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Abstract: The theory of beat-class sets originates in the work of Milton Babbitt, who demonstrates a
correspondence between modular pitch-class spaces and metric spaces in the framework of total serialism.
Later authors, particularly Richard Cohn, John Roeder, and Robert Morris, apply similar concepts to a
variety of analytical situations, drawing on concepts and procedures from pitch-class set theory. In light
of the correspondence between these theories, the universe of beat-class sets for a given modulus may be
partitioned into equivalence classes similar to pitch-class set classes. This study investigates processes of
enumerating these equivalence classes.

We consider extensions to the theory of beat-class sets by including rhythms with more than one voice.
Specifically, we examine equivalence classes of multiple-voiced beat-class sets using the Power Group
Enumeration Theorem (PGET) of Frank Harary and Edgar M. Palmer. The PGET allows us to determine
the numbers of equivalence classes of beat-class sets as determined by various groups of transformations:
metric shift, retrogradation, and voice permutation, among others. Our results have implications for
further applications in pitch-class set theory, serial theory, and transformational theory.
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I. Introduction

Consider rhythms (a)-(c) in Figure 1. Each rhythm displays six eighth notes, distributed
among three voices. Rhythms (a) and (b) relate by a metric shift of three eighth notes. They
are, accordingly, members of an orbit of the cyclic group of metric shifts, acting on the set

of rhythms in the meter 6
8 . In contrast, rhythm (c) does not relate by metric shift to the previous

two. Consequently, it is a member of a different orbit of this group; hence, it is not a member of
the same equivalence class.

Such equivalence classes are similar to the Tn set classes of pitch-class set theory. They are
orbits of cyclic groups: the cyclic transposition group of order 12, in the case of the traditional,
pitched Tn classes, and the cyclic metric-shift group of order 6, in the case of these rhythms. As
with Tn classes, these rhythmic equivalence classes vary in size, depending on the degree of
symmetry of their members. The first two rhythms here display no rotational symmetry. As a
result, the equivalence class to which they belong contains six such rhythms. The third rhythm,
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Figure 1: Four three-voiced rhythms in 6
8 .

on the other hand, is symmetrical under a metric shift of three eighth notes. As a result, its
equivalence class contains only three rhythms.

Next, compare rhythm (d) in Figure 1 to (a) and (b). Rhythm (d) does not obtain from (a) by
an operation on metric positions, but these rhythms do relate by voice permutation. They are
members of a different equivalence class, an orbit of the group of voice permutations. Likewise,
rhythms (b) and (d) are members of an equivalence class: an orbit of a group that acts both on
metric positions and voices. Such a group is an example of a power group, which we investigate
in greater depth below.

This study considers these types of equivalence classes. In particular, we are concerned with
the enumeration of equivalence classes of rhythmic sets that relate by metric shifts and voice
permutations. This task is a music-theoretical application of concepts and procedures from the
mathematical field of combinatorics. Some of our work will incorporate classical combinatorial
techniques, such as Burnside’s Lemma and Pólya’s Enumeration Theorem. Other methods derive
from more recent results, including de Bruijn’s Theorem and the Power Group Enumeration
Theorem.

Throughout this study, we consider examples of rhythms in 6
8 under the action of groups of

metric shifts and voice permutations. Several of these examples incorporate three voices, as in
Figure 1. The theory presented here is not limited to these particular parameters. It is sufficiently
general to apply to rhythms in any meter with any number of voices under the action of any
relevant group. Similarly, for simplicity, the examples included here contain only beat-level onsets.
The theory may apply as well to rhythms that include subdivision-level onsets.

i. Beat-Class Sets

We situate our findings in the context of beat-class set theory. The theory of beat-class sets
originates in the work of Milton Babbitt [1], who refers to sets of time points in terms of a
correspondence between modular pitch-class spaces and metric spaces in the framework of total
serialism. Benjamin Boretz [2], John Rahn [3], and David Lewin [4] investigate this connection
further. Later authors, including Richard Cohn [5], Robert Morris [6], and John Roeder [7], apply
similar concepts to a variety of analytical situations, such as in the phase music of Steve Reich.

