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Abstract: The theory of beat-class sets originates in the work of Milton Babbitt, who demonstrates a
correspondence between modular pitch-class spaces and metric spaces in the framework of total serialism.
Later authors, particularly Richard Cohn, John Roeder, and Robert Morris, apply similar concepts to a
variety of analytical situations, drawing on concepts and procedures from pitch-class set theory. In light
of the correspondence between these theories, the universe of beat-class sets for a given modulus may be
partitioned into equivalence classes similar to pitch-class set classes. This study investigates processes of
enumerating these equivalence classes.

We consider extensions to the theory of beat-class sets by including rhythms with more than one voice.
Specifically, we examine equivalence classes of multiple-voiced beat-class sets using the Power Group
Enumeration Theorem (PGET) of Frank Harary and Edgar M. Palmer. The PGET allows us to determine
the numbers of equivalence classes of beat-class sets as determined by various groups of transformations:
metric shift, retrogradation, and voice permutation, among others. Our results have implications for
further applications in pitch-class set theory, serial theory, and transformational theory.

Keywords: Beat-class set. Equivalence class. Combinatorics. Enumeration. Power group.

I. Introduction

Consider rhythms (a)-(c) in Figure 1. Each rhythm displays six eighth notes, distributed
among three voices. Rhythms (a) and (b) relate by a metric shift of three eighth notes. They
are, accordingly, members of an orbit of the cyclic group of metric shifts, acting on the set

of rhythms in the meter 6
8 . In contrast, rhythm (c) does not relate by metric shift to the previous

two. Consequently, it is a member of a different orbit of this group; hence, it is not a member of
the same equivalence class.

Such equivalence classes are similar to the Tn set classes of pitch-class set theory. They are
orbits of cyclic groups: the cyclic transposition group of order 12, in the case of the traditional,
pitched Tn classes, and the cyclic metric-shift group of order 6, in the case of these rhythms. As
with Tn classes, these rhythmic equivalence classes vary in size, depending on the degree of
symmetry of their members. The first two rhythms here display no rotational symmetry. As a
result, the equivalence class to which they belong contains six such rhythms. The third rhythm,
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Figure 1: Four three-voiced rhythms in 6
8 .

on the other hand, is symmetrical under a metric shift of three eighth notes. As a result, its
equivalence class contains only three rhythms.

Next, compare rhythm (d) in Figure 1 to (a) and (b). Rhythm (d) does not obtain from (a) by
an operation on metric positions, but these rhythms do relate by voice permutation. They are
members of a different equivalence class, an orbit of the group of voice permutations. Likewise,
rhythms (b) and (d) are members of an equivalence class: an orbit of a group that acts both on
metric positions and voices. Such a group is an example of a power group, which we investigate
in greater depth below.

This study considers these types of equivalence classes. In particular, we are concerned with
the enumeration of equivalence classes of rhythmic sets that relate by metric shifts and voice
permutations. This task is a music-theoretical application of concepts and procedures from the
mathematical field of combinatorics. Some of our work will incorporate classical combinatorial
techniques, such as Burnside’s Lemma and Pólya’s Enumeration Theorem. Other methods derive
from more recent results, including de Bruijn’s Theorem and the Power Group Enumeration
Theorem.

Throughout this study, we consider examples of rhythms in 6
8 under the action of groups of

metric shifts and voice permutations. Several of these examples incorporate three voices, as in
Figure 1. The theory presented here is not limited to these particular parameters. It is sufficiently
general to apply to rhythms in any meter with any number of voices under the action of any
relevant group. Similarly, for simplicity, the examples included here contain only beat-level onsets.
The theory may apply as well to rhythms that include subdivision-level onsets.

i. Beat-Class Sets

We situate our findings in the context of beat-class set theory. The theory of beat-class sets
originates in the work of Milton Babbitt [1], who refers to sets of time points in terms of a
correspondence between modular pitch-class spaces and metric spaces in the framework of total
serialism. Benjamin Boretz [2], John Rahn [3], and David Lewin [4] investigate this connection
further. Later authors, including Richard Cohn [5], Robert Morris [6], and John Roeder [7], apply
similar concepts to a variety of analytical situations, such as in the phase music of Steve Reich.

A beat-class set is a rhythmic analogue of a pitch-class set, where the modular pitch-class space
of the latter is exchanged with a modular space of metric positions in the former. For instance, an
eighth-note rhythm in 6

8 has six potential beat-level onsets, which we label in the integers modulo
6 (where the downbeat is equal to 0). The rhythm in Figure 2 features onsets at metric positions 0,
2, and 3, thereby constituting the beat-class set {0, 2, 3}. As with pitch-class sets, we may perform
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Figure 2: Beat-class set {0, 2, 3}.

various operations to beat-class sets. Unit metric shift generates a cyclic group that acts on the
set of metric positions, similar to the group of transposition operators that acts on pitch-classes.
Retrogradation agrees with the pitch-class operation of inversion. Adjoining this operation to
the group of metric shifts yields a dihedral group of operators, corresponding to the pitch-class
transposition-and-inversion group. The respective actions of these groups on the set of beat-class
sets within a particular meter partition that set into equivalence classes that parallel the Tn and
Tn/Tn I set classes of pitch-class set theory.

In this study, we consider not only beat-class sets with a single voice, like the set {0, 2, 3}
above, but also multiple-voice sets, such as the three-voice examples we considered initially.
Operations on metric positions—such as metric shift and/or retrogradation—partition the set of
multiple-voice beat-class sets into equivalence classes. However, these operations do not situate
beat-class sets that are related merely by a permutation of their voices into the same equivalence
class. Nevertheless, such sets are equivalent in a rhythmically generic sense. For instance, both the
rhythms in Figure 1 (a) and (d) above may be described as follows: an initial voice presents an
onset at metric position 0; two onsets follow in another voice at positions 1 and 2; the initial voice
presents another single onset at position 3; the second voice has one onset at position 4; and a
third voice concludes the rhythm with an onset at position 5. By virtue of this generic rhythmic
identity, we adjoin voice permutations to the previous groups to form a new category of groups,
the orbits of which constitute equivalence classes of multiple-voice beat-class sets.

In addition to the multiple-voiced rhythms in Figure 1, which contain an onset on every beat
of the measure, we also consider multiple-voiced rhythms with some number of beats that contain
no onsets (e.g., beats with rests or which simply contain no onset). One solution to this problem
would be merely to assign the beats with no onsets to a particular voice. However, if the number
of onsets is to remain constant, then we should not allow the voice with no onsets to permute with
the voices with onsets. As we will see, the Power Group Enumeration Theorem offers a method
for achieving this result.

ii. Enumeration Applications in Music Theory

Considering that pitch-class set theory as a discipline did not emerge until the 1960s and early
1970s, the enumeration of what are essentially pitch-class set classes has a surprisingly long
tradition, beginning in the late 19th and early 20th centuries. Jonathan Bernard [8] and Catherine
Nolan [9, 10] discuss the history of early efforts in this endeavor, citing the work of Heinrich
Vincent, Anatole Loquin, and Ernst Bacon. Julian Hook [11] presents a detailed tutorial of classical
combinatorial enumeration techniques, including Burnside’s Lemma and Pólya’s Enumeration
Theorem, as applied to a host of music-theoretical topics, including the counting of Tn, Tn/Tn I, and
Tn/Tn I/Tn M set classes in modular pitch-class spaces of various sizes, row classes of twelve-tone
series, equivalence classes of beat-class sets, and the like.

Other music-theoretical research that incorporates enumeration applies these techniques to
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various problems. Joel Haack [12] uses combinatorial methods to determine the number of beat-
class sets that have the same properties as—and that could substitute for—the rhythm that serves
as the basis for Steve Reich’s 1972 composition Clapping Music. Ronald C. Read [13] considers the
size of the set of all possible performances of Stockhausen’s Klavierstück XI. He calculates precisely
the number of paths that may be taken through 19 fragments that constitute the score to that
piece, approximately equal to 1.7× 1041. Harald Fripertinger [14, 15] discusses the enumeration of
a variety of musical objects, such as intervals and chords, patterns of rhythms and motives, as
well as tone rows and patterns of tropes. Fripertinger and Peter Lackner [16] examine in greater
depth the enumeration of the latter two topics in an article that constitutes an entire special issue
of Journal of Mathematics and Music. The enumeration of tropes is of particular relevance to this
study, as it involves the action of a power group: a group that acts on hexachordal partitions of
12-tone rows by transposing or inverting the pitch-classes in the hexachords and/or by permuting
the hexachords themselves.

II. Enumeration of Equivalence Classes of Beat-Class Sets

i. Single-Voice Sets

The enumeration of single-voice beat-class sets, such as the example of the beat-class set {0, 2, 3}
above, is equivalent to counting the number of subsets of beats classes in a single measure with
n beats. For a given subset, two possibilities exist for any beat class in the measure: the subset
may include an onset at that beat or it may not. Hence, there is a total of 2n possible subsets. The
number of equivalence classes to which these subsets belong, however, is not merely 2n divided
by the order of the group that acts on the beat classes, as certain sets may possess symmetry.

Burnside’s Lemma gives the number of orbits as an average. Each member α of the group A
fixes some number of elements of the set X on which the group acts, the set Xα. The number of
orbits for A, then, is the average of these numbers of fixed elements as α varies within A:

|A/G| = 1
|A| ∑

α∈A
|Xα| . (1)

In the case of 6
8 , we observe that there exist 26 = 64 possible beat class sets (including the empty

set and the set that includes onsets in all six metric positions). As we noted above, some of these
sets possess symmetry. To calculate the number of orbits into which the 64 sets partition under
the action of the group of metric shifts, we need to know how many of these sets are fixed by
translation by one metric position, two metric positions, etc., through six metric positions. Then,
the number of equivalence classes is the average of these tallies.

To ascertain the numbers of sets that are fixed by any particular member of a group, it is useful
to examine the disjoint cycle decomposition of each element of the group. Let A be a permutation
group with an action on a set X of size d. Each permutation in A may be written as a product
of disjoint cycles. For every k from 1 to d, let jk be a function that counts the number of cycles
of length k among the disjoint cycles in the decomposition of the permutation. For example, our
group of metric shifts in 6

8 acts on the set of 6 metric positions, labeled 0 (downbeat) through
5. Let Tn be a metric shift of n eighth notes. Then, the members of A have the disjoint cycle

4
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Table 1: Values of jk(Tn).

Tn j1 j2 j3 j4 j5 j6

T0 j1(T0) = 6 j2(T0) = 0 j3(T0) = 0 j4(T0) = 0 j5(T0) = 0 j6(T0) = 0
T1 j1(T1) = 0 j2(T1) = 0 j3(T1) = 0 j4(T1) = 0 j5(T1) = 0 j6(T1) = 1
T2 j1(T2) = 0 j2(T2) = 0 j3(T2) = 2 j4(T2) = 0 j5(T2) = 0 j6(T2) = 0
T3 j1(T3) = 0 j2(T3) = 3 j3(T3) = 0 j4(T3) = 0 j5(T3) = 0 j6(T3) = 0
T4 j1(T4) = 0 j2(T4) = 0 j3(T4) = 2 j4(T4) = 0 j5(T4) = 0 j6(T4) = 0
T5 j1(T5) = 0 j2(T5) = 0 j3(T5) = 0 j4(T5) = 0 j5(T5) = 0 j6(T5) = 1

decompositions shown here:

T0 := (0)(1)(2)(3)(4)(5) (2)

T1 := (0, 1, 2, 3, 4, 5) (3)

T2 := (0, 2, 4)(1, 3, 5) (4)

T3 := (0, 3)(1, 4)(2, 5) (5)

T4 := (0, 4, 2)(1, 5, 3) (6)

T5 := (0, 5, 4, 3, 2, 1). (7)

Table 1 shows the values of jk for each Tn (non-zero values appear in bold).
Call q(Tn) the sum of all values jk for any particular Tn. Then, we use 2q(Tn) to determine the

number of beat-class sets in 6
8 that are symmetrical under the element Tn of the group of metric

shifts. For example, since q(T0) = 6, T0 fixes all 26 = 64 beat-class sets. Similarly, since q(T1) = 1,
T1 fixes 2 beat-class sets, and so forth. The total number of beat-class sets fixed by the elements
of the group is 84, which, divided by 6 (the size of the group), equals 14—the number of Tn
equivalence classes (or orbits of this particular group).

It will be useful below to keep track of the disjoint cycle decomposition of the elements of a
group A. We may do this by means of the cycle index of A, Z(A), a polynomial in the variables
s1, s2, ..., sd:1

Z(A) =
1
|A| ∑

α∈A

d

∏
k=1

sjk(α)
k . (8)

For example, consider the cycle index for the group A of metric shifts in 6
8 :

Z(A) =
1
6
(s6

1 + s3
2 + 2s2

3 + 2s6). (9)

Note that there exists one element in the group, T0, that contains six cycles of length 1, and 1 is the
coefficient of s1 in Z(A); one element, T3, contains three cycles of length 2, and 1 is the coefficient
of s2; two elements, T2 and T4, contain two cycles of length 3, and 2 is the coefficient of s3; finally,
two elements, T1 and T5, contain one cycle of length 6, and 2 is the coefficient of s6.

Next, we wish to determine the number of equivalence classes that exist for sets of the same
size. Let A be a group of order m that acts on a set X of size d; α ∈ A. Further, let B be a group
that acts on a set Y of size e ≥ 2 into which we map the elements of X; β ∈ B.

1The variable s here does not mean anything; it is a placeholder.
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Definition 1. Call BA the power group, which has an action of the set YX of all functions f : X → Y.
The members of BA are the ordered pairs (α; β). Any function f in YX under (α; β), then, consists
of the mapping ((α; β) f )(x) = β f (αx).

For now, however, we will assume that B is the identity group—that is, its single element does not
permute elements of Y.

Let w be a weight function that maps Y into the set of non-negative integers, 0 ≤ k ≤ ∞, and
let

ck =
∣∣∣w−1(k)

∣∣∣ (10)

be the number of number of configurations with weight k. Then, we call the series in the
indeterminant x,

c (x) =
∞

∑
k=0

ckxk, (11)

the "configuration counting series". Because all functions in the same orbit of BA have the same
weight, there exists a finite number of orbits of any particular weight. Therefore, let Ck be the size
of the set of orbits of weight k. Then, the series in the indeterminant x,

C (x) =
∞

∑
k=0

Ckxk, (12)

is the "function counting series". This leads to the weighted version of Pólya’s Enumeration
Theorem. Let Z(A, c(x)) be an abbreviated denotation of Z(A; c(x), c(x2), c(x3), ...).

Theorem 1 (Pólya). We substitute c(xk) in the configuration counting series for each variable sk in
Z(A) to determine the function counting series C(x). That is,

C(x) = Z(A, c(x)). (13)

Let us again consider the example of beat-class sets in 6
8 . Let A be the group of metric shifts,

acting on the set of six beat classes, and let B be the identity group with an action on a single
voice. The configuration counting series for A appears here:

c(x) = (1 + x) + (1 + x2) + (1 + x3) + (1 + x4) + (1 + x5) + (1 + x6). (14)

We recall the cycle index of A from Equation 9, and we substitute (1 + xk) for sk in Z(A) to
determine the function counting series:

C(x) =
1
6
((1 + x)6 + (1 + x2)3 + 2(1 + x3)2 + 2(1 + x6)). (15)

Expanding the above yields the following polynomial,

C(x) =
1
6
((1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6) + (1 + 3x2 + 3x4 + x6)

+(2 + 4x3 + 2x6) + (2 + 2x6)),
(16)

which we simplify as follows:

C(x) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + x6. (17)

6
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The coefficients of xk in the polynomial determine the number of equivalence classes for beat-class
sets of size k. Therefore, there exists one equivalence class of sets of size 0, one equivalence class
of sets of size 1, three of sets of size 2, and so on, for a total of 14.

ii. Multiple-Voice Sets

We may also use Pólya’s Enumeration Theorem to find the numbers of equivalence classes of
multiple-voiced beat-class sets. For e voices, we substitute an expression with e variable summands
in place of the indeterminants in the cycle index of A. For instance, if we wish to enumerate
the equivalence classes of the 36 = 729 three-voice beat-class sets in 6

8 , we could replace sk in
Z(A) with (1 + xk + yk + zk). Then, the coefficients of xmynzp in C(x, y, z) are the numbers of
equivalence classes of sets with m, n, and p onsets in each respective voice.

The method above for partitioning the set of e-voiced beat-class sets in a meter with d beats does
not include sets that relate to one another by a permutation of the voices in the same equivalence
class. If we wish to determine the numbers of these larger equivalence classes, we utilize the
Power Group Enumeration Theorem of Harary and Palmer (PGET), which generalizes Pólya’s
Enumeration Theorem [17].2 The PGET comes in two forms: the constant form, which counts
the total number N of orbits of a power group; and the polynomial form, which enumerates the
number N(x) of equivalence classes of sets of the same cardinality.

We define the power group BA as above, where A is a group of metric shifts, acting on a set X
of d beats in a given meter. In the previous examples, however, we let B be merely an identity
group, acting trivially on the set of e = 1 voices. Now, we let B have a non-trivial action on the set
of e > 1 voices. Then, the PGET in its constant form is as follows:

Theorem 2 ([17], p. 163).

N =
1
|B| ∑

β∈B
Z (A; m1(β), m2(β), ..., md(β)) , (18)

where
mk(β) = ∑

s|k
sjs(β). (19)

Let us take the case of beat-class sets in 6
8 that include up to three voices. We are interested in

determining the number of equivalence classes of these sets that are inclusive both of metric shifts
and permutations of the voices. Then, A is a cyclic group of order 6, acting on the set of six beats,
and B is the symmetric group of degree three, the set of all permutations of three voices. We gave
the cycle index of A above (see Equation 9); the cycle index of B appears below:

Z(B) =
1
6

(
s3

1 + 3s1s2 + 2s3

)
. (20)

There exists one element of B that consists of three cycles of length 1; three elements of B that
contain one cycle of length 1 and one cycle of length 2; and two elements of B that have one cycle
of length 3.

We can calculate the tuple (m1(β), m2(β), ..., md(β)) for a member β ∈ B as follows. Let β be
one of the three elements s1s2 of the group of voice permutations that has one cycle of length
1 and one cycle of length 2. Table 2 demonstrates that the tuple (m1(β), m2(β), ..., md(β)) for

2The PGET is itself a generalization of an earlier result, de Bruijn’s Theorem, which enumerates equivalence classes of
weighted functions from one set to another [18].
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Table 2: Calculating (m1(β), m2(β), ..., m6(β)) for β = s1s2.

mk k s js(β) value of mk(β)

m1 1 1 j1(β) = 1 (1 · 1) = 1
m2 2 1 j1(β) = 1

2 j2(β) = 1 (1 · 1) + (2 · 1) = 3
m3 3 1 j1(β) = 1

3 j3(β) = 0 (1 · 1) + (3 · 0) = 1
m4 4 1 j1(β) = 1

2 j2(β) = 1
4 j4(β) = 0 (1 · 1) + (2 · 1) + (4 · 0) = 3

m5 5 1 j1(β) = 1
5 j5(β) = 0 (1 · 1) + (5 · 0) = 1

m6 6 1 j1(β) = 1
2 j2(β) = 1
3 j3(β) = 0
6 j6(β) = 0 (1 · 1) + (2 · 1) + (3 · 0) + (6 · 0) = 3

this particular member of B is (1, 3, 1, 3, 1, 3). In this way, we can calculate the tuples for all the
members of B:

• The tuple for the one element s3
1 of B is (3, 3, 3, 3, 3, 3).

• The tuple for the three elements s1s2 of B is (1, 3, 1, 3, 1, 3).
• The tuple for the two elements s3 of B is (0, 0, 3, 0, 0, 3).

Substituting each of the above for sk in Z(A) and summing the results yields

(1 · 130) + (3 · 6) + (2 · 4) = 156,

which, when divided by the order of B = 6, gives 26 equivalence classes that incorporate up to
three voices in 6

8 .
This number, however, also includes those equivalence classes that incorporate one and two

voices. Therefore, to determine the number of equivalence classes that use exactly three voices,
we may repeat the procedure, substituting the symmetric group of degree 2 for B, yielding 8,
and subtracting that result from 26. Hence, we find precisely 18 classes of three-voiced beat
class sets in 6

8 that are equivalent under metric shift and voice permutation. Figure 3 displays
one representative rhythm from each of these equivalence classes (up to metric shift and voice
permutation).

iii. Beat-Class Sets of Varying Cardinalities within a Meter

The previous process considers only multiple-voiced rhythms that feature onsets on every beat in
a measure, as in our initial examples in Figure 1. If we wish to consider beat-class sets of variable
cardinalities within a meter, we incorporate the polynomial form of the PGET.

Theorem 3 ([17], p. 166). The polynomial which enumerates according to weight the equivalence
classes of functions in YX determined by the power group BA is

N(x) = ∑
β∈B

Z (A; m1 (β, x) , m2 (β, x) , ..., md (β, x)) , (21)

8
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Figure 3: Representatives from each equivalence class of 3-voiced rhythms in 6
8 .

where

mk (β, x) =
r

∑
t=0

∑
s|k

sjs (βt)

 xkt. (22)

In doing so, we assign to each voice a particular weight. We assign the beats that include no
onsets to a voice with a weight of t = 0—essentially disabling its ability to permute with the other
voices—and all other voices to a weight of t = 1.

Let us return to our previous example of three-voiced, eighth-note rhythms in 6
8 under the

action of the power group BA, where A is the group of metric shifts and B is the group of voice
permutations. We now use Theorem 3 to discover how many equivalence classes exist for measures
that incorporate varying numbers of beats with onsets, from 0 to 6. In doing so, we apply the
cycle index of A to the tuple (m1(β, x), m2(β, x), ..., m6(β, x)) for each β ∈ B. Table 3 demonstrates
the calculation of (m1(β, x), m2(β, x), ..., m6(β, x)) for an arbitrary member β ∈ B with the form
s1s2. Accordingly,

(m1(β, x), m2(β, x), ..., m6(β, x)) = (1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6). (23)

In this way, we determine the following values for each of the members of B.

9
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• The tuple for the one element s3
1 of B is (1 + 3x, 1 + 3x2, 1 + 3x3, 1 + 3x4, 1 + 3x5, 1 + 3x6).

• The tuple for the three elements s1s2 of B is (1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6).
• The tuple for the two elements s3 of B is (1, 1, 1 + 3x3, 1, 1, 1 + 3x6).

Substituting each of these values for sk in the cycle index of A and summing those results for the
remaining members of B yields the following polynomial, where the coefficients of xk show the
number of equivalence classes of measures that incorporate k beats that contain onsets (i.e., sets of
cardinality k):

1 + 1x + 6x2 + 18x3 + 38x4 + 41x5 + 26x6. (24)

The polynomial indicates that there exists 1 equivalence class with 0 beats that contain an onset
(the empty measure), 1 equivalence class with 1 onset, 6 with 2 onsets, 18 with 3 onsets, 38 with 4
onsets, 41 with 5 onsets, and 26 (the same number we found above) with 6 onsets.

The above totals include rhythms with up to three voices. If we wish to determine the number
of equivalence classes in 6

8 that include exactly three voices, we need to determine the number of
equivalence classes with up to two voices (i.e., for e = 2) for the sets of varying cardinality and
subtract those values from the corresponding values above:

1 + 1x + 6x2 + 18x3 + 38x4 + 41x5 + 26x6

− 1 + 1x + 6x2 + 14x3 + 22x4 + 16x5 + 8x6

0 + 0x + 0x2 + 4x3 + 16x4 + 25x5 + 18x6
(25)

The coefficients in the difference indicate 0 equivalence classes of beat-class sets with 0 onsets,
1 onset, or 2 onsets (as it is not possible to have exactly three voices for sets of cardinalities
0 ≤ k ≤ 2); 2 equivalence classes of sets with 3 onsets; 16 with 4 onsets; 25 with 5 onsets; and 18
with 6 onsets (again, agreeing with our previous result).

iv. Results for d ≤ 6, e ≤ 6

Table 4 presents the numbers of equivalence classes for all beat-class sets in 6
8 of cardinalities k,

1 ≤ k ≤ 6, that contain exactly e voices, 0 ≤ e ≤ 6. In each case, we determine the polynomials
N(x) as above for each value k, and subtract from the coefficients in any one polynomial the
corresponding coefficients of the polynomial for the value k− 1. We note that no beat class sets
are possible with e voices where e < k (with the exception of e = 1, a single voice, wherein we
count the trivial case of k = 0, the empty measure).

III. Conclusions

The Power Group Enumeration Theorem permits us to count objects on which exist two group
actions. Such situations occur frequently in musical contexts, particularly as events—which
may relate to one another by means of group actions on a space, such as transposition or
inversion—also relate to one another in time, in which we define other operations. Additionally, it
allows us to complete this task merely on the basis of the cycle indices of the respective group
actions—information that is readily available. Whereas it requires a considerable amount of
computation, it is significantly more efficient than counting these objects by hand, particularly
as there exists a combinatorial explosion as the cardinalities of the sets on which the constituent
groups act increases.
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Table 3: Calculating (m1(β, x), m2(β, x), ..., m6(β, x)) for β = s1s2

mk t s js(βt)xkt polynomial for mk(β, x)
m1 0 1 1x1·0 1

1 1 1x1·1 + 1x1

m2 0 1 1x2·0 1
2 0x2·0 + 0

1 1 1x2·1 + 1x2

2 1x2·1 + 2x2

m3 0 1 1x3·0 1
3 0x3·0 + 0

1 1 1x3·1 + 1x3

3 0x3·1 + 0x3

m4 0 1 1x4·0 1
2 0x4·0 + 0
4 0x4·0 + 0

1 1 1x4·1 + 1x4

2 1x4·1 + 2x4

4 0x4·1 + 0x4

m5 0 1 1x5·0 1
5 0x5·0 + 0

1 1 1x5·1 + 1x5

3 0x5·1 + 0x5

m6 0 1 1x6·0 1
2 0x6·0 + 0
3 0x6·0 + 0
6 0x6·0 + 0

1 1 1x6·1 + 1x6

2 1x6·1 + 2x6

3 0x6·1 + 0x6

6 0x6·1 + 0x6

Table 4: Numbers of equivalence classes for beat-class sets in 6
8 of cardinality k with e voices

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
e = 1 1 1 3 4 3 1 1
e = 2 0 0 3 10 19 15 7
e = 3 0 0 0 4 16 25 18
e = 4 0 0 0 0 3 10 13
e = 5 0 0 0 0 0 1 3
e = 6 0 0 0 0 0 0 1
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One area for further related work is the enumeration of equivalence classes of multiple-voiced
beat class sets in which we wish to keep track of how many beats are articulated in each of the
respective voices. It is possible to count the sets themselves using standard combinatorial methods,
but I have yet to find an efficient method for counting their equivalence classes.

References

[1] Babbitt, M. 1962. Twelve-Tone Rhythmic Structure and the Electronic Medium. Perspectives of
New Music, 1, pp. 49—79.

[2] Boretz, B. 1970. Sketch for a Musical System (Meta–Variations, Part II). Perspectives of New
Music, 8, pp. 49–111.

[3] Rahn, J. 1975. On Pitch or Rhythm: Interpretations of Orderings of and in Pitch and Time.
Perspectives of New Music, 13, pp. 182–203.

[4] Lewin, D. 1987. Generalized Musical Intervals and Transformations New Haven: Yale University
Press.

[5] Cohn, R. 1992. Transpositional Combination of Beat-Class Sets in Steve Reich’s Phase-Shifting
Music. Perspectives of New Music, 30, pp. 146–77.

[6] Morris, R. 1988. Generalizing Rotational Arrays. Journal of Music Theory, 32, pp. 75–132.

[7] Roeder, J. 2003. Beat-Class Modulation in Steve Reich’s Music Music Theory Spectrum, 25, pp.
275–304.

[8] Bernard, J. 1997. Chord, Collection, and Set in Twentieth-Century Theory. In Music Theory
in Concept and Practice, (J. M. Baker; D. W. Beach; J. W. Bernard, ed.), pp. 11–51. Rochester:
University of Rochester Press.

[9] Nolan, C. 2002. Music Theory and Mathematics. In The Cambridge History of Western Music
Theory, (T. Christensen, ed.), pp. 272–304 Cambridge: Cambridge University Press.

[10] Nolan, C. 2003. Combinatorial Space in Nineteenth- and Early Twentieth-Century Music
Theory. Music Theory Spectrum, 25, pp. 205-–41.

[11] Hook, J. 2003. Why Are There Twenty-Nine Tetrachords? A Tutorial on Combinatorics
and Enumeration in Music Theory. Music Theory Online, 13. Available at: http://https:
//www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html.

[12] Haack, J. 1991. Clapping Music—A Combinatorial Problem. College Mathematics Journal, 22,
pp. 224—27.

[13] Read, R. 1997. Combinatorial Problems in the Theory of Music. Discrete Mathematics, 167-168,
pp. 543—551.

[14] Fripertinger, H. 1993. Enumeration in Musical Theory. Beiträge zur elektronis-
chen Musik, 1. Available at: https://iem.kug.ac.at/fileadmin/media/iem/altdaten/
projekte/publications/bem/bem1/bem1.pdf

[15] Fripertinger, H. 1999. Enumeration and Construction in Music Theory. In: Diderot Forum on
Mathematics and Music: Computational and Mathematical Methods in Music, (H. G. Feichtinger;
M. Dörfler, ed.), pp. 179–204. Vienna: Österreichische Computergesellschaft.

12

http://https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html
http://https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html
http://www.musmat.org/
https://iem.kug.ac.at/fileadmin/media/iem/altdaten/projekte/publications/bem/bem1/bem1.pdf
https://iem.kug.ac.at/fileadmin/media/iem/altdaten/projekte/publications/bem/bem1/bem1.pdf


Journal MusMat • June 2021 • Vol. V, No. 1

[16] Fripertinger, H.; Lackner, P. 2015. Tone Rows and Tropes. Journal of Mathematics and Music, 9,
pp. 111–172.

[17] Harary, F.; Palmer, E. 1966. The Power Group Enumeration Theorem. Journal of Combinatorial
Theory, 1, pp. 157–173.

[18] de Bruijn, N. 1964. Pólya’s Theory of Counting. In Applied Combinatorial Mathematics, (Becken-
bach, E., ed.) pp. 144–184. New York: Wiley.

