, . . . , 12}.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

c(n) 1 1 2 4 8 16 32 64 128 256 512 1024 2048

Table 5: Values of ck(12), for k = {1, 2, . . . , 12}.

k 1 2 3 4 5 6 7 8 9 10 11 12

ck(12) 1 11 55 165 330 462 462 330 165 55 11 1

7A partition that is its own conjugate is called self-conjugate–e.g., (4321).
8Despite the term composition already has a specific meaning in music, we use it here since it is well established in

mathematics and for its practical advantages. Nevertheless, the disambiguation between musical composition and integer
composition should be easily inferred from the context in which each term is used.
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of n can be thought of as an expression of n as an ordered sum of integers [160, p. 17]. More
precisely, a composition of n is a finite (ordered) sequence of positive integers α = 〈α1, α2, . . . , αk〉,9
such that ∑k

i=1 αi = n. For example, for n = 4, besides the 5 partitions: (4), (31), (22), (212),
(14); there are 8 distinct compositions: 〈4〉, 〈31〉, 〈13〉, 〈22〉, 〈211〉, 〈121〉, 〈112〉, 〈1111〉. The
number of all compositions of a positive integer n is given by the composition function c(n) = 2n−1,
and the number of compositions of n with k parts10 is given by ck(n) = (n−1

k−1) = (n−1)!
(k−1)! (n−k)! .

Likewise, c(n) = 0, when n is negative, and c(0) = 1, the empty composition (with no parts).
If a composition α has k parts, then we call α a k-composition. We can also express functions
involving restricted compositions using the generic formula c(n | [condition]). Tables 4 and 5 show,
respectively, the values of c(n) and ck(12), or c(12 | k parts), for each corresponding n and k.

As Andrews points out [9, p. 55], compositions may also be represented graphically. To the
composition 〈a1, a2, . . . , ak〉 of n we can associate k segments of the interval [0, n], so that the first
segment is of length a1, the second of length a2, and so on. As an example, the composition
〈32312〉 of 11 can be represented as showed in Figure 3.

Figure 3: Graphical representation of the composition 〈32312〉. Reproduced from Andrews [9, p. 55]. Copyright
1984 by Cambridge University Press. Reproduced with permission of Cambridge University Press through
PLSclear.

It is important to observe that many aspects of partitions naturally extend to compositions,
which also present interesting properties and identities.11 In addition, due to their flexibility and
versatility, both find applications in different segments of discrete and combinatorial mathematics,
such as set theory, group theory, graph theory, modern algebra, etc.12 By way of illustration, we
mention here the methods used in the combinatorics of pattern avoidance and pattern enumeration
in set partitions [106], and the close connection between subsets of a set and compositions of a
non-negative integer in enumerative combinatorics [160].

Before we close this brief introduction to the theory of partitions, it is useful to introduce
the concept of multipartition, which has only recently been studied for its own intrinsic interest
[10]. By Fayers definition [54, p. 115], a multipartition of n with k components is a k-tuple
λ = (λ(1), λ(2), . . . , λ(k)) of partitions, such that |λ(1)|+ |λ(2)| · · ·+ |λ(k)| = n. If k is understood,
we shall just call this a multipartition of n. As with partitions, 0 (zero) has a unique multipartition–
the empty one, and if λ is a multipartition of n, then we write λ ` n or |λ| = n. For example,
((431), (423), (321)) is a multipartition of 24. If the order of the parts is relevant, then we can
extend this definition to the compositions and arrive at the analogous concept of multicomposition.
So, 〈〈143〉, 〈2242〉, 〈132〉〉 is a multicomposition of 24.

Having seen so far some of the elementary properties of integer partitions, let’s check below
how they can be useful for the formulation of a harmonic conception through the partitioning of
pitch spaces.

9In this work, we differentiate partitions from compositions by using round ( ) and angle 〈 〉 brackets, respectively.
10A composition whose parts may be equal to 0 (zero) is called a weak composition. The number of all weak compositions

of n is obviously infinite, but the number of weak compositions of n with k parts is given by ck(n) = (n+k−1
k−1 ) = (n+k−1)!

n! (k−1)! .
11See, for example, [23, 75, 76, 95, 113, 125, 126].
12For an introduction to many of these topics, see [74].
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III. The Partitioning of Pitch Spaces

In acoustics, pitch13 characterizes one of the perceptual attributes of sound14 and is defined as
“that aspect of auditory sensation in terms of which sounds may be ordered on a scale extending
from low to high, such as a musical scale” [24, p. 397]. It is a subjective quantity despite being
related to the sound frequency, which in turn is a definite physical quantity that can be measured
on physical instruments without any reference to the ear. Thus, if frequency is a physical measure
of vibrations or cycles per second–given in hertz (Hz), pitch is the corresponding perceptual
experience of frequency [105, p. 13]. In other words, pitch is “our subjective evaluation of sound
frequency” [17, p. 112], or “the intersubjective correlate of frequency” [118, p. 23].