A beat-class set is a rhythmic analogue of a pitch-class set, where the modular pitch-class space
of the latter is exchanged with a modular space of metric positions in the former. For instance, an
eighth-note rhythm in 6

8 has six potential beat-level onsets, which we label in the integers modulo
6 (where the downbeat is equal to 0). The rhythm in Figure 2 features onsets at metric positions 0,
2, and 3, thereby constituting the beat-class set {0, 2, 3}. As with pitch-class sets, we may perform
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Figure 2: Beat-class set {0, 2, 3}.

various operations to beat-class sets. Unit metric shift generates a cyclic group that acts on the
set of metric positions, similar to the group of transposition operators that acts on pitch-classes.
Retrogradation agrees with the pitch-class operation of inversion. Adjoining this operation to
the group of metric shifts yields a dihedral group of operators, corresponding to the pitch-class
transposition-and-inversion group. The respective actions of these groups on the set of beat-class
sets within a particular meter partition that set into equivalence classes that parallel the Tn and
Tn/Tn I set classes of pitch-class set theory.

In this study, we consider not only beat-class sets with a single voice, like the set {0, 2, 3}
above, but also multiple-voice sets, such as the three-voice examples we considered initially.
Operations on metric positions—such as metric shift and/or retrogradation—partition the set of
multiple-voice beat-class sets into equivalence classes. However, these operations do not situate
beat-class sets that are related merely by a permutation of their voices into the same equivalence
class. Nevertheless, such sets are equivalent in a rhythmically generic sense. For instance, both the
rhythms in Figure 1 (a) and (d) above may be described as follows: an initial voice presents an
onset at metric position 0; two onsets follow in another voice at positions 1 and 2; the initial voice
presents another single onset at position 3; the second voice has one onset at position 4; and a
third voice concludes the rhythm with an onset at position 5. By virtue of this generic rhythmic
identity, we adjoin voice permutations to the previous groups to form a new category of groups,
the orbits of which constitute equivalence classes of multiple-voice beat-class sets.

In addition to the multiple-voiced rhythms in Figure 1, which contain an onset on every beat
of the measure, we also consider multiple-voiced rhythms with some number of beats that contain
no onsets (e.g., beats with rests or which simply contain no onset). One solution to this problem
would be merely to assign the beats with no onsets to a particular voice. However, if the number
of onsets is to remain constant, then we should not allow the voice with no onsets to permute with
the voices with onsets. As we will see, the Power Group Enumeration Theorem offers a method
for achieving this result.

ii. Enumeration Applications in Music Theory

Considering that pitch-class set theory as a discipline did not emerge until the 1960s and early
1970s, the enumeration of what are essentially pitch-class set classes has a surprisingly long
tradition, beginning in the late 19th and early 20th centuries. Jonathan Bernard [8] and Catherine
Nolan [9, 10] discuss the history of early efforts in this endeavor, citing the work of Heinrich
Vincent, Anatole Loquin, and Ernst Bacon. Julian Hook [11] presents a detailed tutorial of classical
combinatorial enumeration techniques, including Burnside’s Lemma and Pólya’s Enumeration
Theorem, as applied to a host of music-theoretical topics, including the counting of Tn, Tn/Tn I, and
Tn/Tn I/Tn M set classes in modular pitch-class spaces of various sizes, row classes of twelve-tone
series, equivalence classes of beat-class sets, and the like.