13

http://www.musmat.org/


Musical Quasigroups
*Gideon Okon Effiong

Hezekiah University
g.effiong@hezekiah.edu.ng
Orcid: 0000-0001-9569-1905

DOI: 10.46926/musmat.2021v5n1.14-38

Abstract: A musical quasigroup is a musical groupoid in which all its left and right translation mappings
are permutations. Some quasigroups of chords with a left (right, middle) identity element have been
investigated. It is noted that the left (right, middle) identity element of a musical quasigroup is often
associated with the root note of a musical chord. It is shown that chord inversions can be displayed by
quasigroups. Examples of musical sequence of triads are constructed by using quasigroups. It is shown that
a twelve-tone matrix can be created by using a quasigroup. Some examples of an n-tone composition chart
using quasigroup are constructed. In particular, some charts showing a circle of fourths and fifths have
been obtained by musical quasigroup. Some examples of ascending, descending, disjunct, and conjunct
motions respectively have been described using quasigroups. Also, some examples of contrary, strict
contrary, oblique, similar, and parallel motions have been given using quasigroups. The bass, treble, and
grand staves have been described by a quasigroup. Examples on motion of a single melody is given having
both conjunct and disjunct motions. Also, an example of an oblique motion in which one of its melodies is
static while the other moves into conjunct and disjunct motions is demonstrated by a quasigroup. Some
examples of a subquasigroup for pitch classes are constructed and verified with some musical examples.
By the concept of a normal subquasigroup, a melodic motion which is disjunct is described to have a
sub-melodic motion which is conjunct. It is shown that there are paired melodies which are not in contrary
motion to each other but have paired sub-melodies which are in contrary (or strict-contrary) motion.

Keywords: Quasigroup. Subquasigroup. Normal subquasigroup. n-tone composition chart. Chord
inversion. Melodic motion.

I. Introduction

Mathematics in a number of ways has been applied to music theory in the past centuries.
One of such interdisciplinary studies on music was carried out by Morris [10]. The
relationship exhibited between mathematical reasoning and musical creativity has gained

attention in recent years due to an increasing human interest in both subjects. Ben [4] studied the
integral relationship between frequencies of tones, while Lewin [9] applied group theory to music
by the concept of transformation theory using music intervals, and Wright [13] discusses on some
abstract group relationship of musical structures. There are many research results showing the
application of group theory to music, but when quasigroup theory and its relationship in music is
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mentioned, little or no direct result is obtained. From this study, we have seen that some musicians
have been applying some concepts of quasigroup in one way or the other in their compositions.
Therefore, this study seeks to examine a formal approach to music through quasigroups.

i. Preliminaries

Let Q be a set, then by binary operation ∗ on Q, we mean a mapping

∗ : Q×Q −→ Q. (1)

Then, the pair (Q, ∗) is called a groupoid or a Magma. In this paper, we use the terminology
adopted in Bruck [5].

Let (Q, ∗) be a groupoid. If, for all x, y ∈ Q, x ∗ y = y ∗ x, then (Q, ∗) is called a commutative
groupoid. A groupoid (Q, ∗) has an identity element e ∈ Q if

for every x ∈ Q, x ∗ e = e ∗ x = x. (2)

The order of a groupoid (Q, ∗) denoted by |Q| is the cardinality of Q. A groupoid (Q, ∗) is said
to be of finite order (that is, a finite groupoid ) if |Q| is a finite number, otherwise it is called an
infinite groupoid.

We write xy instead of x ∗ y and designate that ∗ has a lower priority than juxtaposition among
factors to be multiplied. For instance, x ∗ yz represents x(yz). Let (Q, ∗) be a groupoid, and let x
be a fixed element in (Q, ∗). Then the left and right translation maps of Q, Lx, Rx : Q −→ Q are
defined respectively by

yLx = x ∗ y and yRx = y ∗ x, (3)

for all x, y ∈ Q. In the above definition, we adopt the definition of left and right translation
mappings used in Jaiyeola [8]. Let (Q, ∗) be a groupoid. An element a ∈ Q is said to satisfy the
left (right) cancellation law if, for all x, y ∈ Q, x = y if and only if

a ∗ x = a ∗ y (x ∗ a = y ∗ a). (4)

In a groupoid (Q, ∗), the left and the right translation mappings need not be permutations. A
groupoid (Q, ∗) is said to be associative if for all a, b, c ∈ Q, (ab)c = a(bc). An associative
groupoid is a semigroup. For more studies on binary operation, integers and groupoids, readers
may check [1, 6, 7, 5]. Let (Q, ∗) be a groupoid. If each of the equations

a ∗ x = b and y ∗ a = b (5)

has unique solutions in Q for x and y respectively, then (Q, ∗) is called a quasigroup. Thus, a
groupoid (Q, ∗) is a quasigroup if its left and right translation mappings are permutations. An
element u is a left identity element of a quasigroup (Q, ∗) if for all x ∈ Q, u ∗ x = x. An element
v is a right identity element of a quasigroup (Q, ∗) if for all x ∈ Q, x ∗ v = x. An element w
is a middle identity element of a quasigroup (Q, ∗) if for all x ∈ Q, x ∗ x = w. For more on
Quasigroup, readers may check [2, 3, 8, 12].

Let Z be the set of integers and consider x, y, z ∈ Z. The positive integer z is called the greatest
divisor of integers x and y if any divisor of x and y is also a divisor of z, and z is a divisor of both
x and y. An integer p > 1 is called a prime if its divisors are ±p and ±1 only.

Two integers x and y are said to be relatively prime if their greatest common divisor is 1. As a
consequence, the equation

1 = ax + by (6)
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holds for some integers a, b ∈ Z.
Let Z be a set of integers and let m, n ∈ Z. By modulo operation, abbreviated as mod, on Z

we mean, n divides m and has a remainder r ∈ Z, written as m mod n = r. For a fixed n ∈ Z,
the set of all r satisfying m mod n = r for all m ∈ Z is denoted by Zn. The notation Zn is called
the set of integers modulo n. Also, the product of two elements g and h in Zn can be defined as
gh (mod n). On a music scale, modulo operation is a computation which restarts the music notes
once a certain value is attained.

We denote the ordered sequence of pitch classes in the angle brackets 〈 〉. The function of a
musical note can be changed by the use of flats and sharps. When two notes sound the same
but are named as different notes, they are said to be enharmonic equivalent to each other. Scales,
chords, keys and intervals can as well be enharmonically named.

II. Main Results

In this section, some concepts and examples of quasigroups are applied to music. Some quasi-
groups of chords with a left (right, middle) identity element are investigated. It is noted that the
left (right, middle) identity element of a finite quasigroup is often associated with the root note
of the musical chord. It is obtained that quasigroups with a left (right, middle) identity element
provide options for harmonizations and progressions. Using finite quasigroups, triads, tetrads,
pentads, and hexads with their inversions can be described respectively. Examples of musical
sequence of triads are constructed by quasigroups. It has been shown that an n-tone row chart can
be obtained by a musical quasigroup. The chart showing a circle of fourths and circle of fifths have
been obtained by a musical quasigroup. Some examples describing the descending, ascending,
disjunct and conjunct motions respectively have been given. By the motion of a single melody, the
structure of a musical staff using quasigroups is investigated. Similarly, some examples of contrary,
strict contrary, oblique, similar, and parallel motions have been described using quasigroups.
Examples of subquasigroups have been constructed for pitch classes and are verified with some
musical examples. Also, the concept of a normal subquasigroup is applied to motion of melodies.
It is shown that there are paired melodies which are not in contrary motion to each other but have
paired sub-melodies which are in contrary (or strict-contrary) motion.

i. Musical Quasigroups

In this subsection, some concepts of quasigroups are defined in music, and some examples are
given. We demonstrated some orders of progressions involving I, IV, and V using quasigroups.

A set is a collection of well-defined objects. An object of a set is called a member or element
of the given set. If a set is a collection of well-defined musical objects then these objects are also
called musical elements or members of the set. Examples of sets are F-major scale and C-major
chord. Each object in F-major scale and C-major chord is a musical element and it is also called a
note.

Definition 1. Let us consider Q a set of musical notes. If the product of any two musical notes of
Q under an operation is also a member of Q, then such an operation is called a binary operation.

For an example, consider a set of musical notes of G-major chord. An operation on G-major
chord will be called a binary operation if the product of any two members of G-major chord is
also a member of G-major chord.
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Definition 2. A set Q of musical elements on which a binary operation ∗ is defined is called
a musical quasigroup if, for all u, v ∈ Q, u ∗ v ∈ Q and there exist unique x, y ∈ Q satisfying
u ∗ x = v and y ∗ u = v.

We denote the ordered sequence of musical elements in the angle brackets 〈 〉. As applied
below, if {I, IV, V} is a set of pitch classes from a given scale, then 〈I, IV, V〉 is an ordered
sequence from {I, IV, V}. We also assigned a sequence of pitch classes to musical elements of a
given set. As used in Example 1, 〈I, IV, V〉 = 〈0, 1, 2〉 implies that I, IV and V represent 0, 1 and 2
respectively, without a change in position.

Example 1. Let Q = {0, 1, 2} be a set of musical elements. Define the binary operation ∗ on Q as
a ∗ b = 2a + b (mod 3) then (Q, ∗) is a musical quasigroup with a left identity element (Table 1).

Table 1: A musical quasigroup with a left identity element 0.

∗ 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Let Q = {I, IV, V} be the set of notes of a major scale in a progression, and let 〈0, 1, 2〉 =
〈I, IV, V〉. Then we have (Table 2):

Table 2: A quasigroup of progression with a left identity element I.

∗ I IV V
I I IV V

IV V I IV
V IV V I

The order of progression from left to right of the first, second and third rows are I − IV −
V, V − I − IV, and IV −V − I respectively.

Example 2. Let Q = {0, 1, 2} be a set of musical elements. Define the binary operation ∗ on Q as
a ∗ b = a + 2b (mod 3) then (Q, ∗) is a musical quasigroup with a right identity element (Table 3).

Table 3: A musical quasigroup with a right identity element 0.

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Let Q = {I, IV, V} be the set of notes of a major scale in a progression, and let 〈0, 1, 2〉 =
〈I, IV, V〉. Then we have (Table 4):
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Table 4: A quasigroup of progression with a right identity element I

∗ I IV V
I I V IV

IV IV I V
V V IV I

The order of progression from left to right of the first, second and third rows are I − V −
IV, IV − I −V, and V − IV − I respectively.

Example 3. Let Q = {0, 1, 2} be a set of musical elements. Define the binary operation ∗ on Q as
a ∗ b = 2a + b + 1 (mod 3) then (Q, ∗) is a musical quasigroup with a middle identity element
(Table 5).

Table 5: A musical quasigroup with a middle identity element 1

∗ 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1

Let Q = {I, IV, V} be the set of notes of a major scale in a progression, and let 〈0, 1, 2〉 =
〈I, IV, V〉. Then we have (Table 6):

Table 6: A quasigroup of progression with a middle identity element IV

∗ I IV V
I IV V I

IV I IV V
V V I IV

The order of the progression from left to right of the first, second and third rows are IV −V −
I, I − IV −V, and V − I − IV respectively.

ii. Quasigroups of triads

In this subsection, we present some triads using a quasigroup of order three. The quasigroup
tables obtained show some triad inversions for major triad when viewed in rows or columns. We
also present the order in which a minor, diminished and augmented triads and their inversions
can be displayed respectively by a quasigroup of order three.

Let Q = {I, I I I, V} be the set of notes of the major scale in a triad. By Example 1, let 〈I, I I I, V〉
represents 〈0, 1, 2〉. Then the Table 7 of major triad inversions is obtained.
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Table 7: C-Major chord from a Quasigroup with a left identity element

∗ C E G
C C E G
E G C E
G E G C

Remark 1. The left identity element of a musical quasigroup of triads is assigned the root note of
the triad. From Table 1, (Q, ·) is a quasigroup with a left identity element and Table 7 is such that
the root note occupies the left identity element position whenever (Q, ·) has a left identity element.
Example, for C-Major triad, C is the root note.

Let Q = {I, I I I, V} be the set of notes of the major scale in a triad. By Example 2, let 〈I, I I I, V〉
represents 〈0, 1, 2〉. Then the Table 8 of major triad inversions is obtained.

Table 8: C-Major chord from a Quasigroup with a right identity element.

∗ C E G
C C G E
E E C G
G G E C

Remark 2. The right identity element of a musical quasigroup of triads is assigned the root note of
the triad. From Table 3, (Q, ·) is a quasigroup with a right identity element and Table 8 is such
that the root note occupies the right identity element position whenever (Q, ·) has a right identity
element.

Remark 3. Let Q = {I, I I I, V} be the set of notes of the major scale in a triad. Examples 1 and 2
can also be applied for a minor, diminished, and augmented triads as follows:

For a minor triad, let 〈I, I I I[, V〉 represents 〈0, 1, 2〉.
For a diminished triad, let 〈I, I I I[, V[〉 represents 〈0, 1, 2〉.
For an augmented triad, let 〈I, I I I, V]〉 represents 〈0, 1, 2〉.

Remark 4. Quasigroup of triads with a middle identity element is similarly deduced.

iii. Quasigroup with examples of musical sequences from triads

Let Q = {I, I I I, V} be the set of notes of the major scale in a triad. By Examples 1 and 2, let
〈I, I I I, V〉 represents 〈0, 1, 2〉. Consider Tables 9, 10, and 11 of major triad inversions:

Table 9: C-Major.

∗ C E G
C C E G
E G C E
G E G C

Table 10: F-major.

∗ F A C
F F C A
A A F C
C C A F

Table 11: G-Major

∗ G B D
G G D B
B B G D
D D B G

In Figure 1, examples (i), (ii), and (iii) are obtained from Tables 7, 10, and 11, by using their 1st
row-1st column-3rd column respectively, then the process is repeated in each case. Example (iv) is
obtained from Tables 7 by using its 1st row-3rd column-1st row, then the process is repeated.
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%
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%

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

(i)

(ii)

(iii)

(iv)

2

2

2

2

Figure 1: Examples of musical sequences obtained via quasigroups.

iv. A Twelve-Tone Matrix

In this subsection, we present the connection between n-tone composition chart with quasigroup.
It is shown that a twelve-tone matrix can be created by using a quasigroup.

Example 4. (Wright [13]) Let an ∈ Z12 and let the ordered pair (i, j) be the position at row i and
column j, such that the entries of the original row are labelled: a1 = [0]; a2 = [3]; a3 = [2]; a4 =
[5]; a5 = [4]; a6 = [8]; a7 = [1]; a8 = [10]; a9 = [11]; a10 = [9]; a11 = [7]; and a12 = [6]. Then the
first column inversion in Z12 are given as : −a1 = [0];−a2 = [9];−a3 = [10];−a4 = [7];−a5 =
[8],−a6 = [4] and each position of the chart with the elements of Z12 corresponding to the
appropriate note class is given as aj − ai. Then a twelve-tone matrix is obtained.

Remark 5. Example 4 is a known construction to musicians. It is called a quasigroup if it is
presented in the form of a Cayley table. See Table 12 of Example 5 for an example.

Example 5. Let an ∈ Z12 and let the ordered pair (i, j) be the position at row i and column j. We
assign the subscripts a0, a1, a2, . . . , an of the entries thus: a0 = [0]; a1 = [3]; a2 = [2]; a3 = [5]; a4 =
[4]; a5 = [8]; a6 = [1]; a7 = [10]; a8 = [11]; a9 = [9]; a10 = [7]; and a11 = [6]. Then

(i) the first column inversion in Z12 are given as :−a0 = [0];−a1 = [9];−a2 = [10];−a3 =
[7];−a4 = [8],−a5 = [4];−a6 = [11];−a7 = [2];−a8 = [1];−a9 = [3];−a10 = [5];−a11 = [6];
and

(ii) the pair (Z12, ∗) such that ∗(i, j) = aj − ai ∈ Z12 for all ai, aj ∈ Z12 is a quasigroup. The entry
in the position (9, 6) is ∗(9, 6) = a6 − a9 = [1]− [9] = −[8] = [4]. Therefore, 9 ∗ 6 = 4.

For more details, see Tables 12 and 13.
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Table 12: Multiplication Table for (Z12, ∗) by Example 5.

∗ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 3 2 5 4 8 1 10 11 9 7 6
1 9 0 11 2 1 5 10 7 8 6 4 3
2 10 1 0 3 2 6 11 8 9 7 5 4
3 7 10 9 0 11 3 8 5 6 4 2 1
4 8 11 10 1 0 4 9 6 7 5 3 2
5 4 7 6 9 8 0 5 2 3 1 11 10
6 11 2 1 4 3 7 0 9 10 8 6 5
7 2 5 4 7 6 10 3 0 1 11 9 8
8 1 4 3 6 5 9 2 11 0 10 8 7
9 3 6 5 8 7 11 4 1 2 0 10 9

10 5 8 7 10 9 1 6 3 4 2 0 11
11 6 9 8 11 10 2 7 4 5 3 1 0

Table 13: The chart of pitch classes from key F by Example 5.

∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 F G] G B[ A C] F] D] E D C B
1 D F E G F] B[ D] C C] B A G]

2 D] F] F G] G B E C] D C B[ A
3 C D] D F E G] C] B[ B A G F]

4 C] E D] F] F A D B C B[ G] G
5 A C B D C] F B[ G G] F] E D]

6 E G F] A G] C F D D] C] B B[

7 G B[ A C B D] G] F F] E 9 C]

8 F] A G] B B[ D G E F D] C] C
9 G] B B[ C] C E A F] G F D] D

10 B[ C] C D] D F] B G] A G F E
11 B D C] E D] G C A B[ G] F] F

Remark 6. Table 12 is not associative. For instance, 4 ∗ (5 ∗ 6) = 4 and (4 ∗ 5) ∗ 6 = 9. Thus,
4 ∗ (5 ∗ 6) 6= (4 ∗ 5) ∗ 6.

Remark 7. Example 5 shows that a twelve-tone matrix can be obtained by using a quasigroup.

Remark 8. Wright [13] explored on creating an n-tone row chart using modular Arithmetic. From
Examples 4 and 5 we note that, given an original row a0 = [0], a1, a2, · · · , an from Zn for some
n ∈ Z+

n , the n× n chart constructed by taking the ordered pair entry (i, j) such that ∗(i, j) = aj− ai
where ai, aj ∈ Zn, is an n-tone musical quasigroup.

v. Construction of an n-Tone Composition Chart

In this subsection, we construct some examples of an n-tone composition chart using quasigroups.
We apply Muktibodh [11] in the construction. In particular, some charts showing circles of fourths
and fifths have been obtained by musical quasigroups.
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Definition 3. Let Zn = {0, 1, 3, · · · , n− 1} for n ≥ 3, be the set of pitch classes. Define a binary
operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are two distinct elements in Zn\{0} which
are primes such that (x, y) = 1, and n = x + y and + the addition of integers under mod n. An
n-tone musical quasigroup (Zn(x, y), ∗) is obtained.

Example 6. Let Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} be the set of pitch classes. Define the binary
operation ∗ on Q as a ∗ b = 7a + 5b(mod 12) then (Q, ∗) is a twelve-tone musical quasigroup (see
Tables 14 and 15).

Table 14: Multiplication Table for (Z12, ∗) by Example 6.

∗ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 5 10 3 8 1 6 11 4 9 2 7
1 7 0 5 10 3 8 1 6 11 4 9 2
2 2 7 0 5 10 3 8 1 6 11 4 9
3 9 2 7 0 5 10 3 8 1 6 11 4
4 4 9 2 7 0 5 10 3 8 1 6 11
5 11 4 9 2 7 0 5 10 3 8 1 6
6 6 11 4 9 2 7 0 5 10 3 8 1
7 1 6 11 4 9 2 7 0 5 10 3 8
8 8 1 6 11 4 9 2 7 0 5 10 3
9 3 8 1 6 11 4 9 2 7 0 5 10

10 10 3 8 1 6 11 4 9 2 7 0 5
11 5 10 3 8 1 6 11 4 9 2 7 0

Table 15: The chart of pitch classes from key F by Example 6.

∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 F B[ D] G] C] F] B E A D G C
1 C F B[ D] G] C] F] B E A D G
2 G C F B[ D] G] C] F] B E A D
3 D G C F B[ D] G] C] F] B E A
4 A D G C F B[ D] G] C] F] B E
5 E A D G C F B[ D] G] C] F] B
6 B E A D G C F B[ D] G] C] F]

7 F] B E A D G C F B[ D] G] C]

8 C] F] B E A D G C F B[ D] G]

9 G] C] F] B E A D G C F B[ D]

10 D] G] C] F] B E A D G C F B[

11 B[ D G] C] F] B E A D G C F

Remark 9. Table 15 above displays a circle of fourths’ progression when it is read from left to
right horizontally, and displays a circle of fifths’ progression, when it is read from right to left
horizontally.
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Definition 4. Let Zn = {0, 1, 3, · · · , n− 1} for n ≥ 3, be the set of pitch classes and let p be a
prime number such that Zp(x, y) is a groupoid and x + y = p, (x, y) = 1. A p-tone musical
quasigroup Zp(x, y) is obtained.

Example 7. Let Q = {0, 1, 2, 3, 4, 5, 6} be the set of pitch classes. Define the binary operation ∗ on Q
as a ∗ b = 2a + 5b(mod 7) then (Q, ∗) is a seven-tone musical quasigroup (see Tables 16 and 17).

Table 16: Multiplication Table for (Q, ∗) by Example 7.

∗ 0 1 2 3 4 5 6
0 0 5 3 1 6 4 2
1 2 0 5 3 1 6 4
2 4 2 0 5 3 1 6
3 6 4 2 0 5 3 1
4 1 6 4 2 0 5 3
5 3 1 6 4 2 0 5
6 5 3 1 6 4 2 0

Table 17: The chart of pitch classes from key F by Example 7.

∗ 0 1 2 3 4 5 6

0 F B[ G] F] B A G
1 G F B[ G] F] B A
2 A G F B[ G] F] B
3 B A G F B[ G] F]

4 F] B A G F B[ G]

5 G] F] B A G F B[

6 B[ G] F] B A G F

Definition 5. Let Zn = {0, 1, 3, · · · , n− 1} for n ≥ 3, be the set of pitch classes. Define a binary
operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are elements in Zn\{0} and x = y. For a
fixed prime n and varying x and y, an n-tone musical quasigroup (Zn, ∗) is obtained.

Example 8. Let Q = {0, 1, 2, 3, 4, 5, 6} be the set of pitch classes. Define the binary operation ∗ on Q
as a ∗ b = 2a + 2b(mod 7) then (Q, ∗) is a seven-tone musical quasigroup (see Tables 18 and 19).

Table 18: Multiplication Table for (Q, ∗) by Example 8.

∗ 0 1 2 3 4 5 6
0 0 2 4 6 1 3 5
1 2 4 6 1 3 5 0
2 4 6 1 3 5 0 2
3 6 1 3 5 0 2 4
4 1 3 5 0 2 4 6
5 3 5 0 2 4 6 1
6 5 0 2 4 6 1 3
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Table 19: The chart of pitch classes from key F by Example 8.

∗ 0 1 2 3 4 5 6
0 F G A B F] G] B[

1 G A B F] G] B[ F
2 A B F] G] B[ F G
3 B F] G] B[ F G A
4 F] G] B[ F G A B
5 G] B[ F G A B F]

6 B[ F G A B F] G]

Definition 6. Let Zn = {0, 1, 3, · · · , n− 1} for n ≥ 3, be the set of pitch classes. Define a binary
operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are elements in Zn\{0} and x = 1 and
y = n− 1. For a fixed integer n and varying x and y, an n-tone musical quasigroup (Zn, ∗) is
obtained.

Example 9. Let Q = {0, 1, 2, 3, 4, 5, 6} be the set of pitch classes. Define the binary operation ∗ on Q
as a ∗ b = a + 6b(mod 7) then (Q, ∗) is a seven-tone musical quasigroup (see Tables 20 and 21).

Table 20: Multiplication Table for (Q, ∗) by Example 9.

∗ 0 1 2 3 4 5 6
0 0 6 5 4 3 2 1
1 1 0 6 5 4 3 2
2 2 1 0 6 5 4 3
3 3 2 1 0 6 5 4
4 4 3 2 1 0 6 5
5 5 4 3 2 1 0 6
6 6 5 4 3 2 1 0

Table 21: The chart of pitch classes from key F by Example 9.

∗ 0 1 2 3 4 5 6

0 F B B[ A G] G F]

1 F] F B B[ A G] G
2 G F] F B B[ A G]

3 G] G F] F B B[ A
4 A G] G F] F B B[

5 B[ A G] G F] F B
6 B B[ A G] G F] F

Definition 7. Let Zn = {0, 1, 3, · · · , n − 1} for n ≥ 3, be the set of pitch classes. Define a
binary operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are elements in Zn\{0} and
(x, y) = 1, x + y = n and |x− y| is a minimum. For a fixed integer n and varying x and y, an
n-tone musical quasigroup (Zn, ∗) is obtained.
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Example 10. Let Q = {0, 1, 2, 3, 4, 5, 6, 7} be the set of pitch classes. Define the binary operation ∗
on Q as a ∗ b = 5a + 3b(mod 8) then (Q, ∗) is an eight-tone musical quasigroup (see Tables 22 and
23).

Table 22: Multiplication Table for (Q, ∗) by Example 10.

∗ 0 1 2 3 4 5 6 7
0 0 3 6 1 4 7 2 5
1 5 0 3 6 1 4 7 2
2 2 5 0 3 6 1 4 7
3 7 2 5 0 3 6 1 4
4 4 7 2 5 0 3 6 1
5 1 4 7 2 5 0 3 6
6 6 1 4 7 2 5 0 3
7 3 6 1 4 7 2 5 0

Table 23: The chart of pitch classes from key F by Example 10.

∗ 0 1 2 3 4 5 6 7

0 F G] B F] A C G B[

1 B[ F G] B F] A C G
2 G B[ F G] B F] A C
3 C G B[ F G] B F] A
4 A C G B[ F G] B F]

5 F] A C G B[ F G] B
6 B F] A C G B[ F G]

7 G] B F] A C G B[ F

vi. Motion of a single melody by Quasigroups

In this subsection, some motions obtained from three consecutive semitones in a chromatic
scale are described by a qausigroup of order three. Some motions of a five-tone sequence are
demonstrated by a quasigroup of order five. It is shown that each row and column of a finite
musical quasigroup is a melodic motion on its own right. These examples of quasigroups of
musical sequences considered, demonstrated the descending, ascending, disjunct, and conjunct
melodic motions. We describe the order of the notes on the bass, treble, and grand staves using a
quasigroup.

Melodic motions between three consecutive semitones in a chromatic scale are demonstrated by
quasigroup table of order three as follows: We consider C, C], D; A, A], B and B[, B, C as examples.
By Example 2, let 〈0, 1, 2〉 = 〈C, C], D〉, 〈0, 1, 2〉 = 〈A, A], B〉 and 〈0, 1, 2〉 = 〈B[, B, C〉 respectively.
Then we have Tables 24, 25, and 26:
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Table 24: From Key C

∗ C C] D
C C D C]

C] C] C D
D D C] C

Table 25: From Key B[

∗ B[ B C

B[ B[ C B
B B B[ C
C C B B[

Table 26: From Key A

∗ A A] B
A A B A]

A] A] A B
B B A] A

From the these tables we note the followings:

(i) The first column of each of these tables displays an ascending motion when read from the top
to the bottom; and shows a descending motion when read from the bottom to the top.

(ii) Each of the columns and rows from these tables displays a conjunct motion.

Example 11. Let Q = {0, 1, 2, 3, 4} be the set of pitch classes. Define the binary operation ∗ on Q as
a ∗ b = 2a + 2b(mod 5) then (Q, ∗) is a five-tone musical quasigroup (see Table 27).

Table 27: A quasigroup table by Example 11

∗ 0 1 2 3 4
0 0 2 4 1 3
1 2 4 1 3 0
2 4 1 3 0 2
3 1 3 0 2 4
4 3 0 2 4 1

Let F, G, A, B[, C be musical notes from key F and let 〈0, 1, 2, 3, 4〉 = 〈F, G, A, B[, C〉. Then by
Table 27, we have Table 28:

Table 28: The chart of pitch-classes from key F by Table 27

∗ F G A B[ C

F F A C G B[

G A C G B[ F
A C G B[ F A
B[ G B[ F A C
C B[ F A C G

From Table 28, we note the followings:

(i) The main diagonal of the table shows a descending motion when read from the top to the
bottom; and shows an ascending motion when read from the bottom to the top.

(ii) The table shows a disjunct melodic motion for each row and column.

Example 12. Let Q = {0, 1, 2, 3, 4} be the set of musical notes in a five-tone sequence. Let ∗ be a
binary operation defined on Q as in Table 29.
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Table 29: A five-tone quasigroup with a left identity element 0

∗ 0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0

Then (Q, ∗) is a quasigroup with a left identity element. Clearly, (Q, ∗) is not a commutative
groupoid and it is not a group. Let F, G, A, B[, C be musical notes from key F and let 〈0, 1, 2, 3, 4〉 =
〈F, G, A, B[, C〉. Then by Table 29, we have Table 30:

Table 30: A five-tone chart by Table 29 from key F

∗ F G A B[ C

F F G A B[ C
G C F G A B[

A B[ C F G A
B[ A B[ C F G
C G A B[ C F

From Table 30, we note the followings:

(i) Each row and column of this table is a melodic motion on its own right.

(ii) The first row displays an ascending melodic motion when read from left to right; and displays
a descending melodic motion when read from right to left.

(iii) The first row and the last column of this table display a conjunct motion respectively.

(iv) The third row and the second column of this table display both conjunct and disjunct motions
respectively.

Example 13. Let Q = {0, 1, 2, 3, 4, 5, 6} be the set of notes in a diatonic scale with 0 as the root note.
From C major scale, let 〈C, D, E, F, G, A, B〉 = 〈0, 1, 2, 3, 4, 5, 6〉. Then by Table 18, we have Table 31:

Table 31: Musical staves by Quasigroup

∗ 0 1 2 3 4 5 6
0 C E G B D F A
1 E G B D F A C
2 G B D F A C E
3 B D F A C E G
4 D F A C E G B
5 F A C E G B D
6 A C E G B D F

From Table 31, we note the followings:
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(i) The first row from left to right shows the order of musical notes on the lines of the treble staff
from the middle C upward to the first ledger line above the staff occupied by A.

(ii) The second row from right to left shows the order of musical notes on the lines of the bass
staff from the middle C downward to the first ledger line below the staff occupied by E.

(iii) The second row (third row) from left to right shows the order of notes on the treble (bass)
staff starting from the first line of the staff upward.

(iv) The sixth row (seventh row) from left to right shows the order of notes on the spaces of the
treble (bass) staff starting from the first space of the staff upward.

(v) To accommodate more extra lower or higher notes, two or more rows (columns) are considered
in the same direction provided the next row (column) begins with the note that ended the
immediate row (column). For instance, the first and last rows from left to right of this table
extend the lines for treble staff from the first row, by adding six ledger lines upward, if the
two rows are joined at A.