Generally speaking, for any given frequency there will be perceived a certain pitch, i.e., low
frequencies correspond to low pitches, and conversely. In the case of pure tones,15 pitch is
directly related to the frequency of the sound wave, and in the case of more complex sounds, it
is determined by what the ear judges to be the most fundamental wave frequency of the sound
[82]. However, this correspondence is not exact, since pitch is also determined by other factors
such as frequency range16 and region, sound complexity, duration, intensity, and even by hearing
disorders [17, p. 112]. The perception may be different depending on the situations, so that a
specific frequency will not always have the same pitch. But for practical and musical purposes,
given that those factors have little effect on the pitch of musical tones,17 we may disregard them
and use the two terms frequency and pitch as essentially synonymous when referring to musical
sounds of definite pitch.18

We may also think of these pitched sounds, or rather this pitch domain [141], as a generic musical
space19 of pitches, i.e., a generic pitch space. According to Harley [81, pp. 90–107], the recognition
of the spatial quality of pitch relationships is common to many theories of musical space. These
relationships are spatial in an abstract sense and may be formalized and generalized through
mathematical notions of space (e.g., continuum, metric space, vector space, and so on). Thus,
the vertical dimension of music can be described as a system of relationships that comprises two
aspects of pitch–one which changes monotonically with frequency (as an approximate logarithmic
function of frequency [12, 16, 133]) and one rotating in a cycle of octave repetitions (octave
equivalence). In modern psychoacoustic terminology, this distinction is expressed respectively

13According to the current American National Standard on Acoustical Terminology (ANSI/ASA S1.1-2013) [7], pitch is
“that attribute of auditory sensation by which sounds are ordered on the scale used for melody in music.” The pitch of a
sound “may be described by the frequency of that simple tone having a specified sound pressure level that is judged by
listeners to produce the same pitch.” In addition, we can consider as practical dimensions for pitch: “(1) the perceptual
dimension of pitch height, which defines the position of the tone along a scale from low to high, normally monotonic with
the physical dimension of frequency; (2) the circular dimension of pitch class, which defines the position of the tone within
the octave.”

14The others are loudness, timbre, duration, and spatial perception.
15A tone is a sound wave capable of exciting an auditory sensation having pitch. A pure tone, or simple tone, is a sound

wave, the instantaneous sound pressure of which is a sinusoidal function of time (a sine wave) [7].
16The frequency range of human hearing is between approximately 20 to 20000 Hz, varying from person to person

according to age and gender. Pitch discrimination is very poor and drops off near the lower limit (below about 30 Hz) and
also at high frequencies (above about 5000 Hz) [105, p. 159], being practically nonexistent above about 10000 Hz [17, p.
111].

17A musical tone is a kind of (periodic) sound produced by most of our musical instruments, which lasts long enough
and is steady enough for the ear to ascribe to it three characteristics–loudness, quality (timbre), and pitch [17, p. 94].

18The frequency range of pitched musical sounds, i.e., the useful range of fundamental frequencies of tones produced by
musical instruments is considerably narrower than that of audible frequencies, being approximately 27 to 4200 Hz–slightly
wider than the piano’s range. The high-frequency region above that accommodates the harmonics of the high tones and
other sounds of indefinite pitch (e.g., sounds produced by unpitched percussion instruments, noises such as bow scrapings,
clinking of keys, and so forth) [17, p. 111].

19We refer here to the term as it is broadly used by Lewin [104]. For a thorough review about music and space, see [81].

7

http://www.musmat.org/


Journal MusMat • December 2020 • Vol. IV, No. 2

by the concepts of pitch height (linear dimension) and pitch chroma (cyclic dimension).20 Both
dimensions can be combined in a geometric model of a cylindrical spiral, generating a helical
representation of pitch known as the pitch helix.21 Figure 4 shows Shepard’s pitch helix, in which
the rectilinear scale of pitch is deformed into a simple regular helix having one complete turn per
octave (height), and collapsed into a circle where there is complete perceptual identity of all tones
in the octave relation (chroma) [154, p. 352]. This duality between the rectilinearity and circularity
of pitch underlies the disambiguation of pitches and pitch classes,22 as well as the conceptualization
of linear and cyclic (modular) pitch spaces, namely and respectively, pitch spaces and pitch-class
spaces.

Figure 4: The pitch helix. Reproduced from Shepard [153, p. 105]. Copyright 1965 by the Board of Trustees of the
Leland Stanford Jr. University. Reproduced with permission of Stanford University Press.

At this point, we ought to dwell on the following question: how do we select out of the whole
range of pitches those to be used musically, or rather, how do we construct useful musical scales,
or even musical systems,23 out of the continuum of available pitches? Since, by the fairly universal
concept of octave generalization,24 pitches separated by an octave are in some sense musically
similar or equivalent (have the same chroma), in numerous cultures, musical scales are often
defined by specifying the intervals25 within an octave,26 whether from a natural (physical) basis or
not. Once these intervals are determined and replicated successively across each octave, the pitch
continuum is then discretized into a finite number of pitches. Therefore, despite various–let’s

20These concepts were originally defined by Bachem [16] as tone height and tone chroma. For related uses and further
developments, see [32, 48, 49, 50, 89, 96, 101, 136, 141, 144, 151, 153, 154, 168, 171, 172].

21Other multidimensional representations are also possible, see [154].
22A pitch class is “a collection of pitches related by octave and enharmonic equivalence” [165, p. 5].
23For a deep survey on the “domain of musical systems,” see [29, 30].
24For an in-depth discussion about musical intervals, scales, and tuning systems in different cultures from a perceptual

perspective, see [36].
25An interval is “the spacing in pitch [perceptually] or frequency [physically], as indicated by context, between two

tones.” The frequency spacing is “expressed by the ratio of the frequencies or by a specified logarithm of this ratio” [7].
See also [133].