Other music-theoretical research that incorporates enumeration applies these techniques to
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various problems. Joel Haack [12] uses combinatorial methods to determine the number of beat-
class sets that have the same properties as—and that could substitute for—the rhythm that serves
as the basis for Steve Reich’s 1972 composition Clapping Music. Ronald C. Read [13] considers the
size of the set of all possible performances of Stockhausen’s Klavierstück XI. He calculates precisely
the number of paths that may be taken through 19 fragments that constitute the score to that
piece, approximately equal to 1.7× 1041. Harald Fripertinger [14, 15] discusses the enumeration of
a variety of musical objects, such as intervals and chords, patterns of rhythms and motives, as
well as tone rows and patterns of tropes. Fripertinger and Peter Lackner [16] examine in greater
depth the enumeration of the latter two topics in an article that constitutes an entire special issue
of Journal of Mathematics and Music. The enumeration of tropes is of particular relevance to this
study, as it involves the action of a power group: a group that acts on hexachordal partitions of
12-tone rows by transposing or inverting the pitch-classes in the hexachords and/or by permuting
the hexachords themselves.

II. Enumeration of Equivalence Classes of Beat-Class Sets

i. Single-Voice Sets

The enumeration of single-voice beat-class sets, such as the example of the beat-class set {0, 2, 3}
above, is equivalent to counting the number of subsets of beats classes in a single measure with
n beats. For a given subset, two possibilities exist for any beat class in the measure: the subset
may include an onset at that beat or it may not. Hence, there is a total of 2n possible subsets. The
number of equivalence classes to which these subsets belong, however, is not merely 2n divided
by the order of the group that acts on the beat classes, as certain sets may possess symmetry.

Burnside’s Lemma gives the number of orbits as an average. Each member α of the group A
fixes some number of elements of the set X on which the group acts, the set Xα. The number of
orbits for A, then, is the average of these numbers of fixed elements as α varies within A:

|A/G| = 1
|A| ∑

α∈A
|Xα| . (1)

In the case of 6
8 , we observe that there exist 26 = 64 possible beat class sets (including the empty

set and the set that includes onsets in all six metric positions). As we noted above, some of these
sets possess symmetry. To calculate the number of orbits into which the 64 sets partition under
the action of the group of metric shifts, we need to know how many of these sets are fixed by
translation by one metric position, two metric positions, etc., through six metric positions. Then,
the number of equivalence classes is the average of these tallies.

To ascertain the numbers of sets that are fixed by any particular member of a group, it is useful
to examine the disjoint cycle decomposition of each element of the group. Let A be a permutation
group with an action on a set X of size d. Each permutation in A may be written as a product
of disjoint cycles. For every k from 1 to d, let jk be a function that counts the number of cycles
of length k among the disjoint cycles in the decomposition of the permutation. For example, our
group of metric shifts in 6

8 acts on the set of 6 metric positions, labeled 0 (downbeat) through
5. Let Tn be a metric shift of n eighth notes. Then, the members of A have the disjoint cycle

4

http://www.musmat.org/


Journal MusMat • June 2021 • Vol. V, No. 1

Table 1: Values of jk(Tn).

Tn j1 j2 j3 j4 j5 j6

T0 j1(T0) = 6 j2(T0) = 0 j3(T0) = 0 j4(T0) = 0 j5(T0) = 0 j6(T0) = 0
T1 j1(T1) = 0 j2(T1) = 0 j3(T1) = 0 j4(T1) = 0 j5(T1) = 0 j6(T1) = 1
T2 j1(T2) = 0 j2(T2) = 0 j3(T2) = 2 j4(T2) = 0 j5(T2) = 0 j6(T2) = 0
T3 j1(T3) = 0 j2(T3) = 3 j3(T3) = 0 j4(T3) = 0 j5(T3) = 0 j6(T3) = 0
T4 j1(T4) = 0 j2(T4) = 0 j3(T4) = 2 j4(T4) = 0 j5(T4) = 0 j6(T4) = 0
T5 j1(T5) = 0 j2(T5) = 0 j3(T5) = 0 j4(T5) = 0 j5(T5) = 0 j6(T5) = 1

decompositions shown here:

T0 := (0)(1)(2)(3)(4)(5) (2)

T1 := (0, 1, 2, 3, 4, 5) (3)

T2 := (0, 2, 4)(1, 3, 5) (4)

T3 := (0, 3)(1, 4)(2, 5) (5)

T4 := (0, 4, 2)(1, 5, 3) (6)