(vi) From (i), (ii), (iii) and (v) above, this table describes the order of notes on a grand staff.

vii. Motion of two melodies by Quasigroups

In this subsection, some motions obtained by two melodies from some finite quasigroups are con-
sidered. We described some motions obtained from a diatonic scale by a quasigroup of order seven.
Examples of two melodies with a contrary, parallel, and oblique motions respectively are shown by
a quasigroup of order seven. By a quasigroup of order four, an example of a similar motion is given.

Consider the musical notes from F-major scale and let 〈0, 1, 2, 3, 4, 5, 6〉 = 〈F, G, A, B[, C, D, E〉.
Then by Table 20, we have Table 32:

Table 32: The chart of pitch classes from key F by Example 9.

∗ 0 1 2 3 4 5 6

0 F E D C B[ A G
1 G F E D C B[ A
2 A G F E D C B[

3 B[ A G F E D C
4 C B[ A G F E D
5 D C B[ A G F E
6 E D C B[ A G F

From Table 32, we note the followings:

(i) The first row from the left is in a descending motion and the first column from the top is in an
ascending motion. Thus, these melodies departing from index (1, 1) into row and column
are in a contrary motion.

(ii) The melodic motion described by first row (column) and last row (column) is a contrary
motion.
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(iii) Any two melodies departing from index (i, i) into row and column of this table form a
contrary motion.

(iv) Any two melodies departing from index (i, i) into the diagonal and row, or, the diagonal and
column respectively, form an oblique motion. Clearly, the diagonal is occupied by F while
the rows descend from left to right, and columns ascend from the top to the bottom.

Consider the notes of the F-major scale and let 〈0, 1, 2, 3, 4, 5, 6〉 = 〈F, G, A, B[, C, D, E〉. Then
by Table 18, we have Table 33:

Table 33: The chart of pitch classes from key F by Example 8.

∗ 0 1 2 3 4 5 6

0 F A C E G B[ D
1 A C E G B[ D F
2 C E G B[ D F A
3 E G B[ D F A C
4 G B[ D F A C E
5 B[ D F A C E G
6 D F A C E G B[

From Table 33, we note the followings:

(i) The first row (column) contains both the ascending and descending motions. Therefore, both
conjunct and disjoint motions occur in the first row (column).

(ii) The first column and row departing from index (1, 1) are both ascending with the same
interval. Thus, these two melodies form a parallel motion.

(iii) Any two melodies departing from index (i, i) into its row and column of this table respectively
form a parallel motion.

Example 14. Let Q = {0, 1, 2, 3} be the set of four consecutive notes from a diatonic scale with 0 as
the root note. Let ∗ be a binary operation defined on Q as in Table 34.

Table 34: A musical quasigroup with a right identity element 0.

∗ 0 1 2 3
0 0 2 3 1
1 1 0 2 3
2 2 3 1 0
3 3 1 0 2

Let F, G, A, B[ be the four consecutive notes from F-major scale and let 〈0, 1, 2, 3〉 = 〈F, G, A, B[〉.
Then by Table 34, we have the below table:
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Table 35: A musical quasigroup chart from key F

∗ 0 1 2 3

0 F A B[ G
1 G F A B[

2 A B[ G F
3 B[ G F A

From Table 35, we note that at index (1, 1), the row and column depart into ascending motions
with different intervals, but the first row finished with a descending motion. This implies that, the
row and column melodies departed from index (1, 1) initially formed a similar motion with each
other, but finished with a contrary motion.

viii. Motion between melodies in chords by Quasigroups

In this subsection, some motions in chords obtained by melodies from a finite quasigroup are
considered. We considered quasigroup of terads, pentads and hexads with an example for each of
them. It is noted that a musical chord of n notes and its inversions can be viewed by a quasigroup
of order n. Quasigroup of triads discussed in Section 2.2 shows ascending motion in the first
row by a quasigroup with a left identity element and descending motion in the first column
by a quasigroup with a right identity element. We note that a melody from any row (column)
from a quasigroup of triads is in a disjunct motion, see Section 2.2. These results obtained from
quasigroups of triads are also satisfied by some chords in quasigroup of hexads. Here, we give
examples of quasigroups of chords whose row (column) contains both conjunct and disjunct
motions. By considering some melodic pairs from a row and column of a quasigroup of chords,
we obtained examples of contrary, parallel, oblique and similar motions respectively. An example
of an oblique motion which one of its melodies is static while the other moves into disjunct and
conjunct motions is given.

Motion between melodies by a Quasigroup of Tetrads

A musical chord with four notes and its inversions can be viewed by a quasigroup of order four.

Example 15. Let Q = {0, 1, 2, 3} be the set of pitch classes. Define the binary operation ∗ on Q as
a ∗ b = a + 3b(mod 4) then (Q, ∗) is a four-tone musical quasigroup (see Table 36).

Table 36: A musical quasigroup with a right identity element 0.

∗ 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Let C, E, G, A be the four consecutive notes from C-Major 6th chord and let 〈0, 1, 2, 3〉 =
〈C, E, G, A〉. Then by Table 36, we have Table 37:
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Table 37: C-Major 6th chord

∗ 0 1 2 3
0 C A G E
1 E C A G
2 G E C A
3 A G E C

From Table 37, we note the followings:

(i) The first row displays a descending melodic motion when read from left to right; and the first
column displays an ascending melodic motion when read from top to bottom. Thus, the
two melodies departing from index (1, 1) into the first row and column respectively are in
contrary motion.

(ii) The first row and the last row of this table display a similar motion when read from left to
right.

(iii) Some rows from left to right of this table display both conjunct and disjunct motions.

(iv) Using the main diagonal and the first row starting from the left, an oblique motion is
obtained; such that, one melody is static while the other melody moves into conjunct and
disjunct motions.

Motion between melodies by a Quasigroup of Pentads

A musical chord with five notes and its inversions can be viewed by a quasigroup of order five.

Example 16. Let C, E, G, B, D be the five consecutive notes from C-Major 7th with 9 chord and let
〈0, 1, 2, 3, 4〉 = 〈C, E, G, B, D〉. Then by Table 27, we have Table 38:

Table 38: C-Major 7th with 9 chord

∗ C E G B D
C C G D E B
E G D E B C
G D E B C G
B E B C G D
D B C G D E

From Table 38, we note the followings:

(i) Parallel motion is obtained, for each pair of melodies departing from index (i, i) into a row
and column respectively.

(ii) The rows from left to right of this table display both conjunct and disjunct motions.

Motion between melodies by a Quasigroup of Hexads

A musical chord with six notes and its inversions can be viewed by a quasigroup of order six.
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Example 17. Let Q = {0, 1, 2, 3, 4, 5} be the set of pitch classes. Define the binary operation ∗ on Q
as a ∗ b = 5a + b(mod 6) then (Q, ∗) is a six-tone musical quasigroup (see Table 39).

Table 39: Multiplication Table for (Q, ∗) by Example 17.

∗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 5 0 1 2 3 4
2 4 5 0 1 2 3
3 3 4 5 0 1 2
4 2 3 4 5 0 1
5 1 2 3 4 5 0

Let C, E, G, B[, D, F] be the six consecutive notes from C-Augmented 11th chord and let
〈0, 1, 2, 3, 4, 5〉 = 〈C, E, G, B[, D, F]〉. Then by Table 39, we have Table 40:

Table 40: C-Augmented 11th chord.

∗ 0 1 2 3 4 5

0 C E G B[ D F]

1 F] C E G B[ D
2 D F] C E G B[

3 B[ D F] C E G
4 G B[ D F] C E
5 E G B[ D F] C

From Table 40, we note the followings:

(i) Each row and column has a disjunct motion.

(ii) Any two melodies of this table departing from index (i, i) into its diagonal and row, or its
diagonal and column respectively, form an oblique motion.

ix. Musical Subquasigroup and Normal Subquasigroup

In this subsection, we define a musical subquasigroup and normal subquasigroup. We construct
some examples of subquasigroup and normal subquasigroup for pitch classes, and applied them
to music. It is shown that a melodic motion which is not descending (nor ascending) may contain
a sub-melodic motion which is descending (or ascending). A melodic motion which is disjunct is
shown to have a sub-melodic motion which is conjunct. Also, it is shown that a melodic motion
may contain a sub-melodic motion whose distance between its consecutive notes are shorter than
that of the melodic motion. It is shown that there are paired melodies which are not in contrary
motion to each other but have paired sub-melodies which are in contrary (or strict-contrary)
motion.

Definition 8. Let (Q, ∗) be a musical quasigroup. A proper subset W of Q is said to be a musical
subquasigroup of Q if W is a musical quasigroup on its own right under the binary operation ∗.
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Definition 9. Let n be an even integer and let Zn = {0, 1, 2, 3, · · · , n − 1} be the set of pitch
classes for n ≥ 4. Define a binary operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are
two distinct elements in Zn\{0} which are primes such that (x, y) = 1, x + y = n. An n-tone
musical quasigroup (Zn, ∗) is obtained. Let Z′n be the set of all even numbers in Zn, we obtained
a musical subquasigroup (Z′n, ∗) of (Zn, ∗).

Example 18. Let Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} be the set of pitch classes. Define the binary
operation ∗ on Q as a ∗ b = 5a + 7b(mod 12) then (Q, ∗) is a twelve-tone musical quasigroup and
the set Q′ = {0, 2, 4, 6, 8, 10} forms a musical subquasigroup under the binary operation ∗. We
note that, the subquasigroup (Q′, ∗) is normal (see Tables 41, 42, 43, and 44).

Table 41: Multiplication Table for (Q, ∗) by Example 18.

∗ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 7 2 9 4 11 6 1 8 3 10 5
1 5 0 7 2 9 4 11 6 1 8 3 10
2 10 5 0 7 2 9 4 11 6 1 8 3
3 3 10 5 0 7 2 9 4 11 6 1 8
4 8 3 10 5 0 7 2 9 4 11 6 1
5 1 8 3 10 5 0 7 2 9 4 11 6
6 6 1 8 3 10 5 0 7 2 9 4 11
7 11 6 1 8 3 10 5 0 7 2 9 4
8 4 11 6 1 8 3 10 5 0 7 2 9
9 9 4 11 6 1 8 3 10 5 0 7 2

10 2 9 4 11 6 1 8 3 10 5 0 7
11 7 2 9 4 11 6 1 8 3 10 5 0

Table 42: The chart of pitch classes from key F by Example 18.

∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 F C G D A E B F] C] G] D] B[

1 B[ F C G D A E B F] C] G] D]

2 D] B[ F C G D A E B F] C] G]

3 G] D] B[ F C G D A E B F] C]

4 C] G] D] B[ F C G D A E B F]

5 F] C] G] D] B[ F C G D A E B
6 B F] C] G] D] B[ F C G D A E
7 E B F] C] G] D] B[ F C G D A
8 A E B F] C] G] D] B[ F C G D
9 D A E B F] C] G] D] B[ F C G

10 G D A E B F] C] G] D] B[ F C
11 C G D A E B F] C] G] D] B[ F
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Table 43: A musical subquasigroup by Example 18.

∗ 0 2 4 6 8 10
0 0 2 4 6 8 10
2 10 0 2 4 6 8
4 8 10 0 2 4 6
6 6 8 10 0 2 4
8 4 6 8 10 0 2

10 2 4 6 8 10 0

Table 44: A musical subquasigroup from key F by Example 18.

∗ 0 2 4 6 8 10

0 F G A B C] D]

2 D] F G A B C]

4 C] D] F G A B
6 B C] D] F G A
8 A B C] D] F G

10 G A B C] D] F

Definition 10. Let (Q, ∗) be a musical quasigroup and let (W, ∗) be a musical subquasigroup of
(Q, ∗). Then (W, ∗) is called a musical normal subquasigroup of (Q, ∗) if:

(i) nW = Wn (ii) y(xW) = (yx)W (iii) (Wx)y = W(xy) for all n, x, y ∈ Q.

Definition 11. Let n be an even integer and let Zn = {0, 1, 2, 3, · · · , n − 1} be the set of pitch
classes for n ≥ 4. Define a binary operation ∗ on Zn as a ∗ b = xa + yb(mod n) where x, y are
elements in Zn\{0} and (x, y) = 1, x + y = n and |x− y| is a minimum. For a fixed integer n and
varying x and y, an n-tone musical quasigroup (Zn, ∗) is obtained. Let Z′n be the set of all even
numbers in Zn, we obtain a musical subquasigroup (Z′n, ∗) of (Zn, ∗).

Example 19. Let Q = {0, 1, 2, 3, 4, 5, 6, 7} be the set of pitch classes. Define the binary operation
∗ on Q as a ∗ b = 5a + 3b(mod 8) then (Q, ∗) is an eight-tone musical quasigroup and the set
Q′ = {0, 2, 4, 6} forms a musical subquasigroup under the binary operation ∗.

Example 10 gives the chart for Q. It is clear that Q′ table is given by Table 45 (see also Table 46):

Table 45: A musical subquasigroup by Example 19

∗ 0 2 4 6
0 0 6 4 2
2 2 0 6 4
4 4 2 0 6
6 6 4 2 0
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Table 46: A musical subquasigroup chart from key F by Example 19

∗ 0 2 4 6
0 F B A G
2 G F B A
4 A G F B
6 B A G F

In Example 19, Q′ is an example of a normal subquasigroup of (Q, ∗). Thus, Table 46 is a
musical chart of a normal subquasigroup Q′ from key F.

Motion of a Single Melody by a Normal Subquasigroup

(A) We consider Tables 42 and 44. Table 44 is a normal subquasigroup table obtained from Table
42.
From Table 42, we note the followings:

(i) Each row and column of this table displays melodic motion of a chromatic scale

(ii) The distance between two notes on this table is either five or seven semitones in each
row and column.

(iii) Each row and column of this table displays a disjunct melodic motion.

(iv) The rows (or columns) do not display an ascending or descending motion.

From Table 44, we note the followings:

(i) The first column of this table shows a descending motion when read from the top to the
bottom; and shows an ascending motion when read from the bottom to the top.

(ii) The distance between two notes on this table is two semitones in each row and column.

(iii) The motion of each single melody described by each column and row is a conjunct
motion.

Comparing the results from Tables 42 and 44, it is clear that:

(i) A melodic motion which is disjunct, may contain a sub-melodic motion which is conjunct.

(ii) A melodic motion which is not ascending (descending), may contain a sub-melodic
motion which is ascending (descending).

(iii) The main melodic motion may contain a sub-melodic motion whose distance between
its consecutive notes are shorter than that of the main melodic motion.

(B) We consider Tables 23 and 46. Table 46 is a normal subquasigroup table obtained from Table
23.
From Table 23, we note the following:

(i) The table displays some motions of eight consecutive semitones in columns and rows
from Key F.

(ii) The distance between two notes on this table is either three or five semitones in each
row and column.

(iii) The motion of a single melody described by each row and column is a disjunct motion.
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(iv) The columns and rows do not display the ascending or descending motions. Rather,
the ascending and descending motions both occur in a single melody, this is shown by
the first row.

From Table 46, we note the following:

(i) The first column and row of this table shows an ascending and descending motions
respectively.

(ii) The distance between two notes on this table is either two or six semitones in each row
and column.

(iii) The motion of a single melody described by each row (column) is either disjunct, or
have both conjunct and disjunct motions.

Comparing the results from Tables 23 and 46, it is clear that:

(i) A melodic motion which is not ascending (descending) may contain a sub-melodic
motion which is ascending (descending).

(ii) The main melodic motion may have a sub-melodic motion whose distance between its
consecutive notes contains more semitones than that of the main melodic motion.

(iii) A melodic motion which is disjunct may contain a sub-melodic motion which is either
disjunct, or have both conjunct and disjunct motions.

Motion of Two Melodies by a Normal Subquasigroup

(A) From Table 44, consider the entries with index (i, i):

(i) For i = 1, we have the index (1, 1), that is, the position of F on the first row. At the
index (1, 1) of Table 44, the column and the row are two different melodies. These two
melodies departing from index (1, 1) are in opposite directions. Thus, the two melodies
form a strict contrary motion as they depart from the index (1, 1).

(ii) Each of these melodic pairs departing from index (i, i) into rows and columns of this
table is seen to be in a strict contrary motion, keeping a distance of two semitones
between two notes.

From Table 42, consider the entries with index (i, i). Each of these melodic pairs departing
from index (i, i) into rows and columns of this table is not in a contrary motion, and keeps a
distance of five or seven semitones between two notes.

Comparing result from Tables 42 and 44, it is clear that, there are some paired melodies
which are not in contrary motion to each other but have paired sub-melodies which are in
strict contrary motion.

(B) From Table 46, consider the entries with index (i, i):

(i) At the index (1, 1) of Table 46, the column and the row are two different melodies. These
two melodies departing from index (1, 1) are in opposite directions. Thus, the two
melodies form a contrary motion as they depart from the index (1, 1).

(ii) Each of these melodic pairs departing from index (i, i) into rows and columns of this
table is seen to be in a contrary motion.
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From Table 23, consider the entries with index (i, i). Each of these melodic pairs departing
from index (i, i) into rows and columns of this table is not in a contrary motion, and keeps a
distance of three or five semitones between two notes.

Comparing result from Tables 23 and 46, it is clear that, there are some paired melodies
which are not in contrary motion to each other but have paired sub-melodies which are in
contrary motion.

III. Conclusion

A musical quasigroup is a musical groupoid in which all its left and right translation mappings
are permutations. Some examples of quasigroups have been constructed and applied to music,
and it is noted that one of the functions of a given quasigroup binary operation on a set of order n
is to preserve the permutations of the n symbols defined by the n× n multiplication. As regarding
the main results (Section II), from Sections i, ii, and viii, it has been shown that quasigroup plays
important roles in chord progressions and inversions. By Remarks 1, 2 and 4, and Section viii,
the function of the left (right, middle) identity element of a quasigroup could be linked to the
root of a given chord. The study considered examples from triad, tetrads, pentads, and hexads.
In Section iii, examples of musical sequences from triads are given. In Section iv, an example of
a twelve-tone matrix is described to be a quasigroup. In Section v, we construct some examples
of an n-tone composition chart using quasigroups. By Example 6, a circle of fourths’ and fifths’
progressions were obtained. In Sections vi and viii, motion of a single melody is described by some
quasigroups. It is shown by examples that each row and column of a finite musical quasigroup is
a melodic motion on its own right. These examples were used to describe a descending, ascending,
disjunct and conjunct melodic motions. Sections vii and viii give examples of musical quasigroups
which demonstrate contrary, parallel, oblique and similar motions respectively. Table 37 gives an
oblique motion which one of its melodies is static while the other moves into disjunct and conjunct
motions. In Section ix, examples of a subquasigroup are constructed and further characterized to
be normal subquasigroups. An example of a melodic motion which is disjunct is shown to have
a sub-melodic motion which is conjunct. It was obtained that there are paired melodies which
are not in contrary motion to each other but have paired sub-melodies which are in contrary (or
strict-contrary) motion.
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Abstract: This article develops theoretical concepts that allow us to adapt the graphs used for Neo-
Riemannian Theory to all classes of trichords and tetrachords, beyond triads and seventh chords. To that
end, it will be necessary to determine what the main features of these graphs are and the roles that the
members of each set class play in them. Each graph is related to a mode of limited transposition, which
contains all the pitch classes occurring in the graph. The musical examples extracted from these graphs
reveal passages in which the sets are connected by a consistent voice-leading.
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I. Introduction

Graphs of Neo-Riemannian Theory proved to be very useful in dealing with triads and
seventh chords, covering many possible connections between them. There are several
graphs with these sets, including cycles, like HexaCycles, OctaCycles, and EnneaCycles;

trees, like Weitzmann Regions and Boretz Regions; and unified models, like Cube Dance, Power
Towers, and 4-Cube Trio.

In this paper we will develop the theoretical tools to construct all these types of neo-Riemannian
graphs with any trichord or tetrachord beyond the members of sc. (037), (048), (0258), (0358), and
(0369). Section II will explore the position and function that the sets have in the graphs and how
important is their symmetry in this context. We divided all sets in four types: 1) target sets, 2)
pivot sets, 3) bridge sets, and 4) supersets.

Section III will determine labels for the axes of contextual symmetry. The transformations P,
L, R, among others, used traditionally in the Neo-Riemannian Theory, do not fit all classes of
trichords and tetrachords and, given the purpose of this work to construct graphs with all the sets
of these cardinality, it was necessary to introduce different terminology. Taking advantage of the
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relation between the transformations and the contextual inversions, this terminology was defined
according to the axes of these inversions in relation to the normal form of the sets.

Section IV will explore cycles of same set class members. In the earlier part of this section
the main features of the Hexatonic Cycles, components of the graph known as HexaCycles, will
be listed and then, based on these features, new cycles that include all sets of trichords and
tetrachords related by contextual inversion will be constructed. All the new cycles will share three
of four main features of Hexatonic Cycles. The musical examples for each cycle will show passages
where the sets are connected by a consistent voice-leading. This consistency results from the fact
that all the sets are limited to two only sum classes. This section will also explore the cycles with
symmetric sets that are not related by contextual inversion, but by transposition. All the sets in
these cycles are limited to a single sum class and they are connected by pure contrary motion.

The graphs built in Section V include members of two sum classes and Weitzmann graphs,
and Boretz Spiders will be used as models for that task. As with cycles, the new graphs will also
share three of the four main features of their models, and the musical examples for them will also
show passages with a consistent voice-leading, where the sets are limited to three sum classes.

The same strategy will be used to build the unified models in Section VI. The graphs known as
Cube Dance and Power Towers will be used as models to the new graphs, which share three of the
their four main features. All the cycles and graphs built in Sections IV and V will be subgraphs in
these new Cube Dances and Power Towers, and the musical examples will show passages where
the sets are connected by a consistent voice-leading, even if its members are distributed in all
sum classes. One can see an example of this consistent voice-leading, which will be the focus of
this article, in Figure 1 that shows in its upper part a Cube Dance which is built with members
of sc. (024) and (025). The path drawn over the graph indicates a passage with the sets that are
noted in the lower part of Figure 1. Note how all the sets are linked by a kind of voice-leading,
parsimonious or not, that keeps the sets in two adjacent sum classes, the only exception being
between the antepenultimate and penultimate set of the passage, in which the sets remain in the
same class of sum because of the pure contrary motion. All the supplementary material for this
article are available as at https://axesofcontextualinversion.wordpress.com/ (see Figure 1).

II. Types of Sets in the Graphs

All neo-Riemannian graphs, even those that include more than one set class, have a main set. We
will refer to them as target sets. All the cycles used in Neo-Riemannian Theory have just a single
set class that is the target set of the cycle, thus in the HexaCycles ([3, p. 243, Fig. 3]) and in the
OctaCycles ([3, p. 247, Fig. 5]) consonant triads, sc. (037), are the target sets in each component,
and in EnneaCycles ([3, p. 247, Fig. 6]) the target sets are members of sc. (0258), half-diminished
and dominant seventh chords.

There is another type of graph, called tree, whose components include members of two different
set classes limited to three sum class. Weitzmann Graph ([1, p. 94, Ex. 6]), the OctaTowers ([3, p.
246, Fig. 4]) and the Boretz regions ([3, p. 153, Tab. 7.2]) are examples of trees. Consonant triads
are also the target sets in each component of the Weitzmann graph. They are all connected to a
single augmented triad, sc (048). Members of sc. (0258) are the target sets in each component of
the OctaTowers and of the Boretz regions. In the former, four pairs, made by one half-diminished
chord and one dominant seventh chord, are connected to four minor seventh chords that are
members of sc. (0358). In the latter, all members of sc. (0258) are connected to a single diminished
seventh chord, sc. (0369). We will refer to the augmented triads in Weitzmann region and the
diminished seventh chord in the Boretz regions as pivot sets, due to their quality in connecting
with all the other members of the graph, and we will refer to the minor seventh chords in the
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Figure 1: Example of a passage with members of sc. (024) and (025) arranged in a Cube Dance.

OctaTowers as bridge sets, due to its quality in connecting with two target sets of the graph.
The graph known as Cube Dance ([2, p. 104, Fig. 5.24]) is a "unified model of triadic voice-

leading space” ([2, p. 83]) because it "includes the four hexatonic cycles and the four Weitzmann
regions as contiguous subgraphs" ([2, p. 83]). The target sets are all members of sc. (037) that are
placed in the voice-leading zones 1, 2, 4, 5, 7, 8, 10, and 11 and the members of sc. (048), placed
in the voice-leading zones 0, 3, 6, and 9, are the pivot sets, as they connect to all sets in its two
adjacent voice-leading zones. In the same way, we can consider the Power Towers ([3, p. 256, Fig.
10]) as a unified model of seventh chords voice-leading space, since it includes the three octatonic
towers and the three Boretz regions as contiguous subgraphs. In this graph, all the members of sc.
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(0258), placed in the odd voice-leading zones, are the target sets, while the members of sc. (0369),
diminished seventh chords placed in voice-leading zones 2, 6, and 10, are the pivot sets, and the
members of sc. (0358), minor seventh chords placed in voice-leading zones 0, 4, and 8, are the
bridges sets.

Douthett and Steinbach have shown how the components of these graphs are embedded in one
set which is associated to one of modes of limited transposition ([3, pp. 245–247]). We will refer to
these sets as supersets. The hexatonic collection, sc. (014589), is the superset of each component
of the HexaCycles and of each cube of Cube Dance; the octatonic collection, sc. (0134679t), is
the superset of each component of the OctaCycles, each component of OctaTowers, and also of
each circuit constituted by all sets between two diminished seventh chords in the Power Towers1.
Nonatonic collection, sc. (01245689t), is the superset of each component of the Weitzmann graph
and each component of the EnneaCycles.

Therefore, there are four types of sets in neo-Riemannian graphs: target sets, pivot sets, bridge
sets, and supersets, each one of them playing a different role in the graphs. Since our goal in this
work is to build graphs for sets other than triads and seventh chords, we shall summarize and
generalize these roles.

• Target sets are the main sets of a graph; they are necessarily members of a set class with
neither inversion or transpositional symmetry, which therefore have 24 sets; these 24 sets
connect with themselves and with members of other set classes in the graph. For members
of a set class to be target sets in a graph of trichords, they must be distributed in the sum
classes2 1, 2, 4, 5, 7, 8, 10, and 113, they are sc. (013), (014), (016), (025), (026), (027) and (037).
In tetrachord graphs, all members of the target sets must be distributed in odd sum classes.
They are sc. (0124), (0126), (0135), (0137), (0146), (0148), (0157), (0236), (0247) and (0258).

• Pivot sets make connections with every target set placed in their adjacent voice-leading zones;
they are necessarily member of a set class with inversional and transpositional symmetry,
with its pitches dividing equally the octave by a single interval. Pivot sets therefore belong
to set classes that have a maximum of 6 members4. In trichord graphs, all the members of
the pivot set must be distributed in the sum classes 0, 3, 6, and 9, and in tetrachord graphs,
all members of the pivot sets must be distributed in sum classes 2, 6, and 10. Sc. (048) is
the only pivot set among the trichords, while sc. (0369) is the only pivot set among the
tetrachords.

1Douthett and Steinbach have changed the original Power Tower including the French-sixth chord in voice-leading
zones 0, 4, and 8 along with minor seventh chords ([3, p. 262]). In this way, the circuit constituted by all sets between two
diminished seventh chords in the Power Towers becomes a tesseract. They named this version of graph as 4-Cube Trio,
since it connects three tesseracts in the same way that Cube Dance connects four cubes. The octatonic collection is the
superset of each tesseract of the 4-Cube Trio.

2According to Joseph Straus: "Two pitch sets are equivalent as members of the same sum class if their pitch integers
have the same sum" ([9, p. 2]). This concept can be associated to the concept of voice-leading zones, since two sets in the
same sum class are necessarily in the same voice-leading zone. In this work, we will use both concepts, as we find it more
appropriate.

3In his article named Sum Class ([9]), Straus provides a table with all trichords that shows that they are divided into
two groups, one group whose members are distributed in sum classes 1, 2, 4, 5, 7, 8, 10, and 11 - trichords that can be
target sets in a graph - and other group whose members are distributed in sum classes 0, 3, 6, and 9 - trichords that can be
pivot or bridges sets in a graph - ([9, p. 22]). He also provides a table with all tetrachords that shows that they are divided
into three groups, one group whose members are distributed in odd sum classes - tetrachords that can be target sets in a
graph - a second group whose members are distributed in sum classes 2, 4, and 6 - tetrachords that can be pivot or bridge
sets in a graph - and a third group whose members are distributed in sum classes 0, 4, and 8 - tetrachords that can be
bridge sets in a graph - ([9, pp. 41–44]).

4I exclude the aggregate of the 12 pitches because it is the only one of cardinality 12 and therefore it has no way to be
the pivot in a graph.
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• Bridge sets make connection with some, but not all target sets placed in their adjacent
voice-leading zones; they can be members of a set class with inversional or transpositional
symmetry, which therefore have a maximum of 12 sets, but they also can be member of a
non-symmetric set class. In trichord graphs, all the members of the bridge sets must be
distributed in the sum classes 0, 3, 6, and 9. They are sc. (012), (015), (024), (027) and (036).
In tetrachord graphs, all members of the pivot sets must be distributed in sum classes 2, 6,
and 10 or in sum classes 0, 4, and 8. They are sc. (0123), (0125), (0127), (0134), (0136), (0145),
(0147), (0156), (0158), (0167), (0235), (0237), (0246), (0248), (0257), (0268), (0347), and (0358).

• Supersets are collections that embody all the pitches of the sets of a graph or of one
component of a graph; they are necessarily member of a set class with inversional and
transpositional symmetry, which therefore have a maximum of 6 sets. Here we will relate
these collection to Messiaen’s modes of limited transposition, thus the label WT (the whole-
tone collection) will be used for his first mode, sc. (02468t), which interval cycle is a <2>
chain; OCT (the octatonic collection) for his second mode, sc. (0134679t), which interval
cycle is a <1,2> chain; NON (the nonatonic collection) will be used for his third mode, sc.
(01245689t), which interval cycle is a <1,1,2> chain; MM4 will be used for his fourth mode,
sc.(01236789), which interval cycle is a <1,1,3> chain; MM5 will be used for his fifth mode,
sc. (012678), which interval cycle is a <1,1,4> chain; MM6 will be used for his sixth mode, sc.
(0124678t), which interval cycle is a <1,1,2,2> chain; and MM7 will be used for his seventh
mode, sc. (0123466789t), which interval cycle is a <1,1,1,2> chain. In addition to these
collections, we will use the label HEX for the hexatonic collection, sc. (014589), which is not
one of the Messiaen’s modes and its cycle is a <1,3>im chain and AGG for the aggregated of
the 12 pitches. Table 1 summarizes the main features of these sets.