26Although less common, there are also musical systems based on intervals of equivalence (modular intervals) other than
the octave–e.g., the naturale, durum, and molle hexachords of medieval solmization (“Guidonian”) system, or any arbitrary
system that divides other intervals, or that deliberately ignores the acoustic similarity of the octave.

8

http://www.musmat.org/


Journal MusMat • December 2020 • Vol. IV, No. 2

say–non-structural pitch glides (glissandi, portamenti, trills, and other ornamentation), most musical
systems are predicated on discrete intervals, so that practical music is limited to a relatively small
set of discrete pitch relationships.

It may seem odd or counter-intuitive, but in such musical systems pitches are actually de-
termined by intervals, and not the other way around. Furthermore, the sonic identity or profile
of a musical system is determined not so much by its proper pitches (unless one has absolute
pitch) as by the intervals between them. In this sense, intervals precede pitches. This paradoxical
aphorism–particularly true in Western music27–not only is the cornerstone of our present harmonic
conception, but also underpins many theoretical works on post-tonal music which deal, to some
extent, with pitch relationships through an intervallic approach.28

In fact, particularly with regard to harmony, pitches are not as musically relevant as intervals.
Most of us rarely treat individual pitches as auditory units or tie particular behaviors to them,
instead, our pitch perception is “relationally determined”, and that is because pitch is a “mor-
phophoric” (form-bearing) medium, in which the same musical patterns or configurations may
have different locations and still preserve their perceived structural identities [12, pp. 147–148].
Then we are generally more responsive to the relations and ratios between pitches than to those
pitches themselves [154, p. 344]. In other words, “the quality of a musical pitch depends critically
on its relations to other musical pitches” [96, p. 112], and such relations, or “configural properties,”
are precisely the intervals. This is quite clear, for example, when a song is transposed, or when an
orchestra is tuned to a pitch other than the standard A = 440 Hz, and yet the original musical
relationships–and the music itself–remain essentially the same. This is also true for a music
student who learns the interval patterns of each type of scale/chord (major, minor, etc.) before
building them on any tonic/root. Hence, intervals are determinant not only for the way we
perceive and recognize music, but also for how we understand and conceive its most fundamental
and structural relationships.29

As stated above, intervals play a crucial role in the construction of most musical systems.
In a similar fashion, since “the basic notion of interval, i.e., distance, is crucial for the musical
structuring of pitch, and the mathematical structuring of space (metric space)” [81, p. 97], they are
also essential for defining pitch spaces. Roughly speaking, a pitch space is basically what the term
implies–“a space of pitches” [118, p. 346]. The concept of space here, though rather vague, should
be understood mostly in the mathematical sense of the term, namely as an abstract space.30 Thus,
a pitch space corresponds to “a theoretical model setting forth ‘distance’ relationships between
pitches” [116]. Depending on their complexity, different pitch spaces correspond to varied models,
often mathematical,31 such as geometric shapes (line, circle, helix, torus, etc.), in addition to
graphs, groups, grids, and lattices (Tonnetz), or even more abstract formulations like equations,
ordered pairs, multidimensional vectors, and so forth. In general, pitches with equivalent musical

27Most Western musical systems, like Pythagorean tuning, Just intonation, Meantone temperament, Well and Equal
temperaments, among others, are interval-based (i.e., frequency-ratio-based) systems. For further explanation on this and
comparisons between different systems, see [17, 19, 21, 36, 105, 133, 152, 170].

28See [18, 38, 39, 40, 41, 42, 45, 57, 64, 78, 118, 119, 142, 155, 156]. Some of these works are discussed at length and in
historical perspective in [150], see also [25].

29Notwithstanding this logical deduction, Krumhansl’s experiment indicates that “all intervals of equal size are not
perceived as equal when the tones are heard in tonal contexts. Instead, the degree to which listeners judge tones to be
related depends on their functions in the key” [96, p. 120].

30An abstract space is “a formal mathematical system consisting of undefined objects and axioms of a geometric nature”
(e.g., Euclidean spaces, metric spaces, topological spaces, vector spaces, etc.). On the other hand, a mathematical system
is (1) “a set of quantities having some common property” (e.g., the system of even integers, the system of lines passing
through the origin, etc.), or (2) “a set of principles concerned with a central objective” (e.g., a coordinate system, a system
notation, etc.) [86].

31A mathematical model is “a mathematical construct designed to study a particular real-world system or phenomenon”
[70, p. 60], or basically, a description or representation of a system in mathematical terms (concepts and language).
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relationships are equally spaced within those models, and closely related pitches are placed next
to one another (and conversely). Also, octave-related pitches may or may not be distinguished,
which characterizes a pitch or a pitch-class space, respectively.