T5 := (0, 5, 4, 3, 2, 1). (7)

Table 1 shows the values of jk for each Tn (non-zero values appear in bold).
Call q(Tn) the sum of all values jk for any particular Tn. Then, we use 2q(Tn) to determine the

number of beat-class sets in 6
8 that are symmetrical under the element Tn of the group of metric

shifts. For example, since q(T0) = 6, T0 fixes all 26 = 64 beat-class sets. Similarly, since q(T1) = 1,
T1 fixes 2 beat-class sets, and so forth. The total number of beat-class sets fixed by the elements
of the group is 84, which, divided by 6 (the size of the group), equals 14—the number of Tn
equivalence classes (or orbits of this particular group).

It will be useful below to keep track of the disjoint cycle decomposition of the elements of a
group A. We may do this by means of the cycle index of A, Z(A), a polynomial in the variables
s1, s2, ..., sd:1

Z(A) =
1
|A| ∑

α∈A

d

∏
k=1

sjk(α)
k . (8)

For example, consider the cycle index for the group A of metric shifts in 6
8 :

Z(A) =
1
6
(s6

1 + s3
2 + 2s2

3 + 2s6). (9)

Note that there exists one element in the group, T0, that contains six cycles of length 1, and 1 is the
coefficient of s1 in Z(A); one element, T3, contains three cycles of length 2, and 1 is the coefficient
of s2; two elements, T2 and T4, contain two cycles of length 3, and 2 is the coefficient of s3; finally,
two elements, T1 and T5, contain one cycle of length 6, and 2 is the coefficient of s6.

Next, we wish to determine the number of equivalence classes that exist for sets of the same
size. Let A be a group of order m that acts on a set X of size d; α ∈ A. Further, let B be a group
that acts on a set Y of size e ≥ 2 into which we map the elements of X; β ∈ B.

1The variable s here does not mean anything; it is a placeholder.
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Definition 1. Call BA the power group, which has an action of the set YX of all functions f : X → Y.
The members of BA are the ordered pairs (α; β). Any function f in YX under (α; β), then, consists
of the mapping ((α; β) f )(x) = β f (αx).

For now, however, we will assume that B is the identity group—that is, its single element does not
permute elements of Y.

Let w be a weight function that maps Y into the set of non-negative integers, 0 ≤ k ≤ ∞, and
let

ck =
∣∣∣w−1(k)

∣∣∣ (10)

be the number of number of configurations with weight k. Then, we call the series in the
indeterminant x,

c (x) =
∞

∑
k=0

ckxk, (11)

the "configuration counting series". Because all functions in the same orbit of BA have the same
weight, there exists a finite number of orbits of any particular weight. Therefore, let Ck be the size
of the set of orbits of weight k. Then, the series in the indeterminant x,

C (x) =
∞

∑
k=0

Ckxk, (12)

is the "function counting series". This leads to the weighted version of Pólya’s Enumeration
Theorem. Let Z(A, c(x)) be an abbreviated denotation of Z(A; c(x), c(x2), c(x3), ...).

Theorem 1 (Pólya). We substitute c(xk) in the configuration counting series for each variable sk in
Z(A) to determine the function counting series C(x). That is,

C(x) = Z(A, c(x)). (13)

Let us again consider the example of beat-class sets in 6
8 . Let A be the group of metric shifts,

acting on the set of six beat classes, and let B be the identity group with an action on a single
voice. The configuration counting series for A appears here:

c(x) = (1 + x) + (1 + x2) + (1 + x3) + (1 + x4) + (1 + x5) + (1 + x6). (14)

We recall the cycle index of A from Equation 9, and we substitute (1 + xk) for sk in Z(A) to
determine the function counting series:

C(x) =
1
6
((1 + x)6 + (1 + x2)3 + 2(1 + x3)2 + 2(1 + x6)). (15)

Expanding the above yields the following polynomial,

C(x) =
1
6
((1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6) + (1 + 3x2 + 3x4 + x6)