III. Axes of Contextual Inversions

Neo-Riemannian theorists use transformations labels as P, L, R, N, S, among others, to determine
how sets connect each other. These labels are based on voice-leading work that privileges common
pitches and parsimonious movements between sets. In this article we will not use these traditional
labels for two reasons: 1) although some authors such as Morris ([5, pp. 186–193]) and Straus
([7, pp. 53–67]) have adapted these transformations to sets other than triads and seventh chords,
those adaptations can bring some subtle difficulties, as one of these labels may be associated to
more than one connection, or a single connection may be associated to more than one label for
some sets5; 2) for constructing graphs representing the voice-leading space for all trichords and
tetrachords we need to describe a greater number of connections between sets than those available
with the traditional labels of Neo-Riemannian Theory, and, even if we create new labels based on
the same voice-leading work principles, they would also be subject to same difficulty mentioned
above.

The approach we present here to label the connections between sets is based on contextual
inversions, so the labels will indicate the position of the axis on which the two sets invert
themselves. Contextual inversions only occur between target sets, and this type of set class
always contains 24 members divided into two different types of OPC equivalent sets: 12 members
represented by normal form A and 12 members represented by normal form B6. We will determine

5For example, following Straus ([7, p. 56, Tab. 1]) L transforms [0,2,4] in both [t,0,2] and [2,4,6] because these connections
retain i2. However, these same two connections can be labeled R, because it also retains i2 for this set.

6Following Solomon’s set class table available at http://solomonsmusic.net/pcsets.htm, we will call normal form A
those that are most packed to the left, and normal form B those that are most packed to the right.
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Table 1: List of the collections that can be supersets in a graph.

Meessiaen’s PCs Set Collection Tn Modes Interval
Mode Cycle

Mode 1 6 (02468t) Whole-Tone 2 WT0 [0,2,4,6,8,t]; <2>
(MM1) WT1 [1,3,5,7,9,e]
Mode 2 8 (0134679t) Octatonic 2 OCT0,1 [0,1,3,4,6,7,9,t]; <1,2>
(MM2) OCT1,2 [1,2,4,5,7,8,t,e];

OCT2,3 [2,3,5,6,8,9,t,0]
Mode 3 9 (01245689t) Nonatonic 4 NON0,1,2 [0,1,2,4,5,6,8,9,t] <1,1,2>
(MM3) NON1,2,3 [1,2,3,5,6,7,9,t,e]

NON2,3,4 [2,3,4,6,7,8,t,e,0]
NON3,4,5 [3,4,5,7,8,9,e,0,1]

Mode 4 8 (01236789) - 6 MM40,1,2,3 [0,1,2,3,6,7,8,9] <1,1,3>
(MM4) MM41,2,3,4 [1,2,3,4,7,8,9,t]

MM42,3,4,5 [2,3,4,5,8,9,t,e]
MM43,4,5,6 [3,4,5,6,9,t,e,0]
MM44,5,6,7 [4,5,6,7,t,e,0,1]
MM45,6,7,8 [5,6,7,8,e,0,1,2]

Mode 5 6 (012678) - 6 MM50,1,2 [0,1,2,6,7,8] <1,1,4>
(MM5) MM41,2,3 [1,2,3,7,8,9]

MM52,3,4 [2,3,4,8,9,t]
MM53,4,5 [3,4,5,9,t,e]
MM54,5,6 [4,5,6,t,e,0]
MM55,6,7 [5,6,7,e,0,1]

Mode 6 8 (0124678t) - 6 MM60,1,2 [0,1,2,4,6,7,8,t] <1,1,4>
(MM6) MM61,2,3 [1,2,3,5,7,8,9,e]

MM62,3,4 [2,3,4,6,8,9,t,0]
MM63,4,5 [3,4,5,7,9,t,e,1]
MM64,5,6 [4,5,6,8,t,e,0,2]
MM65,6,7 [5,6,7,9,e,0,1,3]

Mode 7 8 (012346789t) - 6 MM70,1,2,3,4 [0,1,2,3,4,6,7,8,9,t] <1,1,2,2>
(MM7) MM71,2,3,4,5 [1,2,3,4,5,7,8,9,t,e]

MM72,3,4,5,6 [2,3,4,5,6,8,9,t,e,0]
MM73,4,5,6,7 [3,4,5,6,7,9,t,e,0,1]
MM74,5,6,7,8 [4,5,6,7,8,t,e,0,1,2]
MM75,6,7,8,9 [5,6,7,8,9,e,0,1,2,3]

Not a Messiaen’s 6 (014589) Hexatonic 4 HEX0,1 [0,1,4,5,8,9] <1,3>
Mode (HEX) HEX1,2 [1,2,5,6,9,t]

HEX2,3 [2,3,6,7,t,e]
HEX3,4 [3,4,7,8,e,0]

the label by the two opposite positions of the axis7 relative to the first pitch of the normal form A
and the last pitch of the normal form B that will always be mirrored. The axis rotates every half
semitone and therefore it has 12 different positions that will be labelled with letters from A to L.
We will use A as the label if the position of the axis is over the first pitch of normal form A and six
semitones above it, or if it is over the last pitch of the normal form B and six semitones below it. B
will be the label for the first rotation of the axis, C will be the label for the second rotation, and so

7Since we are working in a pitch class space, that traditionally is represented by the clock face, the axis always passes
over two opposite points separated by 6 semitones.
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on. Figure 2 shows how the 12 positions of the axis relate to the set [0,1,3] with all its possible
inversions.

Figure 2: The position of the axes for the 12 contextual inversion of set [0,1,3], all sets with pitches connected by the
inside of the circle are of the normal form B.

The difference between the axes of contextual inversion shown in Figure 2 and those used for
the traditional inversion operation presented by Straus ([8, p. 61, Ex. 2.28]) is that the contextual
inversion axes are not fixed in the clock face and move according to the first pitch of the normal
form A or to the last pitch of the normal form B of a set8. Since there are 12 position of axis
relating 12 pairs of sets, there will be 144 connections for each set class9.

8That’s why the axis A connects set [0,1,3] to the set [9,e,0] that is related by I0, and also connects set [3,4,6] to the set
[0,2,3] that is related by I3.

9For more information about axis of contextual inversion, see [11], and for tables showing the axis that connect all the
members of all set classes see [12, Vol. II, pp. 3–232].
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IV. Cycles

A cycle graph is a connected graph10 that is regular of degree 211 [13, p. 17]. Cycles are a very
common type of neo-Riemannian graphs: they may be a component of a larger graph which is a
union of several similar cycles, such as hexatonic cycles are components of HexaCycles ([3, p. 245,
Fig. 3]) or eneatonic cycles are components of the EnneaCycles ([3, p. 247, Fig. 5]), or may be a
subgraph of a unified model, such as Cube Dance ([3, p. 254, Fig. 9]) or Power Towers ([3, p. 256,
Fig. 10]).

All the neo-Riemannian cycles are chains of transformations using target set of the same type.
Each one of the four Hexatonic cycles, for example, is a <PL> chain of sc. (037), but if we use
the contextual inversion axis labels presented in the previous section, these cycles become <HD>
chains, as Figure 3 shows.

Figure 3: The graph known as HexaCycles, with the four Hexatonic cycles as <HD> chain.

Hexatonic cycles are subgraphs for both HexaCycles and Cube Dance graphs. This is because
they have several important features that make them special cases among the trichord cycles used
by the Neo-Riemannian Theory. Here are of some of these features:

• 1) All the sets belong to the same set class. This is a common feature to all cycles used by
the Neo-Riemannian Theory, because they all relate sets by a chain of contextual inversions12.

• 2) All notes of each cycle are embedded in a symmetric superset. The superset of each
hexatonic cycle is the hexatonic collection that is listed inside them. All cycles used in the
Neo-Riemannian Theory are embedded in one of the symmetric collections shown in Table 1,
or in the aggregate of all PCs.

• 3) All sets of each cycle belong to two adjacent sum classes. Sets in the cycle embedded
in HEX0,1 belong only to sum class 1 or 2; sets in the cycle embedded in HEX1,2 belong only
to sum class 4 or 5; sets in the cycle embedded in HEX2,3 belong only to sum class 7 or 8;
and sets in the cycle embedded in HEX3,4 belong only to sum class 10 or 11.

• 4) Parsimonious voice-leading13. Since H and D are the only position of the axis that hold
fixed two notes between sets with the remaining note moving by a single semitone, it is
possible to connect by parsimonious voice-leading between all the members of sc. (037)
positioned at adjacent vertices in the hexatonic cycles.

10Connected graphs are those in which each vertex is connect to any other vertex by a path of edges.
11Degree is the number of connections of a vertex. If all vertices have a same degree, the graph is regular.
12However, it would certainly be possible to create cycles with members of two or more set classes if the criterion to

relating these sets were neither transposition nor inversion.
13In this paper, I will consider that parsimonious voice-leading occurs only between two sets that can be transformed by

moving one of its pitches by one semitone while the others remain fixed.
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Only the hexatonic cycles have all these four features because just the sc. (037), among all sets
of cardinality 3, can connect one of its members to two others by parsimonious voice-leading.
Since parsimonious voice-leading has been a very important feature for the development of
Neo-Riemannian Theory, all the trichords graphs have been limited to exclusively using members
of sc. (037) as target sets. In order to build graphs with target sets other than sc. (037), it is
necessary give up the voice-leading parsimony in all connections between its members. It should
be noted that voice-leading parsimony is a particular case of connection between members of two
adjacent sum classes, and if this kind of connection is only possible between members of sc. (037),
there are other kinds of voice-leading that can connect members of trichords (013), (014), (016),
(025), (026), and (027) in two adjacent sum classes. Figure 4 shows some examples of connections
that keep sets in two adjacent sum classes.

Figure 4: Connections between members of sc. (037), (013) and (026) that keep sets in two adjacent sum classes.

Figure 4 shows examples of connections between members of sc. (037), (013), and (026) that
keep the sets in sum classes 1 and 2. The upper part of Figure 4 shows the music notation for the
sets, while the table below shows their representation on both pitch and pitch-class space with
arrows showing the voice-leading (with solid lines connecting two common pitches, and dashed
lines representing the movement between two different pitches).

Straus shows that two sets of the same cardinality are in the same sum class if the sum of the
directed pitch intervals (pitch space class) or direct pitch-class intervals (pitch-class space) is 0 ([9,
p. 1]). In the same way, we can conclude that two sets of the same cardinality are in two adjacent
sum classes if the sum of the directed pitch intervals or the direct pitch-class intervals is either 1
or 11 (mod 12). One can see in Figure 5a) how position H of the axis connects set [9,0,4] to set
[9,1,4], and position D connects it to set [5,0,9]. All members of sc. (037) belonging to hexatonic
cycle embedded in HEX0,1. The parsimonious voice-leading in those connections comes from the
fact that the sum of either the directed pitch intervals or the direct pitch-class intervals, is equal to
1, and hence the three sets are in sum classes 1 or 2. We can see similar features in Figure 5b),
where the set [3,4,6] connects by L with [e,1,2] and by D with [3,5,6]. All the three sets are also in
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sum classes 1 and 2 because the sum of either the directed pitch intervals or the direct pitch-class
intervals is equal to 1, but in these example only [3,4,6] and [3,5,6] are connect by the parsimony
voice-leading. Figure 5c) shows that the set [t,0,4] connects by J with [9,1,3], and by F with [1,5,7]
and, even neither of these connections are by parsimonious voice-leading, all the three sets are in
sum classes 1 or 2 again, since the sum of either the directed pitch intervals or the direct pitch-class
intervals is equal to 11. With these kind of connections it is possible to make cycles with members
of trichords (013), (014), (016), (025), (026), and (027) which, as in hexatonic cycles, are divided
into two adjacent sum classes. Figure 5 shows all cycles for target sets with cardinality 3. One can
see that within each hexatonic cycle (Figure 5f)) is indicated the hexatonic collection which is its
superset. The superset for all the remaining cycles is the aggregated of the 12 pitches.

Figure 6 shows some examples of voice-leading in cycles with sc. (014) (Figure 5b)), with sc.
(026) (Figure 5e)) and with sc. (016) (Figure 5c)). Note that no matter which pitch arrangement is
used for each set, the PC intervals sum of the voice-leading will always be 1 or 11, which keeps
the sets in two adjacent sum classes.

It is not possible to build similar cycles with tetrachords because none of them have members
in adjacent sum classes. In order to build cycles with the target sets of cardinality 4, their members
must be in two adjacente odd sum classes. This will generate two types of graphs for each set class:
those in which the components keep the sets in the sum classes 11/1, 3/5, and 7/9, and those in
which the sets are in the sum classes 1/3, 5/7, and 9/11. Some of those graphs are divided in
three components (cycles) and others are divided in six, as shown in Figure 714. The supersets,
except the aggregate of 12 pitches, are listed within each cycle according to Table 1.

Figure 8 shows some examples of voice-leading in tetrachords cycles with sc. (0148) (Figure 7f)),
with sc. (0157) (Figure 7g)) and with sc. (0236) (Figure 7h)), in the same way that Figure 6 shows
with trichords. Note that no matter which pitch arrangement is used for each set, the PC intervals
sum of the voice-leading will always be 2 or 10, which keeps the sets in two adjacent even or odd
sum classes.

Back to the set of cardinality 3, all the remaining trichords that are not included in the cycles
of Figure 6 are either bridge or pivot, sets and have their members in sum classes 0, 3, 6, and 9,
and therefore there is no way to build cycles with sets in adjacent sum classes as done before.
For those set classes we are going to build cycles with members in the same sum class, using
the labels for the position of contextual inversion axis for sc. (015) cycle, and transposition (T4
and T8) for sc. (012), (024), (027), and (036)15. In both cases the sets are connected by "pure
contrary voice-leadings", in which, according to Tymoczko, "the amount of ascending motion
exactly balances the amount of descending motion" ([13, p. 89]). Figure 9 shows examples of this
kind of connection between members of sc. (015) and (027).

Figure 10 shows cycles for all bridge sets in which all members are connected by pure contrary
voice leadings, and therefore are in the same sum class. Unlike the cycles shown in Figure 6,
which the sets are related by contextual inversion, the sets in almost all of these cycles are related
by transposition of 4 semitones, the exception being the cycle with sc. (015), as this is the only
trichord without inverse symmetry in which its sets are distributed in the sum classes 0, 3, 6, and
9.

Figure 11 shows some examples of voice-leading in cycles with sc. (015) (Figure 10b) and with
sc. (027) (Figure 10d). Note that any pitch arrangement that is used for sets results in a connection
with pure contrary voice-leading, which keeps the sets in the same sum class.

14Some set classes have more than one chain that keep its members in two adjacent odd sum classes, like sc. (0236) and
(0247).

15It is not possible to build this kind of cycle with members of sc. (048) since they map onto themselves both by inversion
and by transposition.
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Figure 5: Cycles for all target sets with cardinality 3 (solid lines represent parsimonious connections while dashed and
dotted lines represent non-parsimonious connections).
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Figure 6: Examples of voice-leading in cycles with sc. (014), sc. (026) and sc. (016).
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Figure 7: Cycles for all target sets with cardinality 4.

The bridge sets with cardinality 4 have its members in even sum classes and are divided in
two groups: bridge sets I, which members are in sum classes 0, 4, and 8; bridge sets II, which
members are in sum classes 2, 6, and 10. It is possible to build tetrachords cycles similar to those
with trichords shown in Figure 10, in which all members of a target set are of the same class of
sum. The sets of these cycles can be related by a chain of contextual inversions or by a chain of
transpositions of 3 semitones. Table 2 provides the labels of the relation that connects bridge sets I
and II with supersets of each cycle.

V. Trees and other graphs with two different set classes

In addition to the cycles, trees, which are connected graphs containing no cycles ([4, p. 18]), are
another type of graph used by the Neo-Riemannian Theory. The two most well known neo-
Riemannian tree graphs are the Weitzmann graph and the Boretz Spiders. Cohn have designed
these graphs using the chord symbols but, in order to keep the same criteria used in our previous
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Figure 8: Examples of voice-leading in cycles with sc. (0148), sc. (0157) and sc. (0236).
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Figure 9: Connections between members of sc. (015) and (027) that keep sets in the same sum class.

graphs, they are reproduced in Figure 12 with all sets notated in the normal form. The nodes in
the center of each graph is related to the pivot sets. They are connect with other sets by a gray
solid line. The solid line, as before, represents a parsimonious connection between two graphs,
and the gray color indicates that this connection is between members of different set classes.

Since these two graphs are subgraphs of both Cube Dance and Power Towers, and may
therefore serve as a model to build other graphs, we will highlight some of their main features as
we did previously with HexaCycles.

• 1) All the sets belong to two different set classes. Both graphs have four components with
a root (a node that is connect with all others) that is related to a pivot set (sc. (048) in
Weitzmann graph and sc. (0369) in Boretz Spiders). All remaining nodes are related to a
target sets (sc. (037) in Weitzmann graph and sc. (0258) in Boretz Spiders);

• 2) Each component is embedded in a symmetric collection. The superset of each compo-
nent in Weitzmann graph is the nonatonic collection listed below it, and the superset of each
Boretz spider is the aggregated of 12 pitches;

• 3) All sets of each component belong to three adjacent sum classes. All components of
both graphs are limited to only three sum classes, with the pivot set of each component
being in the sum class between the two sum classes of the target sets.

• 4) Parsimonious voice-leading between the pivot and the target sets. Since the target sets
do not connect to each other in either graph, all connections are between members of
different sets of classes, which is a remarkable difference between tree graphs and cycles
previously discussed. However, the target and the pivot sets in each graph were chosen
because they connect parsimoniously.

We can use Weitzmann graphs and Boretz Spiders as models in order to build new graphs
using different target sets, but since there are only one pivot set for cardinality 3 and one for
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Figure 10: Cycles for all pivot sets with cardinality 3 (solid black lines represent parsimonious connections, dashed and
dotted black lines represent non-parsimonious connections, and red dotted lines represent T4 connections).

cardinality 4 (sc. (048) and sc. (0369), respectively), we will have to replace them by bridge sets
that can connect to these target sets by parsimonious voice-leading. As previously mentioned, the
difference between the pivot and bridge sets is that the former make connections with every target
set placed in their adjacent voice-leading zones, while the latter make connections with some, but
not all target sets placed in their adjacent voice-leading zones. Because of this, we will replace in
both trichord and tetrachord graphs the nodes of the pivot sets by cycles that we have previously
built, and which connect bridge sets in the same sum class by transposition. In this way, each
bridge set in the cycle will connect at least to two target sets (see the models for those graphs in
Figure 13). Note that although we have used the graphs of Figure 14 as models, these cannot be
considered as tree graphs because they include a cycle of bridge sets. In this way we can build
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Figure 11: Examples of voice-leading in cycles with sc. (015) and sc. (027).

12 graphs that connect two sets of trichords by parsimony voice-leading. Those graphs include
all set classes of cardinality 3. Each graph has four components and the sets of each one are in
three adjacent sum classes listed below them. The supersets of those components are listed in the
middle of the cycle, and if not, the superset is the aggregate of 12 pitches. The arrangement of
the sets in all trichords graphs which sc. (015) is the bridge set is different from those with the
symmetrical sc. (012), (024), (027), and (036), and therefore there are two different types of designs
for the components of these graphs shown in Figure 13. Components of type 1 have a central cycle
in which members of a inversional symmetric set class are connected by T4. Each bridge set is
also connected to two target sets, so this type of component has 9 members. Components of type
2 have a central cycle in which members of sc. (015) are connected by contextual inversion. Each
bridge set is also connected to one target set, so this type of component has 12 members.

Figure 14 shows all 12 graphs that connect two different sets of trichords. There are 8 with
components of type 1 and 4 with components of type 2. I will represent the graphs using the
prime form of both sets separated by a slash, the first is always the pivot or the bridge set while
the second is the target set.
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Table 2: The table on the left provides information about tetrachord cycles with bridge sets I and, the table on the right
provides information about tetrachord cycles with bridge sets II.

Bridge Sets I Bridge Sets II
Sum Classes 0, 4 and 8 Sum Classes 2, 6 and 10

Set Class Cycle Superset Set Class Cycle Superset
(all sets in the (all sets in the

same sum class) same sum class)
A (0125) six cycles MM4 (0123) three cycles AGG
B (0345) <HB> chain T3 related
(0134) three cycles MM2 (0127) three cycles AGG

T3 related T3 related
A (0147) three cycles MM7 A (0136) <CF> and <FI> chains AGG
B (0367) <AG> chain B (0356) three cycles each
(0156) three cycles AGG (0145) three cycles AGG

<AG> chain T3 related
A (0237) six cycles MM4 (0158) three cycles AGG
B (0457) <JD> chain T3 related
(0246) three cycles AGG (0167) three cycles MM2

T3 related T3 related
(0268) three cycles MM2 (0235) three cycles MM2

T3 related T3 related
(0358) three cycles MM2 (0248) three cycles AGG

T3 related T3 related
(0257) three cycles AGG

T3 related
(0347) three cycles MM2

T3 related

Next we can describe the voice-leading between sets in two components of two different graphs.
Figure 15a) is an example of voice-leading between sets of the third component (left to right) of
graph 024/014 (shown in Figure 14b)), while Figure 15b) is an example of voice-leading between
sets of the third component (left to right) of graph 015/026 (shown in Figure 14l)). One can see in
the left side of Figure 15 the patch I choose to connect the sets on the graph and in the right side
one of the possible voice-leadings for these sets. Note that I have used parsimony voice-leading
for every connection between members of two different sets (red arrows in the graphs), while the
members of the same set were connected by pure contrary motion (blue arrows).

There are 57 graphs that connect two different tetrachords sets by parsimony voice-leading,
and each one has three components with its members in three adjacent sum classes listed below
them. The components of those graphs are divided in 5 different types: components of type 1
have a central cycle whose members of a inversional and transpositional symmetric set classes
are connected by T6. Each one of the bridge sets is also connected to four target sets, so this type
of component has 10 members. Components of type 2 have a central cycle whose members of a
inversional symmetric set classes are connected by T3. Each one of the bridge set is also connected
to two target sets, so this type of component has 12 members. Components of type 3 have a central
cycle whose members are connected by contextual inversion. Each one of the bridge set is also
connected to one target set, so this type of component has 16 members arranged in two subtypes
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Figure 12: a) Weitzmann graph; b) Boretz Spiders.

Figure 13: Two types of components in graphs that connect two sets of trichords.

of components, 3a and 3b. Each component of type 4 is divided in two cycles in which 4 members
are connect by contextual inversion. Each one of the bridge set is also connected to one target
set, so this type of component has 16 members arranged in two subtypes of components, 4a and
4b. There is only one graph with components of type 5, and we will analyze it separately below.
Figure 16 shows the design of the components of type 1, 2, 3, and 4.

Figure 17 shows one example of graphs that connect two different tetrachords with each type
and subtype of component. The graph of Figure 17a) shows three components of type 1 with
members of sc. (0268) as bridge sets and members of sc. (0157) as target sets; Figure 17b) shows a
graph divided in components of type 2 with members of sc. (0127) as bridge sets and members
of sc. (0126) as target sets; Figure 17c) shows a graph divided in components of type 3a with
members of sc. (0136) as bridge sets and members of sc. (0126) as target sets; Figure 17d) shows a
graph divided in components of type 3b with members of sc. (0136) as bridge sets and members
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Figure 14: Graphs that connect two sets of trichords by parsimony voice-leading.
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Figure 15: Examples of voice-leading for sets of the 024/014 and 015/026 graphs.

of sc. (0236) as target sets; Figure 17e) shows a graph divided in components of type 4a with
members of sc. (0237) as bridge sets and members of sc. (0236) as target sets; Figure 17f) shows a
graph divided in components of type 4b with members of sc. (0147) as bridge sets and members
of sc. (0146) as target sets.

In Table 3 of Appendix are listed all 57 graphs that connect two different tetrachords. In it all
the graphs are divided by the type of its components, which are listed in the left column. In the
middle column, the set classes of the graphs are listed. The first is the bridge set, and the second
is the target set on the chart. It can be seen in the right column, in which sum classes the members
of the three components of each graph are distributed.

Graph 0358/0258 is the only one with components of type 5. This graph is similar to the
Douthett/Steinbach’s OctaTowers ([3, p. 246, Fig. 4]), but Figure 18 shows it with an alternative
design and with the normal forms for each set instead the chord symbols in order to keep same
appearance in all graphs. Therefore, this graph has three components with a central cycle whose
members of sc. (0358) are connected by T3. Each member of this set class is also connected to four
members of sc. (0258), so all the components have 12 members.
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Figure 16: Components of type 1,2,3, and 4 for graphs that connect two sets of tetrachords.

VI. Unified Models of Voice Leading Space

Richard Cohn refers to the graph known as Cube Dance ([2, p. 83, Fig. 5.24]) as a "unified model
of triadic voice-leading space" ([2, p. 83]) since it "includes the four hexatonic cycles and the four
Weitzmann regions as contiguous subgraphs" ([2, p. 85, Fig. 5.24]). I will refer to this graph as
048/037 Cube Dance, since members of sc. (048) are the pivot sets and members of sc. (037) are
the target sets in it. Figure 19 shows 048/037 Cube Dance with some changes to the original
graph: the sets are represented by its normal forms instead of the chord symbols; the black
lines represent connections between members of the same set class and the gray lines represent
connections between members of different set classes; thickest black lines represent connections
using the contextual inversion axis H, while the thinner black lines represent connections using
the contextual inversion axis D.

Next we list the main features of the original Cube Dance, so that these can be used to build
other graphs as done above with the cycles and with tree graphs.

• 1) All the sets in the graph belong to two different set classes. As observed by Cohn,
Cube Dance has the hexatonic cycles and the Weitzmann regions as contiguous subgraphs.
These subgraphs are arranged in order to make four cubes with members of sc. (048) in the
intersections between them, and members of sc. (037) in the remaining vertices.

• 2) Sets are placed in voice-leading zones. The entire graph is placed inside a clock face.
The sum of pitches modulo 12 of each set is equal to the number next to it. These numbers
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Figure 17: Examples of graphs that connect two sets of tetrachords.
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Figure 18: The 0358/0258 graph is similar to Douthett/Steinbach’s OctaTowers.

are the voice-leading zones. In order words, the sets in Cube Dance are organized in adjacent
sum classes.

• 3) Each cube has a symmetrical superset. All the sets in each cube are embedded in a
particular hexatonic collection. The sets in northeast cube are in HEX0,1; sets in southeast
cube are HEX1,2; sets in southwest cube are HEX2,3; and sets in northwest cube are HEX3,4.

• 4) Parsimonious voice-leading between all connected sets. Any connection between two
sets in Cube Dance is parsimonious, regardless of whether the sets belong to the same set
class or not. So it is possible to make a path that connects several chords with a voice-leading
work that uses only displacements of one semitone.

We can build Cube Dances using trichords other than members of sc. (048) and (037). They
will share the first three features of the original Cube Dance listed before16. As seen in cycles of
trichords shown in Figure 5, the only set class in which members can relate parsimoniously by
contextual inversion to two other members is sc. (037). So in order to build Cube Dances with
different trichords one must admit that the voice-leading between zones 1-2, 4-5, 7-8, and 10-11
may not necessarily be parsimonious, although it connects members of adjacent sum classes.

Figure 20 shows the 024/014 Cube Dance, a graph that connects all members of these two set
classes with similar patterns of voice-leading throughout their vertices. In this new Cube Dance
all the vertices where were the pivot sets (in zones 0, 3, 6, and 9) in the original Cube Dance were
replaced by the four cycles with sc. (024) shown in Figure 10c), so the members of this set class
are the bridge sets in the graph. In the zones 1-2, 4-5, 7-8, and 10-11, the hexatonic cycle were
replaced by the four cycles with sc. (014) shown in Figure 5b), and the members of this set class
are the target set in the graph. In other words, the 024/014 Cube Dance includes the 024/014
graph shown in Figure 14b) and the cycle of <DH> chain with sc. (014) as contiguous subgraphs.
The red and the black lines in the graph represent connections between members of same set class,
red lines connect them by transposition and black lines by contextual inversion. Gray lines connect
members of different set classes. Solid lines represent connection with parsimonious voice-leading,
while dashed and dotted lines represent connections using the contextual inversions axes D and H,
respectively. The graph of Figure 20 gives an example of connection with this sets represented by
the path with red arrows and circles. The voice leading between these sets are shown in Figure 21.
Certainly there are countless other possible ways to connect these sets that can be traced in this
Cube Dance.

Figure 22 shows the 027/016 Cube Dance. It includes the 027/016 graph, shown in Figure 14d),

16About the third feature of the list: the supersets of each cube in all graphs is the aggregate of the 12 pitches.
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Figure 19: 048/037 Cube Dance.

and the cycle of <BJ> chain with sc. (016) as contiguous subgraphs. The pattern of the connection
lines is the same used in Figure 20, but the black solid and dotted lines represent connections
using the contextual inversions axes B and J, respectively. The path drawn over this graph is an
example of a connection that explores the parsimonious voice leading in this graph, as shows
Figure 23.

Figure 24 shows the 015/025 Cube Dance. This graph has a different design from the previous
ones, since members of sc. (015) are the bridge sets and, as previously observed, this set class is
the only one in which its members are distributed in the voice-leading zones 0, 3, 6, and 9 and
is not symmetrical. Thus, the vertices in the intersections between the four cubes in the original
graph were replaced by the cycles of <DH> chain with sc. (015) shown in Figure 11b), and this is
what changes the model of the graph, since cycles with 6 instead of 3 sets, are placed in those
positions. That is, the Cube Dances of Figures 20 and 22 included graphs of type 1 as subgraphs
between the voice-leading zones 11-0-1, 2-3-4, 5-6-7, and 8-9-10, while the 015/025 Cube Dance
includes graphs of type 2 as subgraphs in these same positions (the types of graphs that connect
two sets of trichords are shown in Figure 13). Another important difference between this graph
and the previous ones is that in this Cube Dance there are no T4 direct connections, and all the
members of the same set class are connected by contextual inversion. It should be noted that
members of sc. (015) are connect with only one target set in adjacent voice-leading zone, so to
cross between target sets in two different cubes17 it is necessary to connect with two members of

17By replacing the intersecting vertices of the original Cube Dance with cycles, the graph is deformed and the solids
between the voice-leading zones 0-1-2-3, 3-4-5-6, 6-7-8-9, and 9-10-11-0 are no longer exactly cubes. However, I shall still
use the term cube, considering that the intersection between these solids is a unit, even if it is represented by a cycle. In the
same spirit, I shall still refer to these graphs as Cube Dance.
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Figure 20: 024/014 Cube Dance.

Figure 21: An example of voice-leading for the path shown over the 024/014 Cube Dance in Figure 20.
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Figure 22: 027/016 Cube Dance.

Figure 23: An example of voice-leading for the path shown over the 027/016 Cube Dance in Figure 22.
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Figure 24: 015/025 Cube Dance.

sc. (015). The path drawn over this Cube Dance gives an example of how the voice-leading can be
with these sets. Figure 25 shows the details of this example.