If, on the one hand, pitch spaces usually correspond to mathematical models, on the other,
considering contemporary approaches to perception, they are not entirely mathematical. Recent
cognitive studies show that there is considerable evidence on the phenomenical aspects of pitch
spaces in musical perception.32 Still, since they are somehow models of musical systems (pitch
systems in our particular case),33 they can be somewhat classified by the same criteria common
to mathematical modelling and systems theory literature.34 Therefore, pitch spaces can be concrete,
representational, or abstract at first,35 but also natural vs. artificial (designed), linear vs. non-linear,
static vs. dynamic, implicit vs. explicit, continuous vs. discrete, deterministic vs. probabilistic
(stochastic), mechanistic vs. empirical (statistical), open vs. closed, and so on. We will not go
further here on all of those properties and their definitions, since they are well known in the
specific literature and, to a certain degree, self-explanatory. For the moment, it is sufficient to
notice that some of them make more sense and are more relevant to pitch spaces than others.
Figure 5 shows a preliminary classification of pitch spaces in mathematical terms, in the form of a
schematic diagram, partly based on those properties which we judge to be the most significant for
our present purposes, and partly in other geometric and algebraic concepts.36

Figure 5: Classification of pitch spaces in mathematical terms.

Different approaches and taxonomies from various authors use some of those among other
original criteria to define and classify not only pitch spaces, but also musical spaces in general,
including spaces of chords, scales, harmonic progressions, tonal regions and keys, rhythms,
timbres, and so on.37 Morris [118], for example, defines five types of pitch spaces: the contour
space (c-space), which corresponds to the pitch continuum, where the sizes of intervals between the
pitches are undefined or ignored; the linear pitch space (p-space) and unequal space (u-space), which
have, respectively, equal and unequal intervals between their successive adjacent pitches; and,
finally, the cyclic pitch-class space (pc-space) and modular space (m-space), which are the collapsed
pitch-class versions of the previous two, respectively. Figure 6 presents Gentil-Nunes’ graphical
representations of those pitch spaces.

Naturally, as we can see, the pitch continuum is the most fundamental pitch space. In brief,

32For an interesting discussion about the paradoxes of pitch spaces involving mathematical models of musical space
and embodied models of musical perception, see [33].

33System here should be understood in the light of the General System Theory (GST), i.e., as “a complex of interacting
elements” [27, p. 55], or rather, as “a set of elements or parts that is coherently organized and interconnected in a pattern
or structure that produces a characteristic set of behaviors” [112, p. 188]. Klir [93, pp. 4–5] defines a system as “a set
or arrangement of things so related or connected as to form a unity or organic whole”, formalizing this common-sense
definition through the equation S = (T, R), where S, T, R, denote, respectively, a system, a set of things distinguished within
S, and a relation (or, possibly, a set of relations) defined on T.

34For an introductory reference on both of these topics, see [22, 27, 47, 52, 70, 90, 93, 112, 114, 149].
35Although common in the referred literature, these terms and the concepts behind them were borrowed from the

Concrete-Representational-Abstract (CRA) educational approach [84].
36Further details on this classification will be provided on another occasion.
37We highlight here [31, 46, 88, 103, 104, 109, 118, 166, 167, 176]. For others, see again [81, 96].
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by partitioning it we derive the discrete pitch spaces, and by collapsing these latter we obtain
the discrete pitch-class spaces.38 Continuous pitch spaces are useful in many contexts, however,
for obvious reasons, we can only infer definite harmonic relationships from the discrete ones.
The harmonic properties of a discrete pitch space depend essentially on its intervallic structure,
which, again, may be evenly or unevenly constructed, i.e., with regular or irregular intervals (or
interval patterns). Different structures imply different results for transformational operations on
musical objects. For example, the transposition or inversion of a musical motif performed within a
diatonic space will be different from that within a chromatic space, precisely because the “step
distances” [102, 103]–the distances in diatonic or chromatic adjacent steps39–are not the same in
both spaces. In this regard, each pitch space consists of a unique musical universe with its own
sonic characteristics and harmonic peculiarities. Pitch spaces with irregular or asymmetric interval
environments tend to determine tonal centers and confer a unique status on each pitch, since
every one has a unique relation to the others in its own characteristic way. Such a framework
gives rise, for example, to the typical dynamisms of tonal music (motion and rest, tension and
resolution, etc.). Conversely, regular and symmetric pitch spaces tend to confer the same status on
all pitches, weakening the sense of musical centricity and harmonic motion.

Often, for practical or theoretical musical reasons, we may perceive or think of pitch spaces as
homogeneous spaces abstracted from their interval configuration, i.e., without distinguishing the
actual distances between their adjacent pitches. For example, the successive steps of a diatonic
scale (the scale degrees) may be perceived as in some sense equal, and indeed they are notated
that way (1̂, 2̂, 3̂, etc., for tonic, supertonic, mediant, and so on), despite the asymmetric interval
construction of the scale. In this sense, the notion of step distances within discrete pitch spaces
presupposes, or at least suggests, that the successive pitches in those spaces are to some extent

Figure 6: Graphical representations of Morris’ pitch spaces. Reproduced from Gentil-Nunes [66, p. 28]. Copyright
2009 by Gentil-Nunes. Reproduced with permission of the author.

38A pitch space may also be generated from another pitch space. In addition, “certain subsets of elements taken from
an equal-interval pitch space can produce a pitch space of uneven intervals” [118]. E.g., a diatonic scale drawn from a
chromatic scale, the black keys of a piano keyboard, etc.