+(2 + 4x3 + 2x6) + (2 + 2x6)),
(16)

which we simplify as follows:

C(x) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + x6. (17)

6
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The coefficients of xk in the polynomial determine the number of equivalence classes for beat-class
sets of size k. Therefore, there exists one equivalence class of sets of size 0, one equivalence class
of sets of size 1, three of sets of size 2, and so on, for a total of 14.

ii. Multiple-Voice Sets

We may also use Pólya’s Enumeration Theorem to find the numbers of equivalence classes of
multiple-voiced beat-class sets. For e voices, we substitute an expression with e variable summands
in place of the indeterminants in the cycle index of A. For instance, if we wish to enumerate
the equivalence classes of the 36 = 729 three-voice beat-class sets in 6

8 , we could replace sk in
Z(A) with (1 + xk + yk + zk). Then, the coefficients of xmynzp in C(x, y, z) are the numbers of
equivalence classes of sets with m, n, and p onsets in each respective voice.

The method above for partitioning the set of e-voiced beat-class sets in a meter with d beats does
not include sets that relate to one another by a permutation of the voices in the same equivalence
class. If we wish to determine the numbers of these larger equivalence classes, we utilize the
Power Group Enumeration Theorem of Harary and Palmer (PGET), which generalizes Pólya’s
Enumeration Theorem [17].2 The PGET comes in two forms: the constant form, which counts
the total number N of orbits of a power group; and the polynomial form, which enumerates the
number N(x) of equivalence classes of sets of the same cardinality.

We define the power group BA as above, where A is a group of metric shifts, acting on a set X
of d beats in a given meter. In the previous examples, however, we let B be merely an identity
group, acting trivially on the set of e = 1 voices. Now, we let B have a non-trivial action on the set
of e > 1 voices. Then, the PGET in its constant form is as follows:

Theorem 2 ([17], p. 163).

N =
1
|B| ∑

β∈B
Z (A; m1(β), m2(β), ..., md(β)) , (18)

where
mk(β) = ∑

s|k
sjs(β). (19)

Let us take the case of beat-class sets in 6
8 that include up to three voices. We are interested in

determining the number of equivalence classes of these sets that are inclusive both of metric shifts
and permutations of the voices. Then, A is a cyclic group of order 6, acting on the set of six beats,
and B is the symmetric group of degree three, the set of all permutations of three voices. We gave
the cycle index of A above (see Equation 9); the cycle index of B appears below:

Z(B) =
1
6

(
s3

1 + 3s1s2 + 2s3

)
. (20)

There exists one element of B that consists of three cycles of length 1; three elements of B that
contain one cycle of length 1 and one cycle of length 2; and two elements of B that have one cycle
of length 3.

We can calculate the tuple (m1(β), m2(β), ..., md(β)) for a member β ∈ B as follows. Let β be
one of the three elements s1s2 of the group of voice permutations that has one cycle of length
1 and one cycle of length 2. Table 2 demonstrates that the tuple (m1(β), m2(β), ..., md(β)) for

2The PGET is itself a generalization of an earlier result, de Bruijn’s Theorem, which enumerates equivalence classes of
weighted functions from one set to another [18].
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Table 2: Calculating (m1(β), m2(β), ..., m6(β)) for β = s1s2.

mk k s js(β) value of mk(β)

m1 1 1 j1(β) = 1 (1 · 1) = 1
m2 2 1 j1(β) = 1

2 j2(β) = 1 (1 · 1) + (2 · 1) = 3
m3 3 1 j1(β) = 1

3 j3(β) = 0 (1 · 1) + (3 · 0) = 1
m4 4 1 j1(β) = 1

2 j2(β) = 1
4 j4(β) = 0 (1 · 1) + (2 · 1) + (4 · 0) = 3

m5 5 1 j1(β) = 1
5 j5(β) = 0 (1 · 1) + (5 · 0) = 1

m6 6 1 j1(β) = 1
2 j2(β) = 1
3 j3(β) = 0
6 j6(β) = 0 (1 · 1) + (2 · 1) + (3 · 0) + (6 · 0) = 3

this particular member of B is (1, 3, 1, 3, 1, 3). In this way, we can calculate the tuples for all the
members of B:

• The tuple for the one element s3
1 of B is (3, 3, 3, 3, 3, 3).