Figure 25: An example of voice-leading for the path shown over the 015/025 Cube Dance in Figure 24.
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It is possible to build fourteen Cube Dances combining trichord cycles shown in Figure 5 and
graphs that connect two trichords shown Figure 1418. In Table 4 of the Appendix, a list of all these
Cube Dances with its subgraphs and supersets is given.

We can call the Douthett/Steinbach’s Power Towers ([3, p. 256, Fig. 10]) a unified model too,
since it includes the Boretz Regions and the OctaTowers as subgraphs, and the authors themselves
state that "Power Towers is the seventh chord analog to Cube Dance" ([3, p. 255]). I will refer
to it as 0369/0358/0258 Power Towers, since members of sc. (0369) in voice-leading zones 2, 6,
and 10 are the pivot sets, members of sc. (0358) in voice-leading zones 0, 4, and 8 are the bridge
sets, and members of sc. (0258) in the odd voice-leading zones are the target set in this graph.
Figure 26 shows the 0369/0358/0258 Power Towers19 with some changes to the original graph:
as done before with the Cube Dances, the sets are represented by their normal forms instead the
chord symbols; the OctaTowers are represented as the graph shown in Figure 18; the dotted red
lines represent connection between members of same set class related by T3; the solid gray lines
represent connections between members of different set class by parsimony voice-leading (there
are no black lines because members of same set class are not connect by contextual inversion in
this graph).

Figure 26: The 0369/0358/0258 Power Towers.

We now list the main features of the original Power Dance, as done for the original Cube Dance

18In all fourteen Cube Dances we keep the parsimony voice-leading between the bridges and the target sets. However,
it would be possible to build Cube Dances without this kind of the connection, which would considerably increase the
number of possible graphs.

19In Cohn’s Book there is a version of this graph that also includes the members of sc. (0268) in the same voice-leading
zones of members of sc. (0358) which he calls "4-Cube Trio" ([2, p. 158, Fig. 7.16]). However, for our purpose in this article
it will better to limit the graph to three different set classes of the Power Towers.
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before:

• 1) All the sets in the graph belong to three different set classes. Power Tower includes set
(0258) as target set in all odd voice-leading zones. Since there is no member of this set class
in even voice-leading zones, it is necessary to include members of two different sets of sets
to fill these gaps. Because of this, members of sc. (0369) are placed in voice-leading zones 2,
6, and 10 as pivot sets and members of sc. (0358) are placed in voice-leading zones 0, 4, and
8 as pivot sets.

• 2) Sets are placed in voice-leading zones. As in Cube Dance, all the sets are organized in
adjacent sum classes.

• 3) Symmetrical superset. All sets in voice-leading zone 10 to 2 are embedded in OCT1,2, all
sets in voice-leading zone 2 to 6 are embedded in OCT2,3 and all sets in voice-leading zones
6 to 10 are embedded in OCT0,1.

• 4) Parsimonious voice-leading between all connected sets. As in Cube Dance, any connec-
tion between two sets is parsimonious.

Next we can build Power Towers with different sets in the same way we did with the Cube
Dances, and these new graphs will also share the first three features of previous list. Figure 27
shows the 0167/0147/0157 Power Towers. It includes graphs 0147/0157 (voice-leading zones
11-0-1, 3-4-5, and 7-8-9) and 0167/0157 (voice-leading zones 1-2-3, 5-6-7, and 9-10-11) as contiguous
subgraphs. In this graph the red lines connect two members of sc. (0167) related by T6 and the
black dashed and dotted lines represent connections between members of sc. (0147) using the
contextual inversions axes A and G, respectively. The path drawn over this Power Towers shows
an example of a pattern of voice-leading that combine parsimony and pure contrary motion with
these three sets of trichords. The details of the voice-leading of this path is shown in Figure 28.

Figure 29 shows the 0136/0246/0135 Power Towers which includes graphs 0246/0135 (voice-
leading zones 11-0-1, 3-4-5, and 7-8-9) and 0136/0135 (voice-leading zones 1-2-3, 5-6-7, and 9-10-11)
as contiguous subgraphs. Red lines connect two members of sc. (0246) related by T3 and the black
dashed and dotted lines represent connections between members of sc. (0136) using the contextual
inversions axes D and F, respectively. The path drawn over this Power Towers shows another
example of a pattern of voice-leading that combine parsimony and pure contrary motion, and the
details of this voice-leading is shown in Figure 30.

It is possible to build 87 Power Towers combining the tetrachord graphs of Table 3 in the
Appendix, where we also give a list of all these Power Towers with its subgraphs and supersets in
Table 5.

VII. Conclusion

The visual advantages that are offered by neo-Riemannian graphs are of unquestionable importance
both to determine how sets that are not embedded in a scale or collection connect in a given
passage, and to highlight certain types of voice-leading. Graphs have performed these two tasks
efficiently and have been widely used, especially in the analyzes, in the last decades. However, the
fact that most neo-Riemannian graphs include only triads or seventh chords limited the scope of
these analyses to a specific type of repertoire primarily comprised of works composed in the 19th
century, chord progressions that Cohn call "pantriadic" ([2, p. 34]).

In this paper we have proposed ways to construct several types of graphs that include any set
class of trichord and tetrachord. If on the one hand this approach had to renounce the requirement
that all the connections between the sets included in the graphs are parsimonious, on the other
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Figure 27: 0167/0147/0157 Power Towers.

Figure 28: An example of voice-leading for the path shown over the 0167/0147/0157 Power Towers in Figure 27.
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Figure 29: The 0136/0246/0135 Power Towers.

Figure 30: An example of voice-leading for the path shown over the 0136/0246/0135 Power Towers in Figure 29.
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hand in the new graphs the sets are connected in adjacent voice-leading zones in the same way
as in traditional graphs, and this maintains the leading voice consistency in the passages of the
musical examples created with them. It is hoped that these new graphs can contribute both to
analyses of music composed after the 19th century and to pre-compositional work of new music.

This approach can be easily expanded in many different ways, such as for graphs that would
include sets of other cardinalities (dyads, pentachords, hexachords, etc.), graphs in which the
pivot/bridge and target sets do not connect parsimoniously, graphs that include more than three
set classes in their vertices, graphs in mod. 7, mod. 8, etc., among others.
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A. Appendix

Table 3: List of all graphs that connect two sets of tetrachords.

Type of Components Bridges/Targets Sum Classes Superset

TYPE 1
0167/0157 1,2,3-5,6,7-9,10,11 AGG
0268/0157 11,0,1-3,4,5-7,8,9 AGG
0268/0258 11,0,1-3,4,5-7,8,9 MM2

TYPE 2

0123/0124 1,2,3-5,6,7-9,10,11 AGG
0127/0126 11,0,1-3,4,5-7,8,9 AGG
0127/0137 1,2,3-5,6,7-9,10,11 AGG
0134/0124 11,0,1-3,4,5-7,8,9 AGG
0134/0135 11,0,1-3,4,5-7,8,9 AGG
0145/0135 1,2,3-5,6,7-9,10,11 AGG
0145/0146 1,2,3-5,6,7-9,10,11 AGG
0156/0146 11,0,1-3,4,5-7,8,9 AGG
0156/0157 11,0,1-3,4,5-7,8,9 AGG
0158/0148 1,2,3-5,6,7-9,10,11 AGG
0158/0157 1,2,3-5,6,7-9,10,11 AGG
0158/0258 1,2,3-5,6,7-9,10,11 AGG
0235/0124 1,2,3-5,6,7-9,10,11 AGG
0235/0135 1,2,3-5,6,7-9,10,11 AGG
0235/0236 1,2,3-5,6,7-9,10,11 MM2
0246/0135 11,0,1-3,4,5-7,8,9 AGG
0246/0146 11,0,1-3,4,5-7,8,9 AGG
0246/0236 11,0,1-3,4,5-7,8,9 AGG
0246/0247 11,0,1-3,4,5-7,8,9 AGG
0248/0137 1,2,3-5,6,7-9,10,11 AGG
0248/0148 1,2,3-5,6,7-9,10,11 AGG
0248/0247 1,2,3-5,6,7-9,10,11 AGG
0248/0258 1,2,3-5,6,7-9,10,11 AGG
0257/0146 1,2,3-5,6,7-9,10,11 AGG
0257/0157 1,2,3-5,6,7-9,10,11 AGG
0257/0247 1,2,3-5,6,7-9,10,11 AGG
0257/0258 1,2,3-5,6,7-9,10,11 AGG
0347/0148 1,2,3-5,6,7-9,10,11 AGG
0347/0236 1,2,3-5,6,7-9,10,11 MM2
0347/0247 1,2,3-5,6,7-9,10,11 AGG
0358/0247 11,0,1-3,4,5-7,8,9 AGG
0358/0148 11,0,1-3,4,5-7,8,9 AGG
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Table 3: Continuation
Type of Components Bridges/Targets Sum Classes Superset

TYPE 3a
0136/0126 1,2,3-5,6,7-9,10,11 AGG
0136/0135 1,2,3-5,6,7-9,10,11 AGG
0136/0247 1,2,3-5,6,7-9,10,11 AGG

TYPE 3b
0136/0137 1,2,3-5,6,7-9,10,11 AGG
0136/0146 1,2,3-5,6,7-9,10,11 AGG
0136/0236 1,2,3-5,6,7-9,10,11 AGG

TYPE 4a

0125/0124 11,0,1-3,4,5-7,8,9 AGG
0125/0236 11,0,1-3,4,5-7,8,9 AGG
0147/0148 11,0,1-3,4,5-7,8,9 MM7
0147/0157 11,0,1-3,4,5-7,8,9 MM7
0147/0247 11,0,1-3,4,5-7,8,9 MM7
0237/0236 11,0,1-3,4,5-7,8,9 MM4
0237/0247 11,0,1-3,4,5-7,8,9 AGG

TYPE 4b

0125/0126 11,0,1-3,4,5-7,8,9 AGG
0125/0135 11,0,1-3,4,5-7,8,9 AGG
0147/0137 11,0,1-3,4,5-7,8,9 MM4
0147/0146 11,0,1-3,4,5-7,8,9 MM7
0147/0258 11,0,1-3,4,5-7,8,9 MM7
0237/0126 11,0,1-3,4,5-7,8,9 AGG
0237/0137 11,0,1-3,4,5-7,8,9 MM4
0237/0148 11,0,1-3,4,5-7,8,9 AGG

Type 5 0358/0258 11,0,1-3,4,5-7,8,9 mm2
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Table 4: List of fourteen Cube Dances.

Cube Dance Subgraph 1 Superset Subgraph 2 Superset
(Intersection/target) (Sum 1/2, 4/5, (Sum 11/0/1, 2/3/4,

7/8 and 10/11) 5/6/7 and 8/9/10)
012/013 four <DL> chains AGG four graphs combining sets AGG

of 013 sets 012 and 013 (type 1)
015/014 four <DH> chains AGG four graphs combining sets AGG

of 014 sets 015 and 014 (type 1)
024/014 four <DH> chains AGG four graphs combining sets AGG

of 024 sets 014 and 014 (type 1)
015/016 four <BJ> chains AGG four graphs combining sets AGG

of 016 sets 015 and 016 (type 2)
027/016 four <BJ> chains AGG four graphs combining sets AGG

of 016 sets 027 and 016 (type 1)
015/025 four <FB> chains AGG four graphs combining sets AGG

of 025 sets 015 and 025 (type 2)
024/025 four <FB> chains AGG four graphs combining sets AGG

of 025 sets 024 and 025 (type 1)
036/026 four <FJ> chains AGG four graphs combining sets AGG

of 026 sets 036 and 026 (type 1)
015/026 four <FJ> chains AGG four graphs combining sets AGG

of 026 sets 015 and 026 (type 2)
027/026 four <FJ> chains AGG four graphs combining sets AGG

of 026 sets 027 and 026 (type 1)
036/026 four <FJ> chains AGG four graphs combining sets AGG

of 026 sets 036 and 026 (type 1)
027/037 four <HD> chains HEX four graphs combining sets MM3

of 037 sets 027 and 037 (type 1)
036/037 four <HD> chains HEX four graphs combining sets MM3

of 037 sets 036 and 037 (type 1)
048/037 four <HD> chains HEX four Weitzmann Regions MM3

of 037
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Table 5: List of 87 Power Towers.

Power Towers Subgraph 1 Superset Subgraph 2 Superset
(Sum 1/2/3, 5/6/7, (Sum 11/0/1, 3/4/5,

and 9/10/11) and 7/8/9/)
0123-0125-0124 graph 0123/0124 AGG graph 0125/0124 AGG
0235-0125-0124 graph 0235/0124 AGG graph 0125/0124 AGG
0123-0134-0124 graph 0123/0124 AGG graph 0134/0124 AGG
0235-0134-0124 graph 0235/0124 AGG graph 0134/0124 AGG
0127-0125-0126 graph 0127/0126 AGG graph 0125/0126 AGG
0136-0125-0126 graph 0136/0126 AGG graph 0125/0126 AGG
0237-0127-0126 graph 0127/0126 AGG graph 0237/0126 AGG
0136-0237-0126 graph 0136/0126 AGG graph 0237/0126 AGG
0136-0125-0135 graph 0136/0135 AGG graph 0125/0135 AGG
0145-0125-0135 graph 0145/0135 AGG graph 0125/0135 AGG
0235-0125-0135 graph 0235/0135 AGG graph 0125/0135 AGG
0136-0134-0135 graph 0136/0135 AGG graph 0134/0135 AGG
0145-0134-0135 graph 0145/0135 AGG graph 0134/0135 AGG
0235-0134-0135 graph 0235/0135 AGG graph 0134/0135 AGG
0136-0246-0135 graph 0136/0135 AGG graph 0246/0135 AGG
0145-0246-0135 graph 0145/0135 AGG graph 0246/0135 AGG
0235-0246-0135 graph 0235/0135 AGG graph 0246/0135 AGG
0127-0147-0137 graph 0127/0137 AGG graph 0147/0137 MM4
0136-0147-0137 graph 0136/0137 AGG graph 0147/0137 MM4
0248-0147-0137 graph 0248/0137 AGG graph 0147/0137 MM4
0127-0237-0137 graph 0127/0137 AGG graph 0237/0137 MM4
0136-0237-0137 graph 0136/0137 AGG graph 0237/0137 MM4
0248-0237-0137 graph 0248/0137 AGG graph 0237/0137 MM4
0136-0147-0146 graph 0136/0146 AGG graph 0147/0146 MM7
0145-0147-0146 graph 0145/0146 AGG graph 0147/0146 MM7
0257-0147-0146 graph 0257/0146 AGG graph 0147/0146 MM7
0136-0156-0146 graph 0136/0146 AGG graph 0156/0146 AGG
0145-0156-0146 graph 0145/0146 AGG graph 0156/0146 AGG
0257-0156-0146 graph 0257/0146 AGG graph 0156/0146 AGG
0136-0246-0146 graph 0136/0146 AGG graph 0246/0146 AGG
0145-0246-0146 graph 0145/0146 AGG graph 0246/0146 AGG
0257-0246-0146 graph 0257/0146 AGG graph 0246/0146 AGG
0158-0147-0148 graph 0158/0148 AGG graph 0147/0148 MM7
0248-0147-0148 graph 0248/0148 AGG graph 0147/0148 MM7
0158-0147-0157 graph 0158/0157 AGG graph 0147/0157 MM7
0167-0147-0157 graph 0167/0157 AGG graph 0147/0157 MM7
0257-0147-0157 graph 0257/0157 AGG graph 0147/0157 AGG
0158-0156-0157 graph 0158/0157 AGG graph 0156/0157 AGG
0167-0156-0157 graph 0167/0157 AGG graph 0156/0157 AGG
0257-0156-0157 graph 0257/0157 AGG graph 0156/0157 AGG
0158-0268-0157 graph 0158/0157 AGG graph 0268/0157 AGG
0167-0268-0157 graph 0167/0157 AGG graph 0268/0157 AGG
0257-0268-0157 graph 0257/0157 AGG graph 0268/0157 AGG
0136-0125-0236 graph 0136/0236 AGG graph 0125/0236 AGG
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Table 5: Continuation
Power Towers Subgraph 1 Superset Subgraph 2 Superset

(Sum 1/2/3, 5/6/7, (Sum 11/0/1, 3/4/5,
and 9/10/11) and 7/8/9/)

0235-0125-0236 graph 0235/0236 MM2 graph 0125/0236 AGG
0347-0125-0236 graph 0347/0236 AGG graph 0125/0236 AGG
0136-0237-0236 graph 0136/0236 AGG graph 0237/0236 MM4
0235-0237-0236 graph 0235/0236 MM2 graph 0237/0236 MM4
0347-0237-0236 graph 0347/0236 AGG graph 0237/0236 MM4
0136-0246-0236 graph 0136/0236 AGG graph 0246/0236 AGG
0235-0246-0236 graph 0235/0236 MM2 graph 0246/0236 AGG
0347-0246-0236 graph 0347/0236 AGG graph 0246/0236 AGG
0235-0237-0236 graph 0235/0236 MM2 graph 0237/0236 MM4
0347-0237-0236 graph 0347/0236 AGG graph 0237/0236 MM4
0136-0246-0236 graph 0136/0236 AGG graph 0246/0236 AGG
0235-0246-0236 graph 0235/0236 MM2 graph 0246/0236 AGG
0347-0246-0236 graph 0347/0236 AGG graph 0246/0236 AGG
0136-0147-0247 graph 0136/0247 AGG graph 0147/0247 MM7
0248-0147-0247 graph 0248/0247 AGG graph 0147/0247 MM7
0347-0147-0247 graph 0347/0247 AGG graph 0147/0247 MM7
0136-0237-0247 graph 0136/0247 AGG graph 0237/0247 AGG
0248-0237-0247 graph 0248/0247 AGG graph 0237/0247 AGG
0347-0237-0247 graph 0347/0247 AGG graph 0237/0247 AGG
0136-0246-0247 graph 0136/0247 AGG graph 0246/0247 AGG
0248-0246-0247 graph 0248/0247 AGG graph 0246/0247 AGG
0347-0246-0247 graph 0347/0247 AGG graph 0246/0247 AGG
0158-0147-0258 graph 0158/0258 AGG graph 0147/0258 AGG
0248-0147-0258 graph 0248/0258 AGG graph 0147/0258 MM7
0257-0147-0258 graph 0257/0258 AGG graph 0147/0258 MM7
0369-0147-0258 graph 0369/0258 AGG graph 0147/0258 MM7
0158-0268-0258 graph 0158/0258 AGG graph 0268/0258 MM2
0248-0268-0258 graph 0248/0258 AGG graph 0268/0258 MM2
0257-0268-0258 graph 0257/0258 AGG graph 0268/0258 MM2
0369-0268-0258 graph 0369/0258 AGG graph 0268/0258 MM2
0158-0358-0258 graph 0158/0258 AGG graph 0358/0258 MM2
0248-0358-0258 graph 0248/0258 AGG graph 0358/0258 MM2
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Abstract: The automatic identification of tonal chord sequences has already been addressed through
several formalisms. We return to this problem for didactic reasons, as we seek a formal solution that
lends itself to automatic explanation of the way in which tonal sequences are identified. There is a search
for a correspondence between the formal steps, which lead to the solution, and how a human agent does
it to solve the problem him/herself. Given a sequence of chords, the task is to answer whether or not it
constitutes a tonal progression, and how and why. It is an interesting problem because its formal solution,
once easily automated, can give birth to educational software of real value in the case of young musicians
whose access to harmony teachers is scarce or even null. This formalism applied to a large test body allows
empirical proof of the fundamental idea that we can describe the tonal sequences by chaining together a
minimal collection of basic tonal sequences. Students who do not have access to a harmony teacher will
benefit from this harmonic analysis companion.

Keywords: Tonality identification. Modal semantics. Model checking. Automatic harmonic reasoning.

I. Introduction

The classification of a chord sequence1 as a tonal sequence is a fundamental task in the study
of harmony and is one of the pillars of musical analysis. This is sufficient reason for it to
be formalized. The difficulty of such a task can take on great proportions if long pieces are

analyzed completely. This is a sufficient reason for it to be automated. In this study, sequences are
defined as any concatenation of chords. Here are two situations of identification of a harmonic
progression:

1) To identify that [Em - A7 - Dm - G - C] is a tonal progression, in the key of C major, we must
explain the role played by the non-diatonic chord, A7.

Received: December 10th, 2020
Approved: June 2nd, 2021

1The term sequence, as defined in this work, is not related to the term melodic sequence, which consists of the repetition of
motifs or phrases at different levels of pitch, maintaining the same interval pattern (modulatory sequence) or the same
contour (diatonic sequence); neither is it related to the medieval sequence, which consists of "the most important type of
addition to the official Catholic liturgical song" ([6, p. 739]). For a more in-depth examination of the term sequence, as it is
traditionally used in the Western musical context, see [6, pp. 739–741].
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Figure 1: The first six measures of Villa-Lobos’ Étude No. 1, for guitar.

2) Another type of difficulty is found in this excerpt from Étude No. 1, by Villa-Lobos (1953)
([5, p. 1]) shown in Figure 1, whose chord progression is: [Em - F#◦/E - Em - B7/F# - Em/G].
With the exception of the second chord, the others make up a traditional diatonic sequence
in the key of E minor. The point here then becomes to explain the "tonal presence" of this
chord.

II. The problem

It is worth remembering that the same sequence of chords can be constructed in more than one
way, and therefore, it has more than one explanation. The problem faced here is not only if a
sequence is tonal, but also why it is so. Moreover, the explanation must be formal: we are looking
for a formal system to explain how the solution of a theoretical musical issue is resolved. In
addition, as this question has several answers, the system must be able to find all of them.

i. Our contribution in a glance

We borrow the concept of basic tonal sequence from traditional harmony and, from there, we
formalize the concept of tonal sequence. We achieve this through a recursive function inspired
by Kripke Semantics ([8, pp. 83–94], [1, pp. viii–xi]) and Model Checking ([3, pp. 1–28]). Some
consequences directly associated with these concepts are:

• We have developed an unprecedented formalism for identifying tonal progressions.
• Because it is a formalism similar to propositional logic in the syntactic part, and similar to

Kripke’s structure2 in the semantic part, it is immediately convertible into an algorithm.
• We demonstrate that the proposed formalism is correct and complete in relation to the AHO

formalism for detecting tonal harmonies based on context-free grammar ([7, p. 87–88]).

2A sophisticated example of applying Kripke structures in Game Theory can be found in [9, pp. 60–182].
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III. Our proposal

To expose our idea, let us return to situation 1) in Section I (identification of a harmonic progres-
sion), and note that the chords in common with the two sub-sequences merge into one. To explain
the role played by the non-diatonic chord A7 in the sequence [Em - A7 - Dm - G - C], we imagine
that it is, indeed, two sequences [Em - A7 - Dm] and [Dm - G - C]; and that both are chained
together motivated by the presence of the common chord Dm. Note that the chords in common
with the two subsequences merged together. This phenomenon occurs in natural language, in
phonetics, and is called crase. In situation 2) in Section I, there is an ambiguity with respect to
the second chord, which can be also interpreted as an Am6/E. These two types of solution are
included in the formalism that we propose because what we are modelling are not sequences of
chords but, rather, sequences of tonal functions.

IV. The proposed solution

In this work, we developed a formal system that performs the tonal harmonic analysis of musical
pieces. The analysis is twofold: the conclusion about tonalness and the explanation how it was
formed. This system produces a harmonic analysis from the chord sequence of a musical piece,
identifying the key of the piece, its musical cadences, and the role of each chord in the cadences.

V. Formalization

i. Background

Model Check ([2, pp. 49—58]) is a procedure in which a semantic structure serves as a model
representing a system. In addition, there is a specification that you would like the system to
respect, any property that this system could have. Moreover, you have an automatic device called
"Model Check Tool", an automatic tool that responds positively if that system has that property.

From a technical point of view, it answers whether that formal model respects the specification
which is also written in a formal language. Model Check gives an answer "yes" if that model
satisfies that specification.

Here we subvert this idea. The specifications, which are expressions of the formal language,
for us, represent an object. That object will have a certain property. For us the model continues
to represent the system, in the same way. However, instead of testing whether the system has a
property, we are going to test whether that property is actually recognized by the system.

For us the model is the ruler and the specification is up to us. In this work here, in particular,
the model represents the tonal system while the formal specification represents sequences of
candidate chords for tonal harmonic progressions.

ii. Language

The syntax of our formal language consists of an alphabet formed by chord symbols considered
as atomic constituents on which we abstract the details and consider them correctly written, and
by a single rule of formation, the concatenation of these symbols.

iii. Semantics

We established three basic (primary) tonal sequences ([4, pp. 19–233]), formed as follows:
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Definition 1 (Basic tonal sequences). Basic tonal sequences show one of these formats:

• Basic sequence 1: The dominant function, followed by the tonic function;
• Basic sequence 2: The subdominant function, followed by the tonic function;
• Basic sequence 3: The subdominant function, followed by the dominant function, followed by the

tonic function.

Example 1 (Basic tonal sequences). For example, in the C major key, we have:

• Basic sequence 1: [G - C] or [B◦ - C].
• Basic sequence 2: [F - C] or [Dm - C].
• Basic sequence 3: [F - G - C] or [Dm - G7 - C].

iv. Formation rules

Three different ways of grouping sequences are possible: by juxtaposition, by elision, and by crase.
In the juxtaposition, two strings are joined only by concatenation; in the elision and in the crase there
is a collapse between the sequences: one of the two sequences loses a component. More formally:

Definition 2 (Chaining rules). Let s = 〈s1, s2, ..., sn〉 and r = 〈r1, r2, ..., rm〉 be sequences.

• The juxtaposition between them produces the sequence 〈s1, s2, ..., sn, r1, r2, ..., rm〉;
• The crase between them produces the sequence 〈s1, s2, ..., sn, r2, ..., rm〉, if sn = r1;
• The elision between them produces the sequence r = 〈s1, s2, ..., s(n−1), r1, r2, ..., rm〉 if sn ≡ r1.

Note that the crase requires equality between the extreme elements of the strings while the
elision requires only equivalence. These two concepts are established by extension in formal
language. For example, the equivalence between two points in the sequence can be defined as
follows: P ≡ Q when, for all label function L ∈ L and all paths π in a given structure K, there is

P ∈ L(πi) if and only if Q ∈ L(πi). (1)

In musical terms, if in the context of a key (L), both chords (points P and Q in a path) perform the
same tonal function.

Example 2 (Chaining rules). We have that:

• Juxtaposition: [G - C] and [B◦ - C] produces the sequence [G - C - B - B◦ - C].
• Crase: [Em - A7 - Dm] and [Dm - G - C] produces the sequence [Em - A7 - Dm - G - C].
• Elision: [Em - A7 - F6] and [Dm - G - C] produces the sequence [Em - A7 - Dm - G - C].

v. Structure and Representation

To model the idea of sequence, the states represent the elements with which the sequences are built.
Relations between states represent the concatenation between the elements. The displacement
between states obeying the dictates of accessibility relations, shapes the sequences.

To formally check out if they are indeed tonal sequences, one imagines each point of the
sequence as a state3. Those states, which form sequences, are interconnected by accessibility
relationships, and the path4 between these states is used as a representation of linear sequences.
The states are characterized by a label function that denotes their meaning. The following Kripke
framework provides the necessary formalism.

3Each state is formally a node of a graph and represents a tonal function.
4The concept of path will be defined later in this work (Definition 4).
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Definition 3 (Kripke Structure). A Kripke structure, K =
〈
S, S0, SF, R, L

〉
, is defined by:

• A non-empty set S of states;
• A set S0 ⊆ S of initial states;
• A set SF ⊆ S of final states;
• A total relation R ⊆ S × S, i.e., for every state s ∈ S there is a state s′ ∈ S, such that
〈s, s′〉 ∈ R.

• A collection L of label functions Li : S → Π, where Π is the set of all chords. The label
function assigns to each state a chord symbol.

Example 3 shows an instance of Definition 3 with only 3 label functions:

Example 3. [Kripke Structure] Example of a Kripke structure K = 〈S, S0, SF, R, L〉, where

• S = {s f , sg, sc}.
• S0 = {s f , sg}.
• SF = {sc}.
• 〈s f , sc〉 ∈ R, 〈sg, sc〉 ∈ R, and 〈s f , sg〉 ∈ R.
• L = {L1, L2, L3} where

L1(sc) = {C}, L1(s f ) = {F}, L1(sg) = {G},
L2(sc) = {Am}, L2(s f ) = {Bm}, L2(sg) = {E7},
L3(sc) = {Cm}, L3(s f ) = {D7

5[}, L3(sg) = {G7, B◦}.
(2)

In Example 3, Π = {C, F, G, Am, Bm, E7, Cm, D7
5[, G7, B◦} is a set of chord symbols; the L1

function associates the sc state with a single chord symbol, the C symbol, and this means that in
the key represented by the L1 function, all other chord symbols are prohibited in this state, only L1
is accepted. Note that the L3 function associates with the state, sg, both chord symbols, G7 and B◦.

Figure 2 shows the K∗ structure with nodes labeled by the L1 label function.

sc C

s fF sg G

Figure 2: Structure K∗ labeled by L1.

The labeling of the K∗ structure by the label functions L2 and L3 is illustrated in the Figures 3
and 4.

sc Am

s fB sg E7

Figure 3: K∗ structure labeled by L2.

sc Cm

s fD7
5[

sg {G7; B◦}

Figure 4: K∗ structure labeled by L3.

Note that the multiple labelling in K∗ allows an interpretation of "worlds of structures" ,where
each world represents a possible key. The accessibility relationship between states determine
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possible displacements over a Kripke structure. A series of two-by-two accessible states defines a
path over the structure:

Definition 4 (Path). A path in a Kripke structure from a state s ∈ S is defined by:

• A sequence π = s0, s1, ..., sn such that s = s0 and ∀k ∈ {0, 1, ..., n} , 〈sk, sk+1〉 ∈ R;
• A path starting in the s state is said to be an s-path;
• The state sk of path π is notated by πk;
• The prefix s0, s1, ..., sk of π is notated π0,k;
• The suffix sk, sk+1, ..., sn of π is notated πk,n.

Example 4. [Paths in a Kripke Structure] In the structure of Example 3, from the state s f we
have the following paths: πA = [s f , sg, sc] and πB = [s f , sc]; from the sc state we have the path:
πC = [sg, sc]. A succession of arrows represents a path in the graph.

Let Π be a set of chord symbols and P a chord symbol in Π. Let K = 〈S, S0, SF, R, L〉 be a
Kripke structure and π a path of the K structure. Finally, let φ be a formal expression. We define
now when K satisfies φ on the path π, denoted by K |=π φ:

Definition 5 (Satisfaction). Let K = 〈S, S0, SF, R, L〉 be a Kripke structure, π and π′ be paths in K,
L and L′ be label functions in K and φ a formal expression. We say that K satisfies φ when:

K, L |=π P ⇐⇒ P ∈ L(π0) (3)

K, L |=π (Pφ) ⇐⇒ K, L |=π P and (K, L |= π1,nφ or K, L |=π′ φ) (4)

K, L |=π (Pφ) ⇐⇒ K, L |=π0 P and K, L′ |=π′0
P and K, L′ |=π′1,n

φ (5)

An expression is said to be satisfied if it is read entirely, until the last of its chord symbols
without resulting in error5.