39In diatonic set theory [44], this distinction is usually made through the concepts of generic interval and specific interval,
respectively. Other equivalent terms are diatonic length (dlen) and chromatic length (clen) [43], diatonic distance and chromatic
distance [146, 147, 148], d distance and c distance [88], and so forth.
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categorically perceived40 as functionally regular,41 with the eventual interval distances between
them being disregarded. According to Shepard [154, p. 373], once the pitches are “categorically
mapped into the discrete nodes of an internal representation that is functionally regular, it is
the structural properties inherent in that regular representation that are important.” Therefore,
regardless of whether a given discrete pitch space is evenly or unevenly constructed, we may
conceive of it (or part of it, if multidimensional) as what we call here a categorical space, i.e., a simple
directed graph42 which represents its most fundamental structure, homogenizing any irregular
interval spacing, so that the vertices corresponding to the successive pitches or pitch classes are
equally spaced. We can then define two types of categorical spaces, the categorical pitch space
(linear) and the categorical pitch-class space (cyclic), as follows.

Def. 3.1. Categorical pitch space (cp-space). Let V = {v1, v2, . . . , vn} be a set of n pitches from
a pitch space, arranged from low to high and labeled successively with consecutive integers, a
categorical pitch space (cp-space) is a directed graph G = (V, E), of order |V| = n and size |E| = n− 1,
with E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.

Def. 3.2. Categorical pitch-class space (cpc-space). Let V = {v1, v2, . . . , vn} be a set of n pitch
classes from a pitch-class space, labeled successively from 0 to n − 1, a categorical pitch-class
space (cpc-space) is a directed graph G = (V, E), of order |V| = n and size |E| = n, with
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

Inasmuch as categorical spaces are directed graphs, we may associate the edges between
vertices with directed intervals between pitches or pitch classes.43 And for this we may use the
concept of walk,44 so that the directed interval between two pitches or pitch classes is equal to the
length45 of the corresponding walk. Accordingly, we define a categorical interval as follows.

Def. 3.3. Categorical interval (ci). Let G = (V, E) be a categorical pitch or pitch-class space, a
categorical interval (ci) between x and y, with x, y ∈ V, is given by cix-y = l, where l is the length of
a x-y walk in G.

Remark. In a categorical pitch-class space, if l < |E|, then the categorical interval is called simple,
whereas if l ≥ |E|, then it is called compound.46 In this sense, we can rewrite a categorical interval
as cix-y = l = i + |E| · d, where i = (y− x) mod |E|, d ∈ N is the dimensional factor, d = 0 if the

40Originally, categorical perception “refers to the concept that some stimuli can only be responded to on an absolute basis,
i.e., discrimination is limited by identification” [35, p. 457]. In other words, it is “the phenomenon by which the categories
possessed by an observer influences the observers’ perception” [71, p. 69], or simply, “a phenomenon that occurs when
signals that vary over a continuous physical scale are perceived as belonging to a small number of discrete groups” [92, p.
878]. However, in this work, by category “is meant a number of objects that are considered equivalent” [145, p. 5], or simply,
“a set of entities that are grouped together” [72, p. 276]. Therefore, as will be defined, a categorical space is a space of those
objects or entities (pitches or pitch-classes in our case), and a categorical interval is the distance between them within that
respective space.

41The term functional here should not be confused with tonal or mathematical function, but understood in its broad
sense, i.e., relating to how useful something is in a certain context, or relating to the way in which it works or operates in
that context.

42A simple graph is a graph without loops and with at most one edge between any two vertices. A directed graph, or
digraph, is a graph in which directions are assigned to the edges, being called directed edges. For an introduction to graph
theory, see again [74].

43The reasoning behind this is analogous to that of Lewin’s interval definition, i.e., “a directed measurement, distance,
or motion” [104, p. xxix].

44A walk is an alternating sequence of vertices and edges of a graph.
45The length of a walk is the number of edges in the walk. A walk containing no edges is called trivial.
46From these conditional statements the octave is considered here not a simple but a compound interval, i.e., the octave

is a compound unison (or prime). By analogy, the notion of simple and compound categorical intervals may be extended to
categorical pitch spaces, insofar they correspond to unfolded categorical pitch-class spaces.
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categorical interval is simple, and d ≥ 1 if it is compound. Categorical intervals are called adjacent
if they correspond to adjacent walks in G.

Before proceeding, let’s summarize and clarify a bit more the previous definitions. If a pitch or
pitch-class space is itself a model (often mathematical), then a categorical space is a functionally
regular representation of that model–a simple directed graph. Since the graph is directed, its
edges may be associated with directed intervals. Hence, the length of a walk between two vertices
corresponds to a categorical interval between two pitches or pitch classes. Here some observations
are important: 1) When a pitch or pitch-class space is already equally spaced (regular) in its
original representation, the corresponding categorical space (the graph) will somehow coincide
with that representation. 2) Insofar as a pitch space may contain undefined pitches and may
be theoretically infinite, a categorical pitch space must correspond to a part or segment of that
unlimited space. 3) Walks in a categorical pitch space are always open, since it is linear (a path
graph), whereas in a categorical pitch-class space they may be open or closed, since it is cyclic (a
cycle graph).47 4) In a categorical pitch-class space, a walk can be of any length, which implies that
a categorical interval can also be of any size. 5) The dimensional factor of a categorical interval
corresponds to the number of octaves it comprises. Figure 7 provides a visual glimpse of the
previous definitions and observations.