• The tuple for the three elements s1s2 of B is (1, 3, 1, 3, 1, 3).
• The tuple for the two elements s3 of B is (0, 0, 3, 0, 0, 3).

Substituting each of the above for sk in Z(A) and summing the results yields

(1 · 130) + (3 · 6) + (2 · 4) = 156,

which, when divided by the order of B = 6, gives 26 equivalence classes that incorporate up to
three voices in 6

8 .
This number, however, also includes those equivalence classes that incorporate one and two

voices. Therefore, to determine the number of equivalence classes that use exactly three voices,
we may repeat the procedure, substituting the symmetric group of degree 2 for B, yielding 8,
and subtracting that result from 26. Hence, we find precisely 18 classes of three-voiced beat
class sets in 6

8 that are equivalent under metric shift and voice permutation. Figure 3 displays
one representative rhythm from each of these equivalence classes (up to metric shift and voice
permutation).

iii. Beat-Class Sets of Varying Cardinalities within a Meter

The previous process considers only multiple-voiced rhythms that feature onsets on every beat in
a measure, as in our initial examples in Figure 1. If we wish to consider beat-class sets of variable
cardinalities within a meter, we incorporate the polynomial form of the PGET.

Theorem 3 ([17], p. 166). The polynomial which enumerates according to weight the equivalence
classes of functions in YX determined by the power group BA is

N(x) = ∑
β∈B

Z (A; m1 (β, x) , m2 (β, x) , ..., md (β, x)) , (21)

8
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Figure 3: Representatives from each equivalence class of 3-voiced rhythms in 6
8 .

where

mk (β, x) =
r

∑
t=0

∑
s|k

sjs (βt)

 xkt. (22)

In doing so, we assign to each voice a particular weight. We assign the beats that include no
onsets to a voice with a weight of t = 0—essentially disabling its ability to permute with the other
voices—and all other voices to a weight of t = 1.

Let us return to our previous example of three-voiced, eighth-note rhythms in 6
8 under the

action of the power group BA, where A is the group of metric shifts and B is the group of voice
permutations. We now use Theorem 3 to discover how many equivalence classes exist for measures
that incorporate varying numbers of beats with onsets, from 0 to 6. In doing so, we apply the
cycle index of A to the tuple (m1(β, x), m2(β, x), ..., m6(β, x)) for each β ∈ B. Table 3 demonstrates
the calculation of (m1(β, x), m2(β, x), ..., m6(β, x)) for an arbitrary member β ∈ B with the form
s1s2. Accordingly,

(m1(β, x), m2(β, x), ..., m6(β, x)) = (1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6). (23)

In this way, we determine the following values for each of the members of B.
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• The tuple for the one element s3
1 of B is (1 + 3x, 1 + 3x2, 1 + 3x3, 1 + 3x4, 1 + 3x5, 1 + 3x6).

• The tuple for the three elements s1s2 of B is (1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6).
• The tuple for the two elements s3 of B is (1, 1, 1 + 3x3, 1, 1, 1 + 3x6).

Substituting each of these values for sk in the cycle index of A and summing those results for the
remaining members of B yields the following polynomial, where the coefficients of xk show the
number of equivalence classes of measures that incorporate k beats that contain onsets (i.e., sets of
cardinality k):

1 + 1x + 6x2 + 18x3 + 38x4 + 41x5 + 26x6. (24)

The polynomial indicates that there exists 1 equivalence class with 0 beats that contain an onset
(the empty measure), 1 equivalence class with 1 onset, 6 with 2 onsets, 18 with 3 onsets, 38 with 4
onsets, 41 with 5 onsets, and 26 (the same number we found above) with 6 onsets.