We assume a function of labels for each possible key, assigning the chords that perform the
tonic function to the sc state, those who fulfills the function of dominant to the state sg, and those
who fulfill the function of subdominant to the state s f .

VI. Examples of identifying tonal progressions

The sequence of triads will be interpreted in reverse, s0 being the last triad of harmony. The
following are examples of satisfaction of sequences whose formation took place in different ways.
In them, satisfaction occurs according to the definition 5 in view of the structure of example 3,
labeled, each time, with the proper label function.

In the following examples, we will use the next label functions that will be numbered to
facilitate exposure

L1(sc) = {C, Am}, L(s f ) = {F, Dm} and L(sg) = {G7, B◦} (6)

L5(sc) = {F, Dm}, L(s f ) = {B[, Gm} and L(sg) = {C7, E◦} (7)

L10(sc) = {A, F]m}, L(s f ) = {D, Bm} and L(sg) = {E7, G]◦} (8)

We are going to study three chord sequences: [B[ - C - F], [G - C - F - G - C] and [G - C - B[ - C
- F - G - C]. The third example exposes the basic procedure for identifying modulations ([4, ppd.
169-280]).

5We say that K is a model for φ.
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Let φ be a chord sequence, K = 〈S, S0, SF, R, L〉 be a Kripke structure and π = [s f , sg, cc] be a
path in K.

Example 5 ([B[ - C - F] – Perfect cadence in the key of F major). The sequence of triads will be read
in reverse: [F - C - B[]. We want to show that K |=π F(CB[). To Show that K |=π FCB[, we have,
by Equation 4 in Definition 5:

K |=π FCB[ ⇐⇒ F ∈ L(π0) and K |=π1,2 CB[. (9)

Taking L = L5, and π = πA we have F ∈ L(πA0). Let’s show that K |=π1,n CB[, by Equation 4 in
Definition 5:

K |=π1,n CB[ ⇐⇒ C ∈ L5(π1) and K |=π2,n B[. (10)

Taking again L = L5, we have C ∈ L5(πA1). Let’s show that K |=π2,2 B[, by Equation 3 in
Definition 5:

K |=π2,2 B[ ⇐⇒ B[ ∈ L(π2). (11)

Taking again L = L5, we have B[ ∈ L5(π2).
There is a "B flat major" interpretation for L, i.e., L5 which, together with the "perfect cadence"

path πA, recognize the sentence FCB[ as a tonal progression. The recursive dynamics of Definition
5 takes that interpretation and recognize the sequence FCB[ as a tonal progression.

Example 6 ([(GC)F]GC)] – Dominant cadence followed by a perfect cadence in the key of F major).
The sequence of triads will be read in reverse: CGFCG. We want to show that K |=π C (G [F (C G)]).
To show that K |=π C (G [F (C G)]), we have, by Equation 4 in Definition 5:

K |=π C (G [F (C G)]) ⇐⇒ C ∈ L(π0) and K |=π1,n G[F(CG)]. (12)

Taking L = L1 and π = πA, we have C ∈ L(πA0). Let’s show that K |=π1,n G[F (C G)], by
Equation 4 in Definition 5:

K |=π1,n G[F(CG)] ⇐⇒ G ∈ L1(π1) and K |=π2,n [F(CG)]. (13)

Taking again L = L5, we have G ∈ L1(πA1). Let’s show that K |=π2,n [F(CG)], by Equation 4 in
Definition 5:

K |=π1,n [F(CG)] ⇐⇒ F ∈ L1(π2) and K, L∗ |=π CG. (14)

Taking again L = L1, we have F ∈ L1(πA2). Let’s show that K, L∗ |=π CG, by Equation 4 in
Definition 5:

K, L∗ |=π CG ⇐⇒ C ∈ L∗(π0) and K, L∗ |=π1,n G. (15)

Taking again L∗ = L1, and π = πC, we have C ∈ L1(πC0). Let’s show that K, L∗ |=π1,n G, by
Equation 3 in Definition 5:

K, L∗ |=π1,n G ⇐⇒ G ∈ L∗(π1). (16)

Taking again L∗ = L1 and π = πC, we have G ∈ L∗(π1).
There are a "B flat major" interpretation for L, i.e., L5 which, together with the "perfect cadence"

path πA, recognize the sentence FGC as a tonal progression. There is also another "B flat major"
interpretation for L, i.e., L1 which, together with the plagal cadence path πC, recognize the sentence
GC as a tonal progression. The recursive dynamics of Definition 5 take those two interpretations
and recognize the entire sequence CGFCG as a tonal progression.
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Example 7 ([CG7DmA7E7Bm] – Progression with diatonic and non-diatonics chords in C major).
The sequence of triads will be read in reverse: we want to show that K, L |=π C, G7, Dm, A7, E7, Bm.
By Equation 4 in Definition 5 this happens if, and only if, we have:

K, L |=π C G7Dm(A7E7Bm) ⇐⇒ C ∈ L(π0) and K, L |=π1.n G7Dm(A7E7Bm). (17)

Taking L = L1 and π = πA, we have C ∈ L1(πA0). Let’s show that K, L |=π1.n G7Dm(A7{E7Bm}),
by Equation 4 in Definition 5:

K, L |=π1.n G7Dm(A7E7Bm) ⇐⇒ G7 ∈ L(π1,n) and K, L |=π2,n Dm(A7E7Bm). (18)

Taking L = L1 and π = πA, we have G ∈ L1(πA1). Let’s show that K, L |=π2,n Dm(A7{E7Bm}),
by Equation 5 if Definition 5:

K, L |=π1.n Dm(A7E7Bm) ⇐⇒ Dm ∈ L(π2,n) and Dm ∈ L′(π′0) and K, L′ |=π1.n A7E7Bm. (19)

Taking again L = L1, and π = πA, we have Dm ∈ L1(πA2). Taking L′ = L5 and π′ = πA, we have
Dm ∈ L5(π

′
A0
). Let’s show that K, L′ |=π′1.n

A7E7Bm, by Equation 5 in 5:

K, L′ |=π′1.n
A7E7Bm iff A7 ∈ L′(π′1) and A7 ∈ L′′(π∗0 ) and K, L′′ |=π∗1,n

E7Bm. (20)

Taking again L′ = L5 and π′ = πA, we have A7 ∈ L5(πA1). Taking again L′′ = L10, and π∗ = πA,
we have A7 ∈ L10(π

∗
A0
). Let’s show that K, L′′ |=π∗1,n

E7Bm, by Equation 4 in Definition 5:

K, L′′ |=π∗1,n
E7Bm ⇐⇒ E7 ∈ L′′(π∗1,n) and K, L′′ |=π∗2,n

Bm. (21)

Taking again L′′ = L10, and π∗ = πA, we have E7 ∈ L10(π
∗
A1
). Let’s show that K, L′′ |=π∗2,n

Bm, by
Equation 3 in Definition 5:

K, L′′ |=π∗2,n
Bm ⇐⇒ Bm ∈ L′′(π∗2 ). (22)

Taking L′′ = L10 and π∗ = πA, we have Bm ∈ L′′(π∗2 ).
In this Example we take the "C major" label function L1, the "D minor" label function L5 and

the "A major" label function L10 (see equations 6, 7, and 8). We also take the paths π, π′, and = π∗

all equal to πA ("perfect cadences").
The recursive dynamics of Definition 5 take those interpretations and recognize the entire

sequence CGFCB[CG as a tonal progression.

VII. Conclusions and further work

We prove the correctness and completeness between this system and AHO (context-free) grammar
developed in [7, p. 32–77]. A body of 100 works between classical music and Brazilian popular
music was used as a test. The formalization employed naturally provides the basis for immediate
computational implementation. The methodology employed in this work proved satisfactory in
identifying tonal harmonic sequences, showing that a minimal structure can synthesize the idea of
tonal harmonic progression.
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Abstract: This paper is a conceptual counterpart of the technical developments of gesture theory. We base
all our discussion on Saint-Victor’s definition of gesture. First, we unfold it to a philosophical reflection
that could establish a dialogue between semiotic and pre-semiotic approaches to musical gestures, thanks
to Peirce’s ideas. Then we explain how the philosophical definition becomes a mathematical one, and
provide reflections on important concepts involved in gesture theory, some possible relations to other
branches of mathematics and mathematical music theory, and several open and closed questions. We include
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To the reader

The following lines try to explain some concepts in gesture theory by means of general ideas,
motivations, and musical examples. We do not pretend that the reader understands all
mathematical details. Regarding the technical concepts that we consider as essential to

understand the big picture, we include a glossary, to which the reader will be directed after
clicking on a red term, like topological gesture. However, it is desirable that the reader has a
minimum acquaintance with category theory [18, pp. 10-23]. On the other hand, we end each
example with the symbol ♣ for organization.
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I. Some motivations and antecedents

The first version of The Topos of Music [28] was an enterprise that achieved a framework for
musicology based on topos theory, including a theory of performance and a very complete account
of the mathematical structures present in music. Soon after this accomplishment, Mazzola became
aware that his own activity as a free jazz pianist had little to do with the structures and procedures
described in his monograph; see [23, Chapter 24]. Gestures, rather than formulas, were the essence
of his performance. Certainly, free jazz improvisation is mainly determined by the movements of
the body’s limbs, that is, by a dancing of the body, the classical structures of Western music being
secondary and auxiliary. Therefore, a rigorous reflection on gestures was necessary, and not only
in the case of musical improvisation, but in music in general, since all its power and intensity
relies in its realization in bodily terms, even in the Western classical tradition.

Indeed, the task of studying gestures in music is not new and has received considerable
attention from other musicologists in recent times, though following different approaches to
formulate a suitable conceptualization of musical gestures. In fact, these studies are far from
a unified treatment of the concept of gesture. On the one hand, some authors [13, Chapter 1]
emphasize the need of content, meaning, and signification in the definition of gesture arguing
that the understanding of a gesture as a mere movement of the body can lead to an ambiguity
regarding whether this movement expresses a musical intention or not, like in the case of the
gesture of a listener in response to music [13, § 1.2.4]. On the other hand, studies like [10] have an
inclination for more flexible definitions of gesture, in which the notion of meaning or signification
need not be included:

"We consider that the word gesture (or the French equivalent geste) necessarily makes
reference to a human being and to its body behaviour—whether they be useful or not,
significant or meaningless, expressive or inexpressive, conscious or not, intentional
or automatic/reflex, completely controlled or not, applied or not to a physical object,
effective or ineffective, or suggested." [10, p. 73]

However, most of definitions seem to have a common point: a gesture is the movement of the
body (plus several nuances).

II. Saint-Victor’s definition and its pragmaticist development

The point of departure for all, both formal and informal, developments discussed in this paper, is
the philosophical definition of gesture given by Hugues de Saint-Victor in the chapter XII of [11]:
"Gesture is the movement and configuration of the body’s limbs, towards an action and having a
modality."1

In Section III, we comment in detail how it is possible to translate this definition into mathemat-
ical terms, but before we explore its pragmaticist essence, as pointed out in [37]. More precisely, we
will apply Peirce’s phaneroscopy and see how a semeiotic framework, which is not presupposed
in the definition but a consequence of certain particularities of Western music, naturally emerges
after triadic elaboration in the phaneron. However, this does not mean that all gradations of the
definition in the phaneron are semiotic.

1Our translation of the original quote: "Gestus est motus et figuratio membrorum corporis, ad omnen agendi et habendi modum."
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i. Peirce’s phaneroscopy

According to Peirce, phaneroscopy, or phenomenology, is the study or description of the phaneron
defined as the complete collective that is present to the mind; see [36, Chapter 3] and [33, p. 74].
Phaneroscopy includes the study of the cenopythagorean categories, the three modes of being, or the
tints occurring in phenomena. We use the synthesis of the three categories made in [36, Chapter 3],
which relates these to keywords as follows:

Firstness: immediacy, first impression, freshness, sensation, unary predicate, monad, chance,
possibility.
Secondness: action-reaction, effect, resistance, alterity, binary relation.
Thirdness: mediation, order, law, continuity, knowledge, ternary relation, triad, generality,
necessity.

In what follows, we regard these categories as the three fundamental modes from which we
progressively stratify Saint-Victor’s definition, and use them by recursion.

ii. Movement and aim

The fundamental observation of Fernando Zalamea, in the introduction to [37], that Saint-Victor’s
definition of gesture as "the movement and configuration of the body’s limbs with an aim" is fully
pragmaticist in Peirce’s sense, can initially be interpreted as the fact that it is related to thirdness.
If a gesture is the movement and configuration of the body with an aim, then it is by definition a
mediation between two states of the body; a former state or beginning, and a second state or aim.
In turn, the movement implies continuity and it is an essential manifestation of thirdness, so a
gesture is marked by thirdness.

As the beginning of a gesture, a first state of the body is firstness. As the end of a gesture,
the aim is secondness. The aim necessarily refers to a first state of the body, so it has a dyadic
character. According to [33, p. 76]: "The beginning is first, the end second, the middle third. The
end is second, the means third. The thread of life is a third; the fate that snips it, its second." The
modalities of this thirdness will lead to semeiotics.

iii. Modality

Now we add to our discussion a new term from Saint-Victor’s definition, namely modality, which
is a new trace of pragmaticism. We may relate it to the three categories of Peirce again to give
modal sub-determinations of gestures.

For simplicity, let us consider the instance of piano performance. There is a certain tension
between the elasticity of the performer’s body and the stability of the instrument, which is
mediated by the gesture of the interpreter. Three initial modes of the gesture regarding the piano
can be considered.

1. A raw movement, potential but not reactive. Not all movements of the performer produce an
effective touch of the piano, and hence sounds. Precisely, we refer to those auxiliary gestures in a
state of firstness that suggest moods, directions, waves, or continuities, and that are spontaneous
and immediate. They are a bodily envelope for sound. Here we recall the famous hums and
envelopes of Glenn Gould and Keith Jarrett.

2. The movement that effectively acts on the instrument and produces sounds. This is the active-
reactive movement of the body. Besides touch, or the active character of the movement, and a first
reaction, or the feel of the instrument, there is the main reaction of that touch of the instrument:
sound. When the body touches the instrument, it vibrates and this vibration, when propagates
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Figure 1: Diagram describing the active-reactive movement of the body.

through the thickness of air and space, is the sound itself. We picture this situation in the diagram
of Figure 1. Here, we remember the violent chords from Bartók’s Allegro Barbaro or Scriabin’s
Study Op. 8 No. 12.

3. Coordination-performance: the movement mediates between the touch of the instrument and the
sounds that are produced. A first mediating instance is hearing, or the reactive action of the sound
on the body with a certain degree of consciousness.2 The body is embedded in sound and is
enveloped by it, but it reverberates inside the body, makes it vibrate, and, in particular, it affects
the brain. Hearing and feeling the sound and the instrument are first instances of interaction and
communication in the performance, and allow the performers to take their own decisions about
how their movement should become so as to have the appropriate modality when coordinating
touch and sound. These modalities are the particularities of each performer; their modes of being
regarding the instrument. This opens up a new opportunity to apply the three Peircean modes.

iv. Natural emergence of semeiotics

In a vague way, three further subdeterminations of coordination-performance can be distinguished,
according to the Peircean categories. In this case, modality is introduced in the way that the sound
is produced: a spontaneous one, one given by the opposition between forces, or one given by a
law or design.

3.1. Free improvisation. Probably related to a strong back-and-forth between conscious and
subconscious states of the body-mind, free improvisation is spontaneous and is hardly based on
previous references or on limitations of musical resources (space, techniques, instrumentation).
This is fully exemplified by Mazzola’s vision of his activity as a free jazz pianist as one related
to immediate gestures rather than mediating formulas. As in the mathematical notion of free
object [17, Section III.1], in free improvisation the structure is not totally absent, but is skeletal.
According to [22, p. 7], free jazz musicians generate their music partaking in a dynamic and
sophisticated game, whose rules are incessantly generated and/or recycled, not prescribed, and
negotiating what they are going to play. The skeletal configuration, related to these rules, allows a
high capacity of transformation and internal movement (free objects have special properties of
projection on the objects of the same category), which tends to multiplicity and freshness.

3.2. Thematic improvisation. Related to the dialectics facts/concepts and visible/non-visible, it is the
improvisation that consciously uses a determined system of musical techniques or concepts. If we
are located within jazz standards and academic traditions of music, we can define improvisation
as the live (while playing) creation with a wide knowledge of musical techniques (harmony,
counterpoint, composition).

3.3. Mediated interpretation. Perhaps the most important mediation in music performance is

2Following Merleau-Ponty’s late ideas [30], this definition is insufficient since perception cannot be reduced to the
action of the perceived on the perceiver. Moreover, the introduction of consciousness is also problematic since its definition
is far from being clear. However, this first approximation is useful for relating musical gestures and Peirce’s ideas.
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Figure 2: The triad of Western performance as a Peirce’s sign.

vision, whether actual or as an image in the mind. Interpretation, in traditional sense, takes
place according to the design of a score. At this point of considerable triadic elaboration, the
fundamental sign of the following discussion emerges in a natural way. The sign is Mazzola’s
triad sounds/scores/gestures of Western musical performance, which we study in the following
section.

v. Semeiotics and Mazzola’s triad of Western musical performance

According to Peirce, knowledge occurs through signs.3 A sign, in Peirce’s sense, consists of an
object O (or second 2), a representamen R (or first 1), and a quasi-mind (or third 3), such that the
representamen replaces the object for the quasi-mind, in which the representamen is transformed
into the interpretant I of the sign. The quasi-mind need not be related to a human mind; rather it
corresponds to the interpretation context where the semeiosis, that is, the transformation of the
representamen into the interpretant, occurs. Similarly, the terms O, R, and I are quite flexible: they
can be things, concepts or even signs, giving place to endless semeiosis, which refers to the infinite
iteration of signs.

The sign sounds/scores/gestures of Western musical performance, introduced in Section iv, can
initially be schematized by means of Figure 2. There, O is musical sounds, R is scores, and we regard
the body as the quasi-mind (3) where the scores are transformed into gestures (I).

The exhibition of the sign is only the point of departure for the process of endless semeiosis.
Certainly, formulas and gestures are different representations of sounds,4 and more dramatically,
the terms O, R, and I are transmutations of each other: scores produce gestures in the body, which
produce new sounds by means of the interaction with an instrument, which in turn produce
scores in an appropriate (quasi-)mind (think of the process of transcription of a musical piece,
or some process of codification of sound), and so on, in an endless spiral. Within this logic of
endless semeiosis, there are more possibilities. First, the musical sounds considered can also be
representations of previous concepts; in fact, musical ideas can be related to previous ones or even
to non-musical ideas like those of poetry or some kind of text. Also, scores can be the interpretant
of previous ideas that represent musical sounds; for example, motives, or the subjects on which
fugues are developed.

3According to one of the reviewers: "This is exactly what Mazzola’s gesture theory questions, and this is also congruent
with the approach of important French diagrammatic philosophers, such as Alunni and Châtelet." However, we do not see
a marked opposition of these philosophers with the more general Peirce’s phaneroscopy (Section i), since both knowledge
and gesture are thirdness, and hence are strongly related. Thus, in the same way as we located gestures (Section ii) and
musical semeiotics (Section iv, Paragraph 3.3) in the phaneron, we might pursue French gestural ideas (also including
Merleau-Ponty, Cavaillès, and Desanti).

4Although the main point of musical gesture theory is that gestures generate sounds, they can also be representations
of sounds, like a dancer’s gestures in response to music.
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Figure 3: A gesture in a topological space X shaped by a digraph Γ.

III. The hypergestural approach

Saint-Victor’s definition5 is also the inspiration for mathematical gesture theory, as discussed in
what follows. In this section, we present Mazzola’s initial mathematical insights.

i. Configuration, body, and space

Based on Saint-Victor’s definition, Mazzola and Andreatta give the first mathematical definition6

of gesture, namely that of topological gesture, as a diagram of curves in a topological space X; see
Figure 3. The shape of the gesture is given by a digraph Γ, which consists of arrows and vertices
suitably connected, and the diagram incarnates the arrows as continuous paths in X and the
vertices as points in the space, preserving the configuration of Γ.

In terms of Saint-Victor’s definition, the digraph corresponds to the configuration of the body’s
limbs and the topological space corresponds to the space-time where the movement of the body
occurs. The absence of a load of significance is deliberate in this definition and corresponds to
Mazzola’s presemiotic approach. A gesture has an existence in its own right, regardless of whether
or not it conveys any meaning, as in the cases of dancing or free improvisation. However, as
we observed before (Section iv, Paragraph 3.3), the mediation of scores in performance leads to
semeiotics.

Example 1. We can define gestures in musically meaningful spaces. Let us interpret the Euclidean
space R2 as the score space, where a pair (t, p) denotes a sound event with pitch p that occurs at
the time t. We choose the unities according to the situation. In the following discussion we use the
quarter duration as time unity and identify the subset Z of R with the diatonic scale indicated
by the key involved. For instance, the pair (1/2, 0) denotes the pitch A4 occurring after an eight
duration.

Consider the first phrase of Mozart’s Piano Sonata7 K. 331. The melodic contour can be
regarded as a gesture in R2, see Figure 4. As we explain in Examples 4 and 5, the melodic contour
plays an important role in Mozart’s variations of this phrase since they can be regarded as the
result of transforming the original gesture with homotopies and sheaves. ♣

5This definition was used by Jean-Claude Schmitt in [35] before the mathematical definition in Section i was formulated
by Mazzola and Andreatta.

6This definition appeared for the first time in [27]. Other detailed presentations can be found in [3, Section 1.1] and [4].
7The authors prepared the excerpts from [32] (theme and variation 1) and the original manuscript (variation 4) at

https://mozart.oszk.hu/.
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Figure 4: The first phrase in Mozart’s K. 331 as a gesture.

ii. Hypergestures

Nevertheless, it is not clear why this definition models the human body. For example, the contour
gesture in Figure 4 is bi-dimensional. Mazzola’s solution to this problem consists in constructing
hypergestures, which are just gestures of gestures. If we want a gesture of gestures, then our
definition requires the construction of a space of gestures replacing X. This construction is one of
the central concepts of gesture theory. In fact, we can equip the set of all Γ-gestures in X with a
natural topology, in the sense that it is a categorical construction with a universal property. Thus,
once we have the space of gestures Γ@X, given another digraph Γ′, we can consider Γ′-gestures in
Γ@X and the space of hypergestures Γ′@Γ@X. This construction leads to models of the human
body.8

IV. Gestures and the notion of space

Traditionally, we model space-time with the Euclidean space Rn, for instance, in classical mechanics.
However, it is worth to ask whether space and body, which is embedded in space, are decomposable
in terms of points, like Rn or any topological space.

i. Locales

Locales are generalized topological spaces9 whose primitive notion is that of open, regardless
of whether or not the latter has points. This is more congruent with the fact that we tend to
experience space and time in terms of neighborhoods and intervals, and that our bodies are more
the result of the synergy of organs and limbs rather than aggregates of atoms.

Since locales need not have points, which are possible incarnations of the vertices of a digraph,
it is not reasonable to define an individual gesture in a locale. Instead, we consider locales of gestures
that are analogous to spaces of gestures, and can be computed via the categorical constructions of
limits and exponentials. There are non-trivial locales of gestures with no points at all, as shown in
the following example.

Example 2. In contrast to the idealized model in Example 1, a musical sound cannot exist in a
time instant —instead it is a vibration that needs an interval of time to propagate. Consider the
topology on R whose basic opens are all half-closed intervals of the forms [a, b) and denote the
associated topological space by H, which is Hausdorff. We interpret these intervals as those time
spans where a sound usually exists.

8Drawings of approximations to the human body by means of hypergestures are in [27, p. 33]. We do not include
similar figures here since, in Section V, we present an alternative and more natural model of the human body based on
simplicial sets.

9In fact, the wide class of sober spaces, which includes Hausdorff and have the property that we do not loose information
by replacing them by their lattices of opens, is embedded in the category of locales.
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Figure 5: An element of the locale of all opens in H whose closures coincide with their interiors, also called regular
opens (center), which can interpreted as time spans with onset where sound can exist. A non-regular open
(right-hand side). An element in a typical locale of gestures (paths), which consists of an indecomposable
family of gestures, depicted as pointed curves (left-hand side).

We consider the locale L of all opens in H coinciding with the interior of their closures, where
the join and meet is given by the interior of the closure of the union and intersection in H,
respectively. In this case, half-closed intervals are in L, whereas open intervals of the form (a, b),
which have no onset, are not—see Figure 5. Also, this locale is an example of locale with no points
at all10 and can be regarded as a non-atomic model of time reconstructed from the existence of
sound.

On the other hand, we can consider the exponential locale of paths LO(I), which is just the
locale of gestures on L for the arrow digraph • → •. It could be interpreted as a locale of
gestures on time, induced by gestures on space-time. This locale has no points again,11 but has
many elements representing indecomposable families of gestures. Indeed, the locale LO(I) is
generated [16, p. 320] by the symbols of the form W(u, a), where u ∈ O(I) and a ∈ L, which
represent families of paths, akin to the generators of a compact-open topology. For example,
W(I, a) represents the family of paths whose image is contained in a; see Figure 5. ♣

The fact that locales need not have points and their limits and exponentials are difficult to
compute could be unattractive. Certainly, we are used to thinking analytically, in terms of points,
but it is a profound question whether locales are more appropriate to model space-time and the
human body than topological spaces.

ii. Grothendieck topoi

Nevertheless, locales are a bridge between topological spaces and the broader notion of space,
namely Grothendieck topoi, which is central in mathematics. Grothendieck topologies are defined in
categories and their primitive notion is that of covering, instead of those of point or neighborhood.
In a sort of yoga, Grothendieck replaces a site (category with a Grothendieck topology) by its
category of sheaves, the latter called Grothendieck topos, which has all limits and colimits, in much
the same way as a topology is suitably closed under intersections and unions. We have accessed
the continuous realm from the discrete in an astonishing way.12

The potential of recovering the substantial movement behind functions and, more generally,
morphisms, was one of the essential features of gestures stressed by Mazzola in his first papers on
gestures [27, 24]. For example, the linear transformation of the plane associated with a rotation
matrix only takes into account the beginning and end but not the intermediate movement, which
is a gesture. This gave rise to the question whether there is an analogue of the Yoneda embedding
that allows to represent a given category in terms of gestures. The Yoneda embedding naturally

10See [18, p. 489]. An alternative proof can follow the lines of [3, p. 20].
11In fact, there is a homeomorphism [3, Proposition 2.4.2] pt(Γ@L) ∼= Γ@pt(L) and pt(L) = ∅, so pt(Γ@L) = ∅ whenever

Γ has at least a vertex, where pt assigns to each locale its space of points.
12A complementary discussion on the emergence of Grothendieck topologies and their relation to sheaves can be found

in Section VI.
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Figure 6: The Yoneda embedding in a Grothendieck topos of presheaves (left-hand side) and a possible gestural Yoneda
embedding (right-hand side).

represents a given category as a full subcategory of its associated category of presheaves, the latter
being a particular example of Grothendieck topos, since presheaves are sheaves for a certain trivial
Grothendieck topology. This means that the Yoneda embedding is already a representation in a
generalized space, so a possible gestural embedding could be refined thereof; see Figure 6.

For this reason, some authors embarked on the enterprise of defining gestures on Grothendieck
topoi [3, Chapter 4]. Once again, there can be no points, so, as locales taught us, the definition
of a gesture is not a reasonable approach. Instead, we define a Grothendieck topos of gestures,
but this definition has an important difference. The natural structure of the collection of all
Grothendieck topoi is not that of a category, but it is a 2-category,13 which also takes into account
the natural transformations between geometric morphisms (the analogues of continuous maps)
of Grothendieck topoi. Besides, the notion of limit, which is basic for constructing an object
of gestures, is not appropriate in this context, and rather we talk about bilimits. Consequently,
we define the Grothendieck topos of gestures as an appropriate bilimit. This renders the theory of
gestures on Grothendieck topoi very challenging in technical terms. For example, for profound
reasons, we can only ensure the existence of the Grothendieck topos of gestures if the digraph
involved is finite [3, Remark 4.2.3].

Up to now, we do not know whether this notion effectively helps solve the problem of the
gestural Yoneda embedding. However, the consideration of this level of generality was essential
in the development of a theory of gestures [3]. First, it led to consider the intermediate case of
locales, which is halfway between Grothendick topoi and topological spaces and concentrates the
spatiality of Grothendieck topoi. Second, it was useful for formulating a comprehensive definition
of gestures on objects of categories, by means of limits, and on objects of 2-categories, by means of
bilimits, without using points.

Next, we discuss Mazzola’s approach to the gestural Yoneda embedding problem.

iii. Topological categories

Another way of introducing topologies in categories corresponds to topological categories. A
topological category is a category such that their sets of objects and morphisms are topological

13Unlike other concepts in the Glossary, providing complete definitions of 2-category [17, Section XII.3], bilimit, and
exponential in 2-categories, which would take tens of pages, will not improve the intuition of the non-specialists on the
subject. It is enough to bear in mind the analogies topological space/Grothendieck topos, continuous function/geometric
morphism, limit/bilimit, and topological space of gestures/Grothendieck topos of gestures. We only include the discussion
to motivate the concepts and invite the reader to review [3, Section 4.2].
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spaces and all operations (domain, codomain, identity, composition) involved in the category
definition are continuous. Thus, topological categories mix point-set topology and categories.

Example 3. The score space in Example 1 can be regarded as a topological category. The objects
are the elements x ∈ R2, and the unique morphism from x to y is the triple (x, y, y− x), where
y− x is the vector difference. The third component y− x is the interval between the sound events
x and y. For example, the third component (1/2,−2) denotes a descending third that occurs
between two sound events separated by an eight time interval. The composition of two such
interval morphisms is given by the formula in Equation 1, and it corresponds to addition in the
intervallic components:

(y, z, z− y) ◦ (x, y, y− x) = (x, z, z− x), (1)

The topological space of objects is R2 with the usual topology, and the space of morphisms is a
subspace of R2 ×R2 ×R2 with the product topology. This category is actually a groupoid since its
morphisms are invertible, and mix the algebraic intervallic and topological structures of the score
space. ♣

The paper [24] proposed the existence of a bicategory of gestures, based on topological
categories, as a possible universe for the Yoneda embedding. However, the proposed embedding
was not full. We comment another proposed solution by Mazzola in Section VI.