(a) Categorical pitch space (cp-space).

(b) Categorical pitch-class space (cpc-space).

Figure 7: Categorical spaces of pitches and pitch classes.

Now, if we look closely at the graph of Figure 7a, we will see that it is very similar to that
of Figure 3, which suggests that we may associate the categorical intervals (walk lengths) with
the parts of a composition (interval segments). And indeed, we can. If a composition is basically
a sequence of integers (parts) partitioning a larger integer, in a similar way, we may think of a
sequence of categorical intervals partitioning a categorical pitch or pitch-class space. From this
analogy, we can define what we call an interval composition.

Def. 3.4. Interval composition (ic). Let G = (V, E) be a categorical pitch or pitch-class space, an
interval composition (ic) of G is a sequence of adjacent categorical intervals α = 〈α1, α2, . . . , αk〉, such
that ∑k

i=1 αi = |E| · d, where d ∈N is the dimensional factor, d = 1 if G is a categorical pitch space,
and d ≥ 1 if G is a categorical pitch-class space.

Remark. An interval composition is called a linear interval composition (lic) or a cyclic interval
composition (cic) if G is respectively a categorical pitch or pitch-class space. The elements of an

47An open walk is a walk that begins and ends at different vertices, if no edge is repeated it is called a trail, and if no
vertex occurs more than once it is called a path. Contrarily, a closed walk begins and ends at the same vertex, this time, if no
edge is repeated it is called a circuit, and if no vertex occurs more than once it is called a cycle.
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interval composition are called parts. The length of an interval composition, denoted by `(α), is the
number of its parts. A subsequence of consecutive parts of an interval composition is called an
interval subcomposition (isc).

And since compositions are ordered partitions, the reverse is also true, partitions are unordered
compositions. Then, we can also define what we call an interval partition.

Def. 3.5. Interval partition (ip). Let G = (V, E) be a categorical pitch or pitch-class space, an
interval partition (ip) of G is a non-decreasing sequence of categorical intervals λ = (λ1, λ2, . . . , λk),
such that ∑k

i=1 λi = |E| · d, where d ∈N is the dimensional factor, d = 1 if G is a categorical pitch
space, and d ≥ 1 if G is a categorical pitch-class space.

Remark. An interval partition is called a linear interval partition (lip) or a cyclic interval partition (cip)
if G is respectively a categorical pitch or pitch-class space. The elements of an interval partition
are called parts. The length of an interval partition, denoted by `(λ), is the number of its parts. A
subsequence of parts of an interval partition is called an interval subpartition (isp).

Once again, some additional observations should be considered: 1) In a categorical pitch-class
space, the dimensional factor corresponds to the number of overlapping turns around the graph. 2)
Interval compositions correspond to ordered interval configurations between pitches or pitch classes,
while interval partitions correspond to unordered interval configurations, being classes of interval
compositions and, therefore, more abstract representations. 3) Interval partitions are arranged in a
non-decreasing order for the sake of consistency with the conventional (left-compacted) models of
normal form and prime form from the pitch-class set theory.

Through these concepts, which we call interval structures48 (in opposition to pitch structures),
we are now able to partition the categorical spaces of pitches or pitch classes, in order to deter-
mine harmonic (musical and mathematical) relationships between those structures. But before
presenting an illustrative musical application, let’s define some basic operations.

IV. Basic Operations

For the definitions and examples49 of the operations presented below, we mostly follow Morris
[118] notation for pitches and pitch classes, as well as for pitch sets, pitch-class sets, and set classes,
in addition to the same operators labels. None of these operations is really new, on the contrary,
they are all well known in the main literature [58, 118, 128, 140, 165]. However, the use of them
through interval structures, specifically interval compositions, is something relatively original.

Def. 4.1. Pitch (Px). Let α = 〈α1, α2, . . . , αk〉 be an interval composition of a categorical pitch or
pitch-class space G = (V, E), the pitch operation, defined by Pxα, where x ∈ V, sets x as the root
vertex50 of G and, consequently, the initial vertex (pitch or pitch-class) of α.

48Despite the nuances of our concepts and the original paths we take here to reach them, they resemble many others in
literature. Interval compositions are somewhat similar to Bacon’s harmonies [18], Hanson’s sonorities (scales) [78], Forte’s
interval successions [58], Chrisman’s successive interval arrays [39, 40, 41, 42], Regener’s chords [142], Carter’s successive
intervals [38], Morris’ spacing, INT1, CINT1, and PCINT [118, 119, 120], Sorderberg’s CORD and interval strings [155, 156],
Straus’ spacing intervals [165], and so on. On the other hand, interval partitions resemble Forte’s basic interval patterns (bips)
[57, 58], Jedrzejewski’s partitions [87], Keith’s interval sets [91], Coelho de Souza’s PCORD [45], among others.

49For simplicity, all examples set out here use the twelve-tone equal temperament system (12-TET) as the basis for the
categorical pitch or pitch-class spaces, which means that |E| = 12 in the latter case.