The above totals include rhythms with up to three voices. If we wish to determine the number
of equivalence classes in 6

8 that include exactly three voices, we need to determine the number of
equivalence classes with up to two voices (i.e., for e = 2) for the sets of varying cardinality and
subtract those values from the corresponding values above:

1 + 1x + 6x2 + 18x3 + 38x4 + 41x5 + 26x6

− 1 + 1x + 6x2 + 14x3 + 22x4 + 16x5 + 8x6

0 + 0x + 0x2 + 4x3 + 16x4 + 25x5 + 18x6
(25)

The coefficients in the difference indicate 0 equivalence classes of beat-class sets with 0 onsets,
1 onset, or 2 onsets (as it is not possible to have exactly three voices for sets of cardinalities
0 ≤ k ≤ 2); 2 equivalence classes of sets with 3 onsets; 16 with 4 onsets; 25 with 5 onsets; and 18
with 6 onsets (again, agreeing with our previous result).

iv. Results for d ≤ 6, e ≤ 6

Table 4 presents the numbers of equivalence classes for all beat-class sets in 6
8 of cardinalities k,

1 ≤ k ≤ 6, that contain exactly e voices, 0 ≤ e ≤ 6. In each case, we determine the polynomials
N(x) as above for each value k, and subtract from the coefficients in any one polynomial the
corresponding coefficients of the polynomial for the value k− 1. We note that no beat class sets
are possible with e voices where e < k (with the exception of e = 1, a single voice, wherein we
count the trivial case of k = 0, the empty measure).

III. Conclusions

The Power Group Enumeration Theorem permits us to count objects on which exist two group
actions. Such situations occur frequently in musical contexts, particularly as events—which
may relate to one another by means of group actions on a space, such as transposition or
inversion—also relate to one another in time, in which we define other operations. Additionally, it
allows us to complete this task merely on the basis of the cycle indices of the respective group
actions—information that is readily available. Whereas it requires a considerable amount of
computation, it is significantly more efficient than counting these objects by hand, particularly
as there exists a combinatorial explosion as the cardinalities of the sets on which the constituent
groups act increases.
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Table 3: Calculating (m1(β, x), m2(β, x), ..., m6(β, x)) for β = s1s2

mk t s js(βt)xkt polynomial for mk(β, x)
m1 0 1 1x1·0 1

1 1 1x1·1 + 1x1

m2 0 1 1x2·0 1
2 0x2·0 + 0

1 1 1x2·1 + 1x2

2 1x2·1 + 2x2

m3 0 1 1x3·0 1
3 0x3·0 + 0

1 1 1x3·1 + 1x3

3 0x3·1 + 0x3

m4 0 1 1x4·0 1
2 0x4·0 + 0
4 0x4·0 + 0

1 1 1x4·1 + 1x4

2 1x4·1 + 2x4

4 0x4·1 + 0x4

m5 0 1 1x5·0 1
5 0x5·0 + 0

1 1 1x5·1 + 1x5

3 0x5·1 + 0x5

m6 0 1 1x6·0 1
2 0x6·0 + 0
3 0x6·0 + 0
6 0x6·0 + 0

1 1 1x6·1 + 1x6

2 1x6·1 + 2x6

3 0x6·1 + 0x6

6 0x6·1 + 0x6

Table 4: Numbers of equivalence classes for beat-class sets in 6
8 of cardinality k with e voices

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
e = 1 1 1 3 4 3 1 1
e = 2 0 0 3 10 19 15 7
e = 3 0 0 0 4 16 25 18
e = 4 0 0 0 0 3 10 13
e = 5 0 0 0 0 0 1 3
e = 6 0 0 0 0 0 0 1
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One area for further related work is the enumeration of equivalence classes of multiple-voiced
beat class sets in which we wish to keep track of how many beats are articulated in each of the
respective voices. It is possible to count the sets themselves using standard combinatorial methods,
but I have yet to find an efficient method for counting their equivalence classes.