Based on the original sketches [24], the complete definition of gestures on topological categories
is in [1] and [6], together with some additional developments of the theory. Regarding the
definition, the last paper studies the explicit topological category structure of the topological
category of gestures, including constructive examples—the explicit presentation of the morphisms
and topologies on morphisms and objects of the topological category of gestures were absent in [24,
Section 2.2]. On the other hand, the exponential presentation problem of a given topological category
of gestures, which relates it to a category of functors with domain the category of continuous paths
of a digraph, was initially addressed, but not solved, in [6]. This includes a complete description of
the topological structure of the mentioned category of continuous paths, which is a non-trivial
object that mediates between the discretion of categorical diagrams (linked to transformational
theory) and the continuity of gestures (linked to the performer’s body). In the following section we
discuss how abstract gestures are a conceptual unification between these discrete and continuous
worlds of mathematical music theory.

V. Abstract gestures and the simplicial approach

Though the immediate manifestation of gesturality that we perceive is linked to the human body
and space, in the following lines we try to explain why the notion of gesturality is not spatial in
essence. Mathematical details of this section are in [3, Chapter 3] and [7].

Diagrams in categories, which in a vague way can be considered as the diagrams that the
mathematicians draw in the blackboard in courses of abstract algebra or homological algebra,
are perhaps the most important non-spatial counterpart of bodily gestures. In turn, from a more
musical point of view, diagrams of musical transformations, for example, affine transformations
of musical modules, give rise to transformational theory, which studies the natural symmetries and
correspondences that occur in music, and has important applications in musical analysis [26].

The notion of abstract gestures just establishes a dialogue between bodily gestures and diagrams
in a natural and powerful way. Let us justify this strong assertion.

Both in topological gestures and diagrams in categories there is a common pattern. There is
a skeleton or shape that represents an abstract configuration, which incarnates in a particular
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Figure 7: A point, a path, a triangle, and a tetrahedron in a space X, which are singular n-simplices for n = 0, 1, 2, 3
(first row). An object, a morphism, a commutative triangle, and a commutative tetrahedron in a category C,
which are n-simplices of the nerve for n = 0, 1, 2, 3 (second row).

context. In the case of topological gestures, the skeleta incarnate as paths and points in a space
and, in the case of diagrams, skeleta become morphisms and objects in a category. Moreover, the
existence of hypergestures and the need of a suitable model of the movement and configuration
of the human body suggest that not only points and paths are important, but objects of higher
dimensions are.

Poincaré’s idea of studying a space by triangulation, leading to the concept of homology in a
further stage of development (Section VII), is the base of our approach. Certainly, the singular
complex of a space X codifies all triangular objects of all dimensions that can occur in X and
their main relations (common faces, collapses). More formally, it is the presheaf Top(∆(−), X)
on the simplicial category ∆, where ∆(−) is the standard simplex functor, which assigns to each
natural number n all continuous maps ∆n −→ X from the standard n-simplex to X, called singular
n-simplices; see Figure 7. The singular complex is a combinatorial object whose abstraction leads to
the idea of simplicial set, which is an abstract configuration of simplices (resembling singular ones)
suitably pasted. Formally, a simplicial set is a presheaf on ∆. With these formal tools, we define a
Σ-gesture in X as a natural transformation of simplicial sets from a simplicial set Σ, representing
the abstract configuration of the gesture, to Top(∆(−), X), representing the possible incarnations
in the space X. The natural transformation condition ensures that the relations that exist between
abstract simplices in Σ are preserved by their incarnations in X.

Following this definition, given a digraph Γ, it has a natural extension to a simplicial set Σ,
whose associated notion of gesture is essentially that given by Mazzola since there is a natural
bijection14 between the set of Γ-gestures (topological gestures) in X and that of Σ-gestures in
X, so the simplicial definition generalizes Mazzola’s one. However, our definition immediately
models the human body by taking a simplicial set Σ that triangulates it. Figure 8 (left-hand side)
reproduces a sculpture Σ by Xavier Veilhan, which models the human body by means of abstract
tetrahedra. A suitable Σ-shaped gesture in R3 is a human body, as shown in Figure 8.

From the categorical point of view, Grothendieck translated Poincaré’s idea into the concept of
nerve of a category. It codifies all possible strings of composable morphisms, their compositions
(faces), and their extensions by using identities (degeneracies). More formally, the nerve of
a category C is the presheaf N(C) on ∆ that assigns to each natural number n all strings of
composable morphisms in C of the form described in Equation 2:

C0
f1−→ C1

f2−→ . . . Cn−1
fn−→ Cn. (2)

14Moreover, there is a natural homeomorphism [3, Proposition 3.5.2] between the space of gestures (digraph case) Γ@X
and the space of gestures for simplicial sets S t Top(∆(−), X) defined below.
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Figure 8: A human body, represented by means of the Apollo Belvedere (right-hand side), can be regarded as a gesture
(natural transformation) shaped by a Veilhan’s sculpture (left-hand side).

Figure 9: A commutative square as a diagram shaped by a suitable simplicial set.

These strings, which are the n-simplices, can be regarded as abstract triangulations, as displayed
in Figure 7. In this case, the analogue of a gesture is a natural transformation from a simplicial
set Σ to the nerve, which sends vertices (0-simplices) and arrows (1-simplices) of Σ to objects and
morphism of C, the relations expressed by simplices of higher dimensions being translated into
different levels of commutativity relations. This analogue is just a (possibly) commutative diagram
in C; see Figure 9. In particular, when C is the category of modules on a commutative ring with
affine morphisms between them, which include the natural symmetries that occur in music like
transposition and inversion, we obtain the diagrams of transformational theory [26].

We thus conclude that the introduction of simplicial sets in the definition of gesture solves in a
simple and unified way, on the one hand, the problem of the higher-dimensional representation of
the human body in the topological world and, in the categorical world, the problem of considering
diagrams with possible commutativity relations for transformational theory.

We have discussed gestures in the categories of topological spaces, topological categories,
locales, categories, and Grothendieck topoi. This justifies a more comprehensive definition of
gestures. The notion that unifies all the previous manifestations is that of abstract gestures. We
define an object of gestures, shaped by a simplicial set, in a given category. In mathematical terms,
given a simplicial set Σ and a simplicial object S (presheaf on ∆ with values in a category E ), the
object of Σ-gestures with respect to S is the cotensor product Σ t S, which is an object of E , whenever
it exists. The most important features of this object are the following:

• As a cotensor product, it has an associated adjunction and a universal property. This means
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that it is a categorical concept that has an intrinsic naturality.
• It is the dual concept of that of tensor product, and more precisely, for the presence of the

simplicial category, it is the dual of the realization concept. In the case of topological spaces,
the latter is the geometric realization of a simplicial set Σ, which transforms the combinatorial
model Σ of a space into the space. Thus, the concept of gestures is the dual of realization.

• We do not define a gesture as a primitive notion, since the objects of the category E need not
have points, like locales.

• However, this definition includes the previous ones of individual topological gestures
and diagrams. Topological gestures are elements (points) of the space of gestures Σ t
Top(∆(−), X), where the singular complex is regarded as a presheaf whose values are
topological spaces (function spaces). Diagrams are objects (points) of the category of gestures
Σ t N(C), where the nerve is regarded as a presheaf whose values are categories (functor
categories).

Therefore, gesturality is not inherent to spaces, but can be found in any category.

VI. Sheaves of gestures

The profound notion of sheaf embraces the notions of number and magnitude. At the same time, it
unifies the visions of Galois and Riemann, as follows. On the one hand, the notion of scheme, a
suitable gluing of affine schemes (sheaves on the prime spectrum of a commutative and unitary
ring whose fibers are local rings), can be regarded as a generalization of that of algebraic variety
(number) in the line of Galois-Hilbert-Zariski. On the other hand, the notion of Grothendieck
topos, which is made up of sheaves that resemble the sheaf of germs of holomorphic functions in
complex analysis, can be regarded as a generalization of that of topological space (magnitude) in
the line of Riemann-Leray-Cartan. A great discovery of Grothendieck is that the notion of sheaf is
not inherent to topological spaces but it can be formulated in terms of coverings of morphisms in
any category, leading to Grothendieck topologies.

In Fernando Zalamea’s words, sheaves are the simplest mathematical structures that allow the
transit from the local to the global. Given a site, a sheaf is (informally) a correspondence assigning
to each object C of the category a set, whose elements are called sections over C, and to each
morphism a restriction function, in such a way that coherent families (under restriction) of sections
on the domains of morphisms of a covering of the Grothendieck topology glue together to form a
unique section. The main application of sheaves (in Grothendieck’s sense) to our discussion is that
gestures can be glued together to produce new ones, thus forming sheaves [3, Theorem 3.12.1]. In

mathematical terms, this means that the presheaf of gestures (−) t S :
(

∆̂
)op
−→ E obtained from

the object of gestures construction, where ∆̂ is the category of simplicial sets, is a sheaf for the
Grothendieck topology of epimorphic sieves.

We can interpret the sheaf of topological gestures as follows. If we have a cover of a skeleton
by skeleta that project exactly on it and a coherent family (indexed by the skeleta of the cover) of
gestures, then the family yields a unique gesture, built from the initial family. This is an endless
process that extends throughout all possible skeleta. We represent a fragment of the sheaf of
gestures by means of Figure 10.

Example 4. The construction of a global gesture from local ones can be observed in the fourth
variation in Mozart’s K. 331; see Figure 11. The melody is obtained by taking the harmonic tones
in the theme (Example 1 and Figure 4) and a melodic and rhythmic uniformization. Remarkably,
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Figure 10: The sheaf of gestures: local gestures that are compatible extend to global ones.

Figure 11: A global gesture in the fourth variation in Mozart’s K. 331 (middle) from local melodic gestures (top
and bottom). The harmonic tones are the black dots. We omit the digraphs, which are of the form
• → • · · · • → •, for simplicity.

the melodic fragments (gestures) in the top of each measure are coherently pasted (transposed by
an octave) to form a global gesture that accompanies the melody. ♣

Conversely, the definition of sheaves can be given in terms of cotensor products [3, Section 3.12].
Probably, this could express that a sheaf is made up from gestures: in fact, for each object of the
category, each covering of it, and each coherent family, a sheaf expresses a sort of movement of
individual sections (limbs), with the configuration given by the covering involved, an objective (to
form a section), and a modality (uniqueness of the section). In this way, sheaves can be related to
the human gestures of solidarity and will, which oppose chaos.

The existence of sheaves of gestures also has a philosophical interpretation because it gives a
precise mathematical proof of a previous intuition due to Cavaillès: the importance and possibility
of multiplication of gestures, their solidarity, and their analytic continuation in Riemann’s sense,
as basis of understanding. Recalling the recurrent reference to Cavaillès in Mazzola’s works [27]:
"Comprendre est attraper le geste et pouvoir continuer."

Presheaves of gestures or gestural presheaves [29, Section 62.7] were also used to give a version
of Yoneda lemma [29, Theorem 39] for gestures on topological categories. However, the result
gives an embedding of categorical digraphs (analogue to topological and localic digraphs) of
topological categories into gestural presheaves, which need not guarantee an embedding of
topological categories into gestural presheaves.

Finally, there is another interesting way of addressing the problem of the local/global in
gesture theory, namely the global gesture construction [29, Section 66.5] for gestures on topological
categories, which is analogue to the global composition concept [29, Section 66.1]. In this case we
give a cover of a digraph and a different gesture shaped by each member of the cover. But in this
case the gestures are not defined in the same topological category, so we paste them by means of
isomorphisms between the topological categories involved.
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Figure 12: Triangulation (left-hand side) and squaring (right-hand side) of a surface with a hole.

VII. Homology

Singular homology of a topological space is a tool created by Poincaré [34] so as to associate with
the space certain invariants under continuous deformation (homotopy), namely Betti numbers,
which are, intuitively, numbers of holes of different dimensions in the space. The development of
this concept gave rise to the powerful language of homological algebra, which allows the correct
formalization of Poincaré’s ideas (homology modules) and the effective computation of Betti numbers.
See [12] for a detailed account of the birth of homology theory. Later, the study of the dual notion
of homology, that is, cohomology, led Eilenberg and Mac Lane to discover category theory via natural
transformations; see the notes in [17, p. 29]. In fact, category theory is the natural environment
of homological algebra, as witnessed, for example, by Grothendieck’s Tôhoku paper [15], which
achieved a unified treatment of (co)homology.

If the space is a surface in Euclidean space, the idea of homology is to perform a triangulation
of the surface, that is, an approximation by means of simpler objects, by using singular triangles
(in the surface) so as to detect holes by identifying closed trajectories that are not boundaries
of singular triangles; see the left-hand side of Figure 12. Thus, homology can be regarded as a
measure of how far a space is from being an ideal object (triangle). The procedure is generalized
to solids, by detecting holes with tetrahedra, and then to higher dimensions, by using simplices.

However, these ideal objects can be changed, so as to produce other homologies. For example,
if we consider squares (Figure 12, right-hand side) and cubes instead of triangles and tetrahedra,
we will arrive to a homology that is essentially equivalent to the first. After all, these objects are
equivalent for the purpose of detecting holes.

Another way of interpreting homology is inspired by the Yoneda lemma: we take a good subset
of (ideal) domains to try to classify objects. For the category of sets, it is sufficient to consider the
singleton domain, for digraphs it is the singletons and the one-arrow object. In homology, we try
to classify spaces by using domains that are simplices.

Now, squares and cubes are instances of hypergestures in dimensions 2 and 3, so we could
use general hypergestures to define homology [25]; see Figure 13. We would hope to gain new
invariants of a space that were not grasped by classical homology or different computations of the
latter by gestural means.

But hypergestural homology has a structural drawback. It is a particular case of cubical
homology of a certain semi-cubical module, so it should be refined by means of a certain
normalization process, based on degeneracies, so as to obtain trivial homology modules of
contractible spaces. This point remains obscure since we have not a clear definition of degenerate
hypergestures in this context. Some alternative definitions of hypergestural homologies, which
are perhaps more natural, were given in [8] but they share the same problem.

The fact that simplicial homology does not require a normalization process, and that we have
defined higher-dimensional gestures in the simplicial context, are powerful enough reasons to
try a notion of simplicial gestural homology. This notion, as well as that of infinity-category of
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Figure 13: Hypercubes (first row). Hypergestures (second row). Gestures of higher dimensions, in the simplicial
approach, associated with a certain cosimplicial space (third row). Compare with Figure 7.

gestures, is based on the observation that singular simplices can be regarded as gestures, under our
definition in Section V. In fact, each continuous map ∆n −→ X corresponds to a unique yn-gesture
in X, where yn is the combinatorial simplicial set modeling the space ∆n. Thus, classical simplicial
homology is gestural and can be generalized by changing the models yn for more general shapes.
This leads to the notion of cosimplicial space (a functor T : ∆ −→ ∆̂), which generalizes the Yoneda
embedding y : ∆ −→ ∆̂ whose values are all models yn for n ∈N, and hence to a notion of gestural
homology, defined as the homology of the simplicial set ∆̂(T(−), Top(∆(−), X)) called gestural
complex, for each cosimplicial space T. Some gestures of higher dimensions, which generalize the
singular simplices from Figure 7, are pictured in Figure 13.

At once this notion of homology is invariant under homotopy equivalence of spaces, and hence
the homology modules of contractible spaces are trivial since gestural homology modules of the
point space are. Details in [7].

VIII. Homotopy

There are two main facts that lead to the study of simplicial homotopy applied to gesture theory.
First, thanks to the generalization of gestures to the simplicial context, we can capture more
retractions between (digraph-shaped) spaces and locales of gestures. This is due to the fact that
by extending a digraph to a simplicial set we have identity arrows and they help collapse many
digraphs that were not contractible with plain morphisms of digraphs. An important application
of this fact is the determination of new examples of non-spatial locales of gestures, by finding
retractions of them to familiar non-spatial locales.15 Second, the invariance of gestural homology
with respect to homotopy equivalence of spaces, as a particular case of simplicial homology, can
be obtained via simplicial homotopies of gestural complexes induced by homotopy equivalences
of spaces.16 See [7] for details.

Example 5. Let us apply the simplicial retraction to the first movement in Mozart’s K. 331.

15This reasoning is based on the fact that spatial locales are closed under retracts, so if the retract of a locale is non-spatial,
then the original locale is non-spatial.

16More precisely, a homotopy equivalence of spaces induces a homotopy equivalence of simplicial sets (gestural
complexes), which, in turn, induces a homotopy of chain complexes and isomorphisms of homology modules.
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Figure 14: The descending gesture of the first variation in Mozart’s K. 331 as an extension, by homotopy and section,
of the original one.

First, consider the vertex digraph • and the arrow digraph • → •. The extension (Definition in
[7, Section 2.3]) to simplicial sets of these digraphs are the representable preshehaves ∆(−, [0])
and ∆(−, [1]) on the simplical category ∆, the former being the final object in the category of
simplicial sets. Moreover, we have that the topological spaces of gestures Γ@X and L(Γ) t SX
(where L(Γ) is the simplicial extension of Γ) are homeomorphic [3, Theorem 3.5.2] for each
digraph Γ and each topological space X, and in our cases they are the space of continuous paths
X I and X, respectively. The unique natural transformation ! : ∆(−, [1]) −→ ∆(−, [0]) induces
a continuous map (the presheaf functor (−) t SX is a contravariant one to topological spaces)
f : X = ∆(−, [0]) t SX −→ X I = ∆(−, [1]) t SX. However, the same reasoning is not possible
with digraphs since there is no digraph morphism from • → • to •; it must send arrows to arrows,
but the bullet digraph has no arrows.

Actually, the map f sends an element x ∈ X to its constant path with value x and has as left
inverse the evaluation at 0 map. This means that f is a section. Similarly, we can find sections from
n@X to m@X, where n < m in N, and n denotes the digraph • → · · · → • with n arrows.

In the first variation in Mozart’s K. 331, fourth measure, we can observe how the original
descending gesture in the score space (Example 1) is extended; see Figure 14. First, the last
two notes (C] and B) suffer a contraction in their durations, which is just a continuous path, or
homotopy, in the space 4@R2. Then the descending gesture in the last measure extends to one in
7@R2 by means of sections and homotopies. ♣

i. Infinity-categories of gestures

Infinity-categories are a convenient language for categories with morphisms of higher dimensions,
avoiding the long lists of data and axioms that are usually needed for defining them. For instance,
in the 3-category of 2-categories we have pseudofunctors (relating categories), pseudonatural
transformations (relating pseudofunctors), modifications (relating pseudonatural transformations),
and a lot of compatibility axioms between them. On the other hand, in a topological space,
we have elements, paths linking elements, path homotopies, and so on, together with notions
of composition. These two analogous manifestations can be synthesized in the definition of
infinity-category, which is a simplicial set satisfying certain lifting properties that allow to define
the usual categorical operations.

In particular, the two most important simplicial sets that we considered in our discussion of
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abstract gestures (Section V) are examples of infinity-categories: the nerve of a category, related to
possibly commutative diagrams (gestures) for transformational theory, and the singular complex,
related to the performer’s gestures.

Example 6. This example is inspired by [20, 19]. Let Σ be a simplicial set modelling a human
body (Figure 8). Consider a topological space X, where the movement of the body occurs (for
example, a subspace of the usual Euclidean space R3), and the topological space Σ t SX of all
Γ-gestures in X (Section V). The singular complex Top(∆(−), Σ t SX) is an example of ∞-category.

The categorical structure is the following. Objects are Σ-gestures in X, which are just poses of
the body. The 1-morphisms are continuous paths of poses in Σ t SX, which can be interpreted
as movements of the body. The 2-morphisms are paths in the path space (Σ t SX)

I , that is, paths
between movements of the body, etc. The composition of morphisms is carried out modulo
homotopy equivalence. ♣

Based on cosimplicial spaces, we can construct many gestural complexes (Section VII). Since
the singular complex is a particular case of a gestural complex, this suggests that, under suitable
conditions, gestural complexes can be ∞-categories. In such cases, we have a notion of composition
of gestures, which was an initial motivation for introducing ∞-categories in the gestural context
[4, p. 103]. Several examples of ∞-groupoids 17 of gestures, other than the singular complex, are
given in [7].

The introduction of infinity-categories in gesture theory also responds to Mazzola’s fundamen-
tal problem of rebuilding algebraic operations from gestural instances. In [27, Section 6.1], the
fundamental groupoid of a space was acknowledged as an important tool for reconstructing a
certain gestural substance (based on loops and their homotopies) behind group operations. In a
more general way, ∞-groupoids, ∞-categories, and, in particular, categories could be identified as
∞-categories of gestures, thus providing fully gestural information on their algebraic operations.
For example, by a central theorem of Quillen [14, Theorem 11.4], we know that in an appropriate
sense, each ∞-groupoid is equivalent to the singular complex of a certain topological space, so we
can regard operations in an ∞-groupoid in terms of homotopies related to gestures shaped by
combinatorial simplices.

IX. Applications and relations to other fields

i. Mathematics

Within mathematics we have the following incidences of gesture theory.

Locales

In locale theory, a way of exhibiting examples of non-spatial locales is to take suitable exponentials
and limits. Since the construction of locales of gestures requires these constructions, many locales
of gestures are non-spatial. Thus, gestures are useful for providing examples of non-spatial locales.

Realizations

It is very curious that, unlike the realization concept, its dual (gestures) has no substantial
reference in the categorical literature, up to the knowledge of the authors. For example, geometric

17Informally, ∞-groupoids are ∞-categories whose morphisms are invertible.
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realizations and fundamental categories are the realizations associated with the singular complex
and nerve functors, but the respective gestural notions are overlooked.

Realizations are central in abstract homotopy theory. Besides the importance of geometric
realizations, fundamental categories of simplicial sets are a basic tool for understanding the usual
categorical structure behind ∞-categories.

Infinity-categories

Some gestural complexes (Section VII) are examples of infinity-groupoids that have a topological
flavor, but that are not singular complexes, as shown in [7].

Sheaves

The definition of sheaf can be given in terms of cotensor products (see Section VI), which suggests
a profound relation between sheaves and gestures.

Homology

By [31, Lemma 5], each gestural homology (Section VII) is equivalent to the classical homology of
a certain space. This and the plasticity of gestures suggest that we could use gestural homology
to compute classical homology modules. For example, in [7], there is a simplified proof of a
Hurewicz theorem based on gestural homology.

ii. Mathematical music theory

In mathematical music theory, where gestures were conceived, we have the following connections.

Transformational theory

Diagrams are abstract gestures (Section V). Also, the topological structure of the topological
category of continuous paths of a digraph [6] can help understand classical diagrams as continuous
processes, near to Mazzola’s ideal of recovering gestures from morphisms.

Counterpoint theory

One of the main notions of counterpoint, and of Mazzola’s model, is that of interval. Mazzola’s
intuition of intervals as gestures is supported by the fact that there is an infinity-groupoid of
intervals, which links intervals to paths, via Quillen’s vision of infinity-groupoids as singular
complexes. Moreover, this groupoid is useful for determining when a partition {K, D} of the ring
of intervals Z12 has an affine symmetry. This is important, since the existence of such a symmetry
is necessary to open up a non-traditional counterpoint world based on consonances (in K) and
dissonances (in D). A recent exposition of mathematical counterpoint theory is [5].

X. Open and closed problems

The diamond conjecture

In essence, the diamond conjecture asserts the existence of an adjunction between the category
of topological gestures and the category of formulas, the latter understood as diagrams of
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transformational theory. The adjunction is the composition of two adjunctions linked by a category
that would offer a unified comprehension of music [27, Section 9].

However, there are several technical reasons that suggest a review of Mazzola’s notion of
formula [3, Section 3.11.2]. More generally, the notion of abstract gestures is already a concept that
unifies all notions of spatial gestures, and transformational diagrams. Hence, the statement of the
conjecture could be revisited under this notion. However, the conjecture surmises the existence of
a unifying object, which has not been found up to now.

Gestural Yoneda lemma and the problem of rebuilding categories and operations from ges-
tures

As commented before, a solution has been proposed in [29, Section 62.7], in the context of
topological categories. The generalization of the representation theorem of categorical digraphs
[29, Theorem 39] may be explored for abstract gestures. It is also an open problem whether the
notion of gestures on Grothendieck topoi is useful to provide such a lemma. The existence of
infinity-categories of gestures also suggests the possibility of rebuilding operations in (infinity-
)categories from gestural movements. This deserves a serious study.

The problem of rebuilding topological gestures from algebraic data

Locales help address the problem of representing the movement of the human body in algebraic
terms. In turn, this can be helpful for introducing gestures in a computational language. In fact,
the topology of every space of gestures on a sober space is embedded in a locale of gestures,
as shown in [3, p. 18], and each individual gesture is a point of a certain locale of gestures [3,
Corollary 2.4.3], locales being particular cases of lattices.

The characterization of the singular complex and more general gestural complexes as infinity-
categories also shows that gestural movements can be managed at the level of categorical opera-
tions. Other approaches to this problem could be considered.

Exponential presentation of objects of gestures

This problem is inspired by the fact that each topological space of gestures, in the case of digraphs,
can be regarded as a function space whose domain is the geometric realization of the digraph
involved [4, Theorem 7.3]. Similarly, the category of Γ-shaped diagrams, for Γ digraph, can be
regarded as a category of functors whose common domain is the category of paths of Γ, the latter
being a realization in the category of categories [3, p. 81].

The exponential presentation problem consists in determining whether the object of Σ-gestures
in an object C of a category is the exponential C|Σ| for a certain realization18 |Σ|, where Σ is
a digraph, or a (semi-)simplicial set. It has been solved in the cases of semi-simplicial sets Σ
for topological spaces and the geometric realization, of digraphs Σ for locales and the induced
geometric realization, and for cartesian closed categories; see [3, Section 3.2]. The case of
topological categories was initially studied in [6] without a full solution, but with a characterization
of topological categories of gestures as topological categories of functors, whose domains are
categories of continuous paths of digraphs. It is also worth asking whether this problem can be
addressed in a general framework that does not depend on a particular category.

18The realization usually has better homotopical properties than the skeleton Σ.
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Normalization of hypergestural homologies

A notion of normalization for hypergestural homology would pave the way for a more complete
study of it, including its computation and relation to classical homology. It is not clear whether
hypergestural homology provides more information about an space beyond classical homology.
See [8].

Gestural homologies

In the simplicial case, it is an open problem the explicit computation of gestural homologies, which
are based on particular simplicial sets, namely gestural complexes. Also, it is an open problem
whether gestural homologies offer simplified computations of classical homologies. Details in [7].

Spatiality of locales of gestures

In essence, all locales of gestures on a non-spatial locale are non-spatial [3, Corollary 2.5.3]. Thus,
the problem of spatiality reduces to studying locales of gestures on spatial locales. There are
several possibilities, depending on the space and the digraphs. A summary of results can be found
in [3, Section 2.9]. The most important concepts used were exponential presentation, which is
specially linked to the theory of injective locales, and retractions.

Some improvements on the preceding results were made by means of the extension of digraphs
to simplicial sets and the introduction of simplicial retractions [7]. Nevertheless, a complete theory
is far from being completed.

Infinity-categories

Up to now, we do not know if there are gestural complexes that are examples of infinity-categories
but not infinity-groupoids [7].

Philosophy

The discussion in Section II together with [29, Part XV] can give rise to a lot of philosophical
developments on gestures.

XI. Environment

The place of gesture theory, and more generally mathematical music theory, is privileged in knowl-
edge but usually misunderstood by pure mathematicians and musicians. Some mathematicians
could regard mathematical music theory as a not serious one or as a branch that is not of general
interest for the mathematical community. On the other hand, musicians could assess this theory
as excessively formal or even useless.

However, it is undeniable that mathematics and music can benefit each other. There are many
mathematical tools, such as group theory, that have a long tradition of use among composers.
Also, as the cases of gestures and Grothendieck’s motifs [21] show, there are musically motivated
concepts that can bear a considerable mathematical interest. Mathematics is an infinite source
of tools for composing and understanding music. Music is an infinite source of inspiration for
doing mathematics. In this way, the study of the relationship between mathematics and music is
important for human knowledge since it helps understand creativity and multiply it in both fields.
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And gestures precisely allow the dialogue between mathematics and music as human activities.
Recalling Mazzola’s fundamental dialectic [23, Chapter 1]: the performer’s gestures, inspired by
scores, become real music and the mathematician’s gestural intuitions become theorems. Every
human activity is a gesture. Everyday technology is full of gestural devices. Consequently, gesture
theory should be the easiest branch of mathematical music theory to share with the public.

Glossary

In what follows C, D, and E denote arbitrary categories.

Free object Let U : C −→ D be a functor. Given an object D of D, we say that an object F(D)
of C is a free or universal object of D if there is a morphism η : D −→ UF(D) such that for each
morphism f : D −→ U(C) there is a unique h : F(D) −→ C such that U(h)η = f . The latter
condition is called universal property of F(D). Examples: if U is the forgetful functor from abelian
groups (respectively topological spaces) to sets, F(X) is the free abelian group on X (respectively
X with the discrete topology).

Topological gesture A digraph Γ is a quadruple (A, V, t, h) such that A and V are sets whose
elements are called arrows and vertices, respectively. Given a topological space X, we can construct
the topological digraph

−→
X of X, which is the quadruple (X I , X, e0, e1), where I is the usual interval

[0, 1] in R, X I is the space of continuous paths c : I −→ X with the compact-open topology, and e0
and e1 are the continuous evaluation maps at 0 and 1. A Γ-gesture in X is a digraph morphism
from Γ to

−→
X . It consists of two functions u : A −→ X I and v : V −→ X such that e0u = vt and

e1u = vh.

Compact-open topology The subbasic opens of the compact-open topology on the space of contin-
uous paths X I are those of the form {c : I −→ X continuous | c(K) ⊆ U}, where K is compact
(closed) in I and U is open in X. This makes X I an exponential in the category of topological spaces.

Space of gestures Let Γ and X be as in the topological gesture definition. The topological space of all
Γ-gestures in X, denoted by Γ@X, is the limit in the category of topological spaces of the diagram
consisting of for each a ∈ A a copy of X I , for each z ∈ V a copy of X, a copy of e0 whenever
z = t(a), and a copy of e1 whenever z = h(a). The elements of the space Γ@X are in bijective
correspondence with the respective topological gestures.

Locale Complete lattice satisfying the distributivity of ∧ (meet) with respect to the infinitary ∨
(join). A morphism of locales from L to M is a function from M to L that preserves finite meets and
arbitrary joins. Examples: 1. Given a topological space X, the poset of its opens O(X) is a locale.
This construction defines a functor O from topological spaces to locales sending a continuous
map f : X −→ Y to the inverse image map f−1(−) : O(Y) −→ O(X). 2. (Fundamental example)
The lattice of subsheaves of any sheaf on a (small) site is a locale. In the case of the final sheaf
(constant sheaf with value {∗}), the subsheaves are the opens of the site, and hence the opens of
any site form a locale.