50A root vertex is a vertex labeled in a special way so as to distinguish it from the other vertices. A graph with one or
more root vertices is called a rooted graph.
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Remark. An interval composition α under the pitch operation Px is called a pitched interval composi-
tion Pxα, and is equivalent to a pitch or pitch-class set P = {p1, p2, . . . , pk}, P ⊆ V, given respec-
tively by P = {x+∑

j
i=1 αi−1}k+1

j=1 or {(x+∑
j
i=1 αi−1) mod |E|}k

j=1. Conversely, the pitched interval

composition equivalent to a successively arranged51 pitch or pitch-class set P = {p1, p2, . . . , pk},
P ⊆ V, is given respectively by Pxα = Pp1〈pi+1− pi〉k−1

i=1 or Pp1〈(p(i+1) mod k− pi mod k) mod |E|〉ki=1,
where p0 = pk in the latter case. The x in Px is called the pitch index.

Ex. P0〈3, 4, 5〉 =
{
{0, 3, 7, 12}, for a cp-space,
{0, 3, 7}, for a cpc-space.

P9〈1, 1, 2, 1, 3, 1, 3〉 =
{
{9, 10, 11, 13, 14, 17, 18, 21}, for a cp-space,
{9, 10, 11, 1, 2, 5, 6}, for a cpc-space.

{2, 4, 5, 7, 9} =
{

P2〈2, 1, 2, 2〉, for a cp-space,
P2〈2, 1, 2, 2, 5〉, for a cpc-space.

Def. 4.2. Transposition (Tx). Let α = 〈α1, α2, . . . , αk〉 be a pitched interval composition of a
categorical pitch or pitch-class space G = (V, E), the transposition operation is respectively defined
by TxPyα = Px+y〈α1, α2, . . . , αk〉 or P(x+y) mod |E|〈α1, α2, . . . , αk〉, where x ∈ Z.
Remark. The transposition operation Tx results in a translation or a rotation of the pitched interval
composition Pyα by x, if G is respectively a categorical pitch or pitch-class space.52 The x in Tx is
called the transposition index. T0 is an identity operation.

Ex. T2P3〈3, 3, 6〉 =
{

P2+3〈3, 3, 6〉 = P5〈3, 3, 6〉, for a cp-space,
P(2+3) mod 12〈3, 3, 6〉 = P5〈3, 3, 6〉, for a cpc-space.

T8P7〈1, 2, 1, 3, 5〉 =
{

P8+7〈1, 2, 1, 3, 5〉 = P15〈1, 2, 1, 3, 5〉, for a cp-space,
P(8+7) mod 12〈1, 2, 1, 3, 5〉 = P3〈1, 2, 1, 3, 5〉, for a cpc-space.

T−5P2〈2, 1, 2, 3, 4〉 =
{

P−5+2〈2, 1, 2, 3, 4〉 = P−3〈2, 1, 2, 3, 4〉, for a cp-space,
P(−5+2) mod 12〈2, 1, 2, 3, 4〉 = P9〈2, 1, 2, 3, 4〉, for a cpc-space.

Def. 4.3. Inversion (I, Ix). Let α = 〈α1, α2, . . . , αk〉 be an interval composition of a categorical
pitch or pitch-class space G = (V, E), the inversion operation is defined by Iα = 〈αk, αk−1, . . . , α1〉.
Remark. If α is pitched, then the transposition operation Tx must be associated with the inversion
operation I, resulting in the composite operation Tx I, abbreviated as Ix, such that IxPyα =
Px+y〈αk, αk−1, . . . , α1〉 or P(x+|E|−y) mod |E|〈αk, αk−1, . . . , α1〉, if G is respectively a categorical pitch
or pitch-class space, where x ∈ Z. The inversion operation Ix results in a reflection of the pitched
interval composition Pyα around an axis of symmetry s = (x + y + |E|)/2 or (x mod |E|)/2, if G is
respectively a categorical pitch or pitch-class space. The x in Ix is called the inversion index. I0 is
equivalent to I.
Ex. I〈4, 3, 5〉 = 〈5, 3, 4〉

I9P5〈1, 2, 2, 3, 4〉 =
{

P9+5〈4, 3, 2, 2, 1〉 = P14〈4, 3, 2, 2, 1〉, for a cp-space,
P(9+12−5) mod 12〈4, 3, 2, 2, 1〉 = P4〈4, 3, 2, 2, 1〉, for a cpc-space.

51Unlike for a pitch set, “successively arranged” does not necessarily mean “arranged in ascending order” for a
pitch-class set, but rather “arranged in cyclic order.”

52In the former case, G is also translated by x, such that V = {vi + x}n
i=1. In the latter case, it is the root vertex of G

that is rotated by x.
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I−6P10〈1, 2, 1, 1, 2, 5〉 =
{

P−6+10〈5, 2, 1, 1, 2, 1〉 = P4〈5, 2, 1, 1, 2, 1〉, for a cp-space,
P(−6+12−10) mod 12〈5, 2, 1, 1, 2, 1〉 = P8〈5, 2, 1, 1, 2, 1〉, for a cpc-space.

Def. 4.4. Multiplication (Mx). Let α = 〈α1, α2, . . . , αk〉 be an interval composition of a categorical
pitch or pitch-class space G = (V, E), the multiplication operation is respectively defined by
Mxα = 〈x · α1, x · α2, . . . , x · αk〉 or 〈|x · αk|, |x · αk−1|, . . . , |x · α1|〉, for x ≥ 0 or x < 0, where x ∈ Q.