References

[1] Babbitt, M. 1962. Twelve-Tone Rhythmic Structure and the Electronic Medium. Perspectives of
New Music, 1, pp. 49—79.

[2] Boretz, B. 1970. Sketch for a Musical System (Meta–Variations, Part II). Perspectives of New
Music, 8, pp. 49–111.

[3] Rahn, J. 1975. On Pitch or Rhythm: Interpretations of Orderings of and in Pitch and Time.
Perspectives of New Music, 13, pp. 182–203.

[4] Lewin, D. 1987. Generalized Musical Intervals and Transformations New Haven: Yale University
Press.

[5] Cohn, R. 1992. Transpositional Combination of Beat-Class Sets in Steve Reich’s Phase-Shifting
Music. Perspectives of New Music, 30, pp. 146–77.

[6] Morris, R. 1988. Generalizing Rotational Arrays. Journal of Music Theory, 32, pp. 75–132.

[7] Roeder, J. 2003. Beat-Class Modulation in Steve Reich’s Music Music Theory Spectrum, 25, pp.
275–304.

[8] Bernard, J. 1997. Chord, Collection, and Set in Twentieth-Century Theory. In Music Theory
in Concept and Practice, (J. M. Baker; D. W. Beach; J. W. Bernard, ed.), pp. 11–51. Rochester:
University of Rochester Press.

[9] Nolan, C. 2002. Music Theory and Mathematics. In The Cambridge History of Western Music
Theory, (T. Christensen, ed.), pp. 272–304 Cambridge: Cambridge University Press.

[10] Nolan, C. 2003. Combinatorial Space in Nineteenth- and Early Twentieth-Century Music
Theory. Music Theory Spectrum, 25, pp. 205-–41.

[11] Hook, J. 2003. Why Are There Twenty-Nine Tetrachords? A Tutorial on Combinatorics
and Enumeration in Music Theory. Music Theory Online, 13. Available at: http://https:
//www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html.

[12] Haack, J. 1991. Clapping Music—A Combinatorial Problem. College Mathematics Journal, 22,
pp. 224—27.

[13] Read, R. 1997. Combinatorial Problems in the Theory of Music. Discrete Mathematics, 167-168,
pp. 543—551.

[14] Fripertinger, H. 1993. Enumeration in Musical Theory. Beiträge zur elektronis-
chen Musik, 1. Available at: https://iem.kug.ac.at/fileadmin/media/iem/altdaten/
projekte/publications/bem/bem1/bem1.pdf

[15] Fripertinger, H. 1999. Enumeration and Construction in Music Theory. In: Diderot Forum on
Mathematics and Music: Computational and Mathematical Methods in Music, (H. G. Feichtinger;
M. Dörfler, ed.), pp. 179–204. Vienna: Österreichische Computergesellschaft.

12

http://www.musmat.org/
http://https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html
http://https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html
https://iem.kug.ac.at/fileadmin/media/iem/altdaten/projekte/publications/bem/bem1/bem1.pdf
https://iem.kug.ac.at/fileadmin/media/iem/altdaten/projekte/publications/bem/bem1/bem1.pdf


Journal MusMat • June 2021 • Vol. V, No. 1

[16] Fripertinger, H.; Lackner, P. 2015. Tone Rows and Tropes. Journal of Mathematics and Music, 9,
pp. 111–172.

[17] Harary, F.; Palmer, E. 1966. The Power Group Enumeration Theorem. Journal of Combinatorial
Theory, 1, pp. 157–173.

[18] de Bruijn, N. 1964. Pólya’s Theory of Counting. In Applied Combinatorial Mathematics, (Becken-
bach, E., ed.) pp. 144–184. New York: Wiley.

13

http://www.musmat.org/

	Introduction
	Beat-Class Sets
	Enumeration Applications in Music Theory

	Enumeration of Equivalence Classes of Beat-Class Sets
	Single-Voice Sets
	Multiple-Voice Sets
	Beat-Class Sets of Varying Cardinalities within a Meter
	Results for d 6, e 6

	Conclusions