Locale of gestures Let Γ be a digraph with Γ = (A, V, t, h) and L a locale. Consider the continuous
endpoint inclusions i0, i1 : {∗} −→ I of the interval I and the induced morphisms of locales
O(i0),O(i1) : 2 −→ O(I), where 2 denotes the final locale. We can construct the localic digraph

−→
L
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of L, which is the quadruple (LO(I), L, e0, e1), where LO(I) is an exponential19 locale, e0 = LO(i0),
and e1 = LO(i1). The locale of all Γ-gestures in L, denoted by Γ@L, is the limit in the category of
locales of the diagram consisting of for each a ∈ A a copy of LO(I), for each z ∈ V a copy of L, a
copy of e0 whenever z = t(a), and a copy of e1 whenever z = h(a).

Point If C has a final object 1, we define a point of an object C of C as a morphism 1 −→ C.
Examples: 1. Points in the categories of sets and topological spaces correspond to elements. 2.
Points of the locale O(X), where X is a Hausdorff (or more generally, sober) space, are just
elements of X.

Presheaf A presheaf on a category C is a contravariant functor from C to a suitable20 category
of sets. All presheaves on C form a category Ĉ whose morphisms are natural transformations
between presheaves. Examples: 1. The representable functors, which are of the form C(−, C) for
C object of C, are presheaves on C. 2. Any simplicial set, which is a presheaf on the simplicial
category. 3. The singular complex functor Top(∆(−), X) of a topological space. 4. The nerve of a
category C of a category C, which is the presheaf Cat(−, C) on the simplicial category that sends
[n] to the functor category Cat([n], C) regarding [n] as a poset category, and α : [n] −→ [m] to
(−) ◦ α : Cat([m], C) −→ Cat([n], C) regarding α as a functor.

Yoneda lemma Given a presheaf P on C and an object of C, it establishes a natural bijection
between the sets of natural transformations from C(−, C) to P and P(C). Explicitly, the bijection
sends such a natural transformation τ to τC(idC).

Yoneda embedding The functor y : C −→ Ĉ sending an object C to the representable functor
C(−, C) and a morphism f : C −→ D to the natural transformation defined by composition with
f in each component. This functor is full and faithful by the Yoneda lemma.

Sieve Let C be an object of a category C. A sieve on C is a set of morphisms with codomain C that is
closed under right composition. Examples: 1. The maximal sieve t(C) consisting of all morphisms
with codomain C. 2. The sieve generated by a set X of morphisms with codomain C, defined as
the closure of X under right composition. 3. The restriction sieve h∗(S) of a sieve S on C along a
morphism h : D −→ C, defined as the set of all morphisms f with codomain D such that h f is in S.

Grothendieck topology A Grothendieck topology J on a category C consists of for each object C a
set of covering sieves J(C) such that i) the maximal sieve t(C) is in J(C), ii) if S is in J(C), then
all possible restriction sieves of S are covering sieves, and iii) if all possible restriction sieves of a
given one S are covering sieves, then S is a covering sieve. Examples: 1. Let T be a topology (of
a topological space) regarded as a category (category of a poset). The sieves generated by open
coverings of opens in T are the covering sieves of a Grothendieck topology on T. 2. Consider the
category Ĉ of presheaves on C. The epimorphic sieves of a presheaf P are the sieves S on P such
that for each object C of C the set of images {Im(τC) | τ ∈ S} covers P(C).

Site Category with a Grothendieck topology (C, J).

19The locale O(I) is exponentiable since it is a continuous lattice and hence this exponential and its derivative
constructions exist. Also, the final object 2 is exponentiable (in any category) and the exponential L2 is isomorphic to L.
Details in [2] and [3, Section 2.3].

20That is, the sets are the members of a Grothendieck universe [9, Exposé I].
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Sheaf A presheaf F on a site (C, J) is a sheaf if for each object C of C and each covering sieve S in
J(C), given a family of local sections {x f | f in S and x f ∈ F(dom( f ))} such that F(h)(x f ) = x f h
whenever the composite f h exists, there is a unique x ∈ F(C) such that F( f )(x) = x f for each f in
S. In such a case we say that x is a global section. Examples: given the site of the usual topology of
R (respectively C), the presheaf with P(U) defined as the set of all (continuous or differentiable)
functions defined on U with values in R (respectively C) is a sheaf.

Grothendieck topos Category (equivalent to one) of sheaves on a site, which is a full subcategory
of the associated category of presheaves. Examples: 1. All categories of presheaves are Grothendieck
topoi since presheaves are sheaves on the trivial topology whose covering sieves are the maximal
ones, in particular the categories of digraphs and semi-simplicial sets are. 2. Categories of sheaves
on the examples of Grothendieck topologies.

Exponential presentation We can state the problem, in the case of simplicial sets (for short), as
follows. Let T : ∆ −→ C be a functor, where T has all its images exponentiable in C. Given an
object C of C, we define SC as the functor CT(−) : ∆op −→ C. This object generalizes the internal
versions of the singular complex and the nerve. Given a simplicial set Σ, we ask whether the object
of gestures Σ t SC coincides with the exponential C|Σ|T , where |Σ|T is the realization of Σ with
respect to T, whenever these objects exist. In the case when C is Cartesian closed, we solve the
problem immediately, since C(−) transforms the colimit |Σ|T into the limit Σ t SC. Otherwise, the
solution is not guaranteed. See [3, Section 3.2] for details.

Simplicial category Denote by [n] the ordered set (ordinal) {0, 1, . . . , n} for n ∈N. The simplicial
category ∆ has as objects all [n] for n ∈N and as morphisms all order-preserving maps between
them.

Standard simplex (functor) For each n ∈ N, we define the standard n-simplex ∆n as the set in
Equation 3:

{(t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}. (3)

The standard n-simplex is a subspace of Rn and this construction defines a standard simplex functor
∆(−) from the simplicial category to the category of topological spaces, which sends an order
preserving map α : [n] −→ [m] to the appropriate continuous map ∆α : ∆n −→ ∆m sending the ith
vertex (with n− i zeros) to the α(i)th one. Examples: ∆0 is a singleton, ∆1 is the interval [0, 1] in
R; ∆2 is the triangle with vertices (0, 0), (0, 1), and (1, 1) in R2; and ∆3 is the tetrahedron with
vertices (0, 0, 0), (0, 0, 1), (0, 1, 1), and (1, 1, 1) in R3.

Tensor product Suppose that E has small hom-sets and small colimits and that C is small. Suppose
given a functor T : C −→ E . Consider the functor E(T,−) : E −→ Ĉ that sends E to the presheaf
E(T(−), E). The tensor product P⊗C T, where P is a presheaf on C, is the free object of P with
respect to the functor E(T,−) if it exists. It can be computed via the colimit21 in Equation 4:

Colim
(∫

P π−→ C T−→ E
)

. (4)

21Here,
∫

P denotes the category of elements of P. Its objects are of the form (C, p) where p ∈ P(C) and C is an object
of C. A morphism from (C, p) to (C′, p′) is a morphism f of C, from C to C′, such that P( f )(p′) = p. We denote by
π :
∫

P −→ C the natural projection functor.
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Actually, this construction defines a left adjoint (−)⊗C T to E(T(−), E), which means that there is
a bijection, as in Equation 5:

E(P⊗C T, E) ∼= Ĉ(P, E(T(−), E)), (5)

natural in P and E. Examples: 1. If C is the simplicial category ∆, the tensor product Σ⊗ ∆(−),
where Σ is a simplicial set, is the realization |Σ|T of Σ with respect to T. 2. In the case when T is
the standard simplex functor ∆(−), Σ⊗ ∆(−) is the geometric realization |Σ| of Σ.

Cotensor product It is the dual of the tensor product notion—we change E for its opposite in the
above definition. Thus, the difference is that now we require that E has small limits. We give a

functor S : Cop −→ E and consider E(−, S) : E −→
(
Ĉ
)op

. The cotensor product P t S, where P is
a presheaf on C, is the limit in Equation 6:

Lim
((∫

P
)op

πop
−−→ Cop S−→ E

)
. (6)

The corresponding natural bijection is given in Equation 7:

E(E, P t S) ∼= Ĉ(P, E(E, S)). (7)

Example: If C is the simplicial category and Σ is a simplicial set, then Σ t S is the object of
Σ-gestures with respect to S. This notion includes all gesture definitions mentioned in this paper.

Simplicial homology Let S be a simplicial set and R a commutative ring. For each n ∈ N, the

nth homology of S is the quotient R-module Ker(∂n)/Im(∂n+1), where ∂n =
n
∑

i=0
(−1)idi for n ≥ 1

and di : RS[n] −→ RS[n−1] is the linear extension (to free modules) of the corresponding face of
S. The R-homomorphism ∂0 is the unique from RS[0] to the trivial module {0}. Example: The
simplicial homology of the singular complex of a topological space X is the classical homology of X.

Spatial locale A locale is spatial if it is isomorphic to that of opens O(X) of some topological space
X. Otherwise we say that it is non-spatial.

Infinity-category Simplicial set S such that given n ∈ N and k with 0 < k < n, for each subset
{ai | 0 ≤ i ≤ n; i 6= k} of S([n− 1]) satisfying the identities of Equation 8:

di(aj) = dj−1(ai) (i < j; i, j 6= k), (8)

there is an element a ∈ S([n]) such that di(a) = ai for i 6= k. If this property also holds for k = 0
and k = n, then we say that S is an ∞-groupoid. Examples: 1. The nerve of a category is an
∞-category. 2. The singular complex of a topological space is an ∞-groupoid.
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Abstract: The main objective of this short paper is to present results and a computational modeling
process as a tool to aid musical composition. These results are related to the composition of the piece
"Intermezzi and Capriccio" from a Fantasia, an ensemble of piano solo pieces worked from a cross analysis
of the first Intermezzo of Johannes Brahms’ Four Pieces for Piano Op. 119. In this way, the musical
analysis I propose aims to compositional results, which in turn guides, the analysis itself. In this sense,
the objective is not that of an analysis and modeling in order to reconstruct an original, but of analysis
and modeling that allows it to unfold into new objects.

Keywords: Composition. Brahms. Musical modeling. Computer-aided analysis. Max/MSP. zl objects

I. From analysis to patch design

First, it is important to present here what I am considering as musical analysis. I consider that
all musical analysis is a fable. It is the invention of connection operators, sometimes evident
or not. It is also important to say that I consider the analysis to be something not restricted

to the score, and that it involves what I would call a listening scene: a heterogeneous field where
music, space and performance are intermodulated. If there is a primacy of the score, it is because
the whole space will be modulated by its realization; it would be the structured and repeatable
domain of this plan.

For me, as a composer, analyzing is something like finding not only connection operators but
also the series of nonsense that emerge in the listening fable and, from there, finding variables that
allow the analyzed work to unfold outside itself. In this sense, everything in the scene of listening,
performance, reading, participates in what we call the object of analysis.

It was in this sense that I programmed a series of patches, in Max/MSP environment, based
on the "analysis of the score reading" of the first Intermezzo of Brahms’ Op. 119, considering

*The Brahms analysis presented in this paper was part of the examples showed at the "Porto International Symposium
on the Analysis and Theory of Music: Musica Analítica 2019", under the title "Repeating Difference: Music analysis and
rewriting". Here, in this paper, I try to present more detailed aspects of the computer modeling used as example at Porto
Conference. The author thanks the funding agencies FAPESP and CNPq.
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constants in figural level (intervals, sense of phrases, harmony) and gestural (accents, realization
speeds etc.), where each constant opens to a variable.

The proposal is based on studies carried out in the 1970s by André Riotte (composer) and
Marcel Mesnage (computer engineer) . Mesnage and Riotte understand that the analysis must
be "independent of a particular theory or style, consisting of progressively leading the initial
complexity to a simpler combination of entities". I therefore observe that the more defined
the material, the more formed and closed in precision relations, the harder the material for its
compositional unfolding. In view of a compositional decision, the objective is not to find an
"analytical elegance", such as the search for out-of-time symmetries, but processes that have the
most open potential for unfolding.

The starting point of this method of analysis is to define the relevance of parameters and
processes, and to observe whether they are pertinent to the whole work or just a section and if such
pertinence concerns the work or a singular listening to this work. The focus thus is not analysis
with an end in itself, but analysis as a compositional objective, with a view to automating the
realization and updating of results. Automation here constitutes a prototype of the composition
from which some compositional solutions can be maintained or changed.

The modeling carried out that I performed from Brahms’ work was implemented in Max/MSP,
and is based on the language of lists as present in software from the 1990s such as Patchwork and
later OpenMusic. The list language used in modeling that I propose part of Lobjects and ListOps,
a series of objects capable of operating with lists in Max/MSP that James MacCartney (ListOps)
and Peter Elsea (Lobjects) programmed in the early 1990s to work with lists in Max/MSP. The
zl Objects then allowed actions similar to some functions present in Open Music and Patchwork
(and PWGL), with the possibility of working in real time of performance.

For the analysis stage prior to the implementation, I made use of a reading of objects and
traces of the perceptible surface of Brahms’ work, leading to a simple analysis which could kept
the main affective elements of the first Intermezzo of Op. 119 by Brahms (first 15 measures are
shown in Figure 1), with a compositional rewriting purpose.

1) The slow descending cascades: Brahms works with two interval sets in order to draw arpeggios
and short melodic structures. One first, formed by the descending sequence of thirds
(intervals 3 and 4) and another, also descending formed by seconds (intervals 1 and 2).

2) The interval universe: There is a clear interval circularity, an interval constancy and a cyclic
set of transpositions that is extremely evident at the first glance at the score: a simple third
reiteration algorithm (intervals 4 and 3) within the key you chose, a reiteration that implies
the idea of alternation of the two intervals 4 and 3, being able to incorporate in the set of
chords the augmented (4− 4− 4(−4)) or diminished (3− 3− 3− 3) sequences, as well as
greater or lesser.

3) The flow continuity always with slightly oscillating progress: With regard to the temporal
structure, Brahms reiterates sixteenth notes, which apparently means a constant, but in a
letter to Clara Schumann notes that: "Every measure and even every note must sound like a
great rhythm."

4) The separation between two layers with the presence of a melodic line latent to the acute inflection
of the resumes of the arpeggios: In the specific case, the inflection and accentuation of the
higher note (or notes) of the arpeggio enhances latent melodies, which also contributes to the
positioning of the note at precise inflection points of the measure or even by prolonging its
duration. A compositional strategy, constantly present in this and other works by Brahms.

This implementation step sought not to restrict the interval cycles to the tonal field and to
consider only what I am calling the interval color used by Brahms. Out of tonality restriction,
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it was then possible to find a total of 16 possible permutations of thirds. In order to program a
generative algorithm, a generated interval lists were designed to trigger sequences of intervals,
with cycles that exceed the 4 intervals of the original and, from them, the sequence of notes is
generated, calculated from an inflection note (high or low).

Aiming at a new composition born from the analysis of Brahms, the lists (interval, notes, time)
can be transformed resulting in a gradual anamorphosis of the initial gesture (the descending
cascades), in order to maintain the initial musical affection in another musical result. The
main procedures employed in this regard are: (1) reversal of the arpeggio sense (acute-severe,
severe-acute), (2) anamorphosis by expanding the intervals, (3) changes in time with variations
around an average time, (4) redistribution of dynamic accents allowing the appearance of latent
melodies through highlights, (5) increase or decrease in the interval cycle, (6) inflection note control
from an external signal obtained by a musical instrument. One of the most radical elements of
anamorphosis is the substitution of the inflection note by a group of notes, in case an arpeggio
in a quick appoggiatura from a fragment of the same interval structure employed at the time of
automation1.

II. Patch steps and algorithm design

Even employing list objects provided for Max/MSP, this language which is quite developed in
software such as PatchWork, PatchWorkGL and Open-Music, is nevertheless quite incipient in
Max/MSP. There are some list libraries, but more complex operations such as those found in other
software are not native to the program and do not cover all needs for musical programming. In
this sense, a large part of the operations are carried out through the packaging and unpacking of
lists with intermediate calculations.

The intervallic compositional thought found in Brahms is quite simple and is inherent in
the play of arpeggios, but for compositional and post-tonal objectives it was, as I already said,
considered only as a regular sequence of intervals, which can be changed in half step.

In the series of images below, I expose the Max/Msp modules in detail together with the
interval analysis carried out from the original by Brahms:

1) Arpeggio sequence analysis, transformation in cascades, Max-MSP modules with the pos-
sibility of working at different intervals. In this way, in addition to the pattern of thirds
(3− 4) taken from Brahms, the patch opens an interval variable that allows through a panel
of cursors (multislider), to configure sequences of thirds, as well as seconds (direct opening
up to tritons) or open intervals from one tenth. This mechanism has the function of both
partially redoing the Brahms model and expanding it with compositional intent. In view
of a limitation of tessitura to that of a normal piano, the patch delimits bass and treble
with which when using very open intervals the result generated is of small descending or
ascending cycles, thus comprehending the breadth of possibilities of the model learned from
Intermezzo of Brahms (Figure 2).

2) Since the purpose of designing the patch was not only to perform an analysis of Brahms’
work, but to create a compositional device from Brahms, it caught my attention when
observing the arpeggios the possibility of converting cascades of more than five or six notes.
In the figure below I present the arpeggios and short melodies (joint degrees) present in

1The developed patch allows for a composition in interaction between live instrumentalist (captured instrument or any
MIDI instrument) and an automatic composition performed by an object of uninterrupted generation in irregular time
cycles of inflection notes based on a simple attractor. For this mode of operation, attractors were also implemented for
gradual and close variations of time, number of notes per arpeggio, dynamic variation.
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Figure 1: Manuscript draft of the original from Brahms Op. 119.

Figure 2: The arpeggio sequences with chromatic clock analysis.
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Figure 3: The conversion of the arpeggios and melodic lines into descending cascades.
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Figure 4: The central interval module, multislider/intervals/plusminus module/sum from a first note (which can come
from a MIDI keyboard or a pitch-tracker, allowing the patch to be associated with a signal input audio).

Figure 5: Plusminus modules, which randomly add or subtract halftone to the intervals according to the arpeggios
model that alternate intervals 4 and 3 and the diatonic melodic model that alternates intervals 1 and 2). In
this module it is possible to work with a constant series of intervals or with a variable series via plusminus.

Figure 6: Continuation of plusminus modules.

Brahms and their conversion into cascades where some notes can be taken as pivots, like the
G at the end of the first arpeggio, resumed as the beginning of the next and the F\ at the end
the second arpeggio also resumed to the octave as the beginning of the next (Figure 3).
Another important element in this analysis is the use of latent melody that Brahms performs
in the upper voice. In this sequence I also observe an interval constancy and even a regularity
and repetition mechanism. This data was used to draw the subpatch <cumeeira> (Figure 9),
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which updates each new cascade sequence with a new high note according to interval
regularity. From a cascade cycle calculated based on the first note, comes a new note that
has a melodic interval relationship with that first.
For the design of this patch it was necessary to design a calculation subpatch x→ dx and dx
→ x that allows calculating a series of notes from a series of intervals and vice versa, native
operator in software such as OpenMusic and Patchwork (Figures 7 and 8).
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Figure 7: Converting arpeggios to cascades with transpositions based on supposed pivot notes.

Figure 8: Ridge (which has a correspondence with the <cumeeira> as commented above and in Fig. 5) notes that make
up latent melody and its interval sequence.

3) Still with respect to a compositional project resulting from the analysis and algorithmic
implementation in Max-Msp, the patch comprises two important extensions of the original
model. The first refers to extremely fast appoggiature performed either with an ascending
model or with a descending one coming from the interval system towards the ridge note.
In view of this direction, this change of trend of the cascade of notes, it was possible to
determine an inflection point in relation to the note derived from the analysis of audio data
or sending via MIDI. In general, this direction reversal module only reverses the reading
order of the note sequence (Figures 4, 5, and 6).

4) When performing Brahms’ modeling, it was of great importance to read Brahms’ letter
to the composer Clara Schumann, in which he specifically comments on this Intermezzo
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Figure 9: Module (subpatch) [cumeeira] and its subpatches [cume-x] and [x→ dx]): receiving and scaling (sort list)
the list of intervals in the cascade, which will be applied to the new peak note from a calculation, performed
on [cume-x].

from Op. 119: "Every measure and even all notes must sound like a great rhythm". In this
sense, I proposed to write the patch with two interchanging meter structures: stable meter
and changeable meter. Through a checkbox it changes to a stable meter or to a changeable
one, according to the result of the addition and statistical subtraction of values that make it
possible to feel the change in tempo between notes or groups of notes. What is observed
is the greater interest in the musical result. For the design of this and other timing devices
in the patch I used the idea of pulse, which is expressed by the object <metro>, measure
expressed by cycles counted via object <counter>, and which can be changed at any time,
and rhythm, adding to the <counter> object a selector that defines which pulses should or
should not pass and trigger the final note (Figures 10 and 11).

III. Final remarks

It is important to note as a conclusion that other elements were considered in the design of the
patch, always keeping in mind that each data inserted from the score analysis behaves as a variable
according all the time with the opening points that the Brahms system allows. Increase or decrease
the number of notes of each downward current (Brahms arpeggio now 5 now 7 notes), modify
the tempo until the point where the arpeggios become abrupt or even chords, and even the most
unusual version of inversion of the direction (descending to ascending), expanding intervals to the
point of working the edges of the piano tessiture (with great jumps) and dismantling the figures
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Figure 10: Patch to change tempo (metro) and rhythmic structures.

Figure 11: Two modules from the patch created for modeling Brahms Intermezzo. The first example, related to one of
the cycles (here with 6 notes) and the second related to the dynamic parameter that will be assigned to each
new note in the arpeggio set.

of descending cascades.
By having each note programmed as an individual element, it was also possible to control

accents for each one of those notes, thus causing cycles of a certain size to be sectioned by ways
of accentuating peak notes or even notes in meaningless positions. Such modifications allowed
changes in the sonority of the piece, giving rise to the appearance of quick arpeggio gestures, chord
structures, overlapping lines, amplification of tessitura, design of complex rhythmic structures.

In a compositional point of view, the patch follows a former idea of cycle superimposition.
Each cycle have a different compass, and each one operates with different gesture elements: notes
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and intervals to compose the circular cascades, the introduction of accents assigning cascades
apices or points of inflexion, the incrustation of fast apoggiattura gestures, large intervals changing
allowing the born of new gestures, etc.

Finally, it is important to say that these open variable implementation of the patch, served
as an experimentation field to develop compositional strategies I implemented when writing a
composition of two "Intermezzi and Capriccio" for solo piano, which are part of a cycle entitled
Fantasia for piano, I wrote in 2013 (Figure 12). In this piece I tried to start as close as possible
to Brahms model and expand it with incrustation of new gestures and changing of basic (but
pertinent) parameters leading to gesture changing. In this last figure I show tow moments of
Intermezzo I, where a simple changing of intervals could transform radically the texture, leading
to the birth of a new gesture in the entire compositional flow.
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Figure 12: Four excerpts from the score of Fantasia for solo piano (Intermezzo I and II). It shows different results from
the same patch for a modeling from Brahms Intermezzo Op. 119.
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Abstract: In this paper I discuss the relation between the number of available compositional choices
and the complexity in dealing with them in the scope of musical texture. First, I discuss the paradigm
of compositional choice in light of the number of variables for a given situation. Then, I introduce
the concept of compositional entropy-–a proposal for measuring the amount of freedom that is implied
in each compositional choice when selecting a given musical object. This computation depends on the
number of available variables provided by the chosen musical object so that the higher the compositional
entropy, the more complex is the choosing process as it provides a high number of possibilities to be
chosen. This formulation enables the discussion of compositional choices in a view of probability and
combinatorial permutations. In the second part of the article, I apply this concept in the textural domain.
To do so, I introduce a series of concepts and formulations regarding musical texture to enable such a
discussion. Finally, I demonstrate how to measure the compositional entropy of textures, considering
both the number of possible textural configurations a composer may manage for a given number of sound-
ing components (exhaustive taxonomy of textures) and how many different ways a given configuration
can be realized as music in the score, considering only textural terms (exhaustive taxonomy of realizations).

Keywords: Compositional entropy. Musical texture. Textural layout. Exhaustive taxonomy. Probability
and combinatorial permutations.

I. Introduction

As Marisa Rezende ([27, p. 77]) states: "composing means, among other things, to make
choices." 1 This means that choosing is an intrinsic aspect of the compositional process
as the endemic characteristic of a piece is determined by the composer’s idiosyncratic

choices of materials (pitches, pitch classes, rhythmic structures, dynamics, timbre, textures, etc.),

*I would like to thank Prof. Dr. Hugo Carvalho and Prof. Dr. Carlos Almada for their contribution concerning the
mathematical issues presented in this article.
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1Compor significa, entre outras coisas, fazer escolhas.
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aesthetic orientation, compositional techniques, sonic means, and the like. Each choice within the
compositional process may contribute to unfolding the musical form so that being aware of the
creative implications of it is a crucial expertise for any composer. In this paper I am concerned
with mapping the number of compositional choices that are available for composers during the
compositional process in a textural perspective. To do so, I will first discuss the relation between
the number of choices and the complexity in dealing with them, which can be measured by what
I call compositional entropy. Then, I will present the theoretical framework of musical texture that
underlies this paper so that the set of available choices a given texture may hold, that is, their
exhaustive taxonomy to be implemented as music, can be introduced.

7

II. Compositional Choices

In general, I call compositional choice a decision made by the composer that contributes to advance
the construction of a piece of music. It may involve from the simple selection of materials to the
very definition of the compositional strategy to be used. Composers deal with compositional
choices all over the creative process in a more or less controlled (or conscious) way. From a temporal
perspective, compositional choices can occur in either in real-time or out of time. The difference
between both applications is in the order of bottom-up/top-down compositional approach. Real-
time compositional choices involve definitions in a linear perspective, i.e., the composer defines
over time how to advance a piece of music considering the possibilities that are suitable to his/her
aesthetic orientation. Therefore, each choice is conditioned in part by the context it is made
considering its contribution to unfold the musical form. Out-of-time compositional choices, on
the other hand, consists of defining a priori how a piece of music shall be constructed. In other
words, it involves prior decisions to define materials, structures, processes, or any other instance
that may lead the construction of a piece. In any case, compositional choices can be related to
creativity given that the more possibilities of choosing composers are aware of, the more creative
and imaginative solutions they may explore in their music. For each musical parameter, there is a
possible compositional choice to be made so that a piece of music may be understood as the sum
(or combination) of all compositional choices made during the creative process (Figure 1).2

In this paper, I will focus on out-of-time compositional choices, discussing their creative
implications and potentialities within the compositional process. Thus, I shall henceforth refer to
them as just compositional choices to avoid wordy expressions.

Most often, compositional choices involve the construction of a compositional design (or plan)
to organize the various elements of the piece beforehand. This stage is prior to the very process of
writing the chosen elements in the musical score. In this context, compositional choices consist of
the process of defining an abstract musical object in the scope of specific musical parameters (or
attribute3) from its set of possibilities.

Assume, for example, that H is a set of given musical parameter that hold three discrete objects
(H = {a, b, c}). If H is a sequence of notes, then compositional choices concerns choosing any
number of notes from the set H from one (a unitary object) up to three (the whole set or the universe

2Note that the musical parameters in the figure are not ordered hierarchically, that is, the top-down disposition does
not necessarily define order each choice was made. Moreover, in a wider compositional spectre, these compositional
choices could be interpreted as the actual piece without the urge of being combined with the others.

3In the present paper, musical texture is not understood as a musical parameter, as it emerges from the combination of
them. Rather, it is a musical attribute that concerns organization. See section IV
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Figure 1: The combination of various compositional choices applied to different musical parameters resulting in a piece
of music.

set4). If the compositional choice involves choosing a single object, then there are three possible
choices available for the composer: {a}, {b}, or {c}. A compositional choice of two objects, in turn,
may also provide three possibilities of choice, considering the pairwise combination: {a, b}, {a, c},
and {b, c}.5 Finally, a compositional choice of three objects in H comprises a unique possibility of
choice that is the set H itself.

The calculation of the number of possibilities available in a compositional choice is given by
the combination formula C(n, r) (read as "n choose r"), where n is the number of variables of the
set and r is the number of components to be chosen so that r must be equal to or less than n
(Equation 1):

C(n, r) =
(

n
r

)
=

n!
r!(n− r)!

, for r ≤ n. (1)

Table 1 shows the application of this formula in the scope of pitch classes, with the number
of compositional choices (r) ranging from one to twelve.6 Besides the number of possibilities for
r = 6, all possibilities have a pair in a different number of compositional choices. This happens
because they are the complement to one another, that is, for each possibility K of a given r

4In Set Theory, the universe set, noted as U, stands for a collection that contains all possible variables of a given
element to be considered in a specific situation or in a given purpose. Any set of elements can be understood as U so that
it is taken as a reference to its possible subsets. Note that the definition of a U is not applicable in any contexts whatsoever.
Within the scope of Zermelo-Fraenkel. It is possible to define the more general object so-called category, but it is outside of
the scope of this paper to deal with such objects. Furthermore, when U contains all possible variables of a given element,
then it is indeed the exhaustive taxonomy of that element.

5Note that each one of them is a subset of H.
6Note that this number of possibilities does not consider class principles defined in pitch-class set theory formulation

as number of prime forms of pitch-class set is considerably lower. See [5].
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Table 1: The relation between the number of compositional choices (r) and the number of possibilities for the set of
twelve pitch classes (n) given by C(n, r).

Number of choices (r) Number of possibilities
1 12
2 66
3 220
4 495
5 792
6 924
7 792
8 495
9 220

10 66
11 12
12 1

there is a possibility J so that their union contains all twelve pith classes (U).7 As could not be
otherwise, the compositional choice with the lower number of variables to choose corresponds to
the whole set of pitch classes. One may note therefore that exhaustive taxonomies are of greatest
interest for composers within compositional choices since the wider is the U of variables, the more
compositional choices can be made from that.

Compositional choices may be cumulative within the same musical parameter. After choosing
a pitch class, for example, the next compositional choice may involve defining its position in the
register (pitch), its duration, its timbre, the way it shall be articulated and, so on. Each stage of
compositional choice leads toward the realization of the piece as music.8 A distinction shall be
made among the various stages of compositional choices. In the present work, the process of
defining a musical object is referred to as a compositional choice of the first instance so that any
choice made afterward is of the second instance. Thus, the second instance concerns decisions to
be made considering the available options provided by objects defined in the first instance. This
implies that a composer may choose a musical object instead of other in the first instance based
on the number of possible realizations it provides for the second instance. In other words, the
number of possible ways of realizing a given musical object as music may be the most decisive
criteria for choosing it beforehand.

Consider, for example, the information provided by Table 1. One may say that the compositional
choice involving the selection of twelve pitch classes leaves no room for compositional choices
since the unique option to be chosen is the whole itself. Nevertheless, in the second instance
several other compositional