Remark. If α is pitched and G is a categorical pitch space, then MxPyα = Px·y〈x · α1, x · α2, . . . , x · αk〉
or Px·y〈|x · αk|, |x · αk−1|, . . . , |x · α1|〉, respectively for x ≥ 0 or x < 0, where x ∈ Q. If α is pitched
and G is a categorical pitch-class space, then MxPyα = P(x·y) mod |E|〈x · α1, x · α2, . . . , x · αk〉 or
P(x·y) mod |E|〈|x · αk|, |x · αk−1|, . . . , |x · α1|〉, respectively for x ≥ 0 or x < 0, where x ∈ Q. The
multiplication operation Mx results in a homothety, i.e., a homogeneous dilation or contraction of
the pitched interval composition Pyα by x, respectively if |x| > 1 or 0 < |x| < 1. The x in Mx is
called the multiplication index. M−1 is equivalent to the inversion operation I. M0 results in an
empty interval composition. M1 is an identity operation.

Ex. M5〈2, 3, 2, 1, 4〉 = 〈10, 15, 10, 5, 20〉

M7P3〈2, 1, 3, 6〉 =
{

P7·3〈7 · 2, 7 · 1, 7 · 3, 7 · 6〉 = P21〈14, 7, 21, 42〉, for a cp-space,
P(7·3) mod 12〈7 · 2, 7 · 1, 7 · 3, 7 · 6〉 = P9〈14, 7, 21, 42〉, for a cpc-space.

M− 1
3

P6〈3, 9, 24〉 =

P− 1
3 ·6
〈|− 1

3 · 24|, |− 1
3 · 9|, |−

1
3 · 3|〉 = P−2〈8, 3, 1〉, for a cp-space,

P(− 1
3 ·6) mod 12〈|−

1
3 · 24|, |− 1

3 · 9|, |−
1
3 · 3|〉 = P10〈8, 3, 1〉, for a cpc-space.

Considering this is an introductory work, we will not go beyond the definitions of those
so-called canonical operations–transposition, inversion, and multiplication–which are sufficient for
now. Nevertheless, other operations (rotation, merge, split, transference, interference, conjugation,
complementation, etc.) are in progress and will be properly formalized in due course.

V. Musical Application

Let’s take as an example the musical miniature for piano shown in Figure 8, which was composed
using the cyclic interval composition 〈3, 1, 4, 4〉 and the basic operations (Px, Tx, Ix, Mx). At first,
we have P2〈3, 1, 4, 4〉 = {2, 5, 6, 10} and its inversion I0P2〈3, 1, 4, 4〉 = P10〈4, 4, 1, 3〉 = {10, 2, 6, 7},
disposed respectively on outer and inner parts and transposed successively by T−1 throughout the
entire piece, except for mm. 5, where the outer parts are in turn multiplied by M2P11〈3, 1, 4, 4〉 =
P10〈6, 2, 8, 8〉 = {10, 4, 6, 2}, before completing the chromatic sequence a perfect fifth (P5) away
from the starting point (i.e., ci2-9 = ci10-5 = 7).

At first glance, it may seem that there is no significant difference between this approach and
that used in pitch-class set theory, not least because the operations are basically the same. However,
with a little more attention, we realize that the interval representation has great advantages for
describing structural relationships, making them more explicit and comprehensible. In this sense,
the interval structures and basic operations presented here are not only very useful, but also–
possibly–the first steps on a long journey towards the development of a post-tonal system, or
rather, a post-tonal harmony.
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Figure 8: Musical miniature using the cyclic interval composition 〈3, 1, 4, 4〉 and the basic operations (Px, Tx, Ix, Mx).

VI. Concluding Remarks

In this preliminary work, we have sought to present a brief historical review of the use of partitions
in music, to provide a concise introduction to the theory of partitions, and lastly, through an
extensive bibliographic revision and a thoughtful theoretical reflection, to lay the foundations of
what we have called partitional harmony. As we could see, at least fundamentally, this conception
runs through many subjects of post-tonal music theory and different fields of mathematics,
presenting great potential for musical applications, whether analytical or compositional.

As we progress in our research, our theoretical scope will be gradually expanded, including
other operations of transformation and ordering of the interval structures, enumeration of those
structures,53 algorithms to normal and prime forms, new approaches to interval content (interval
orbits, interval multicompositions and multipartitions), inclusion, similarity, and equivalence relations,
harmonic identities, voice-leading spaces [28, 45, 121, 164], in addition to the development of an
application software (a calculator) and an exhaustive taxonomy for interval structures. In the
long run, the codification or systematization of the harmonic aspects of the post-tonal language
through the use of partitions, or other partitional systems,54 may be a point of convergence between
partitional analysis [66] and the modeling of compositional systems [134, 135].

Finally, we hope that many of the concepts and the valuable bibliography presented here will
be useful to those interested in post-tonal music theory and related topics.

53For an introduction to enumeration in music, see [37, 60, 61, 62, 63, 73, 83, 87, 91, 143].
54Since the notion of categorical space may be extended to musical entities other than pitches or pitch-classes, such as

chords, scales, harmonic progressions, etc., we can likewise partition those spaces and establish relationships between their
elements through the use of partitions. Hence the concept of partitional systems.
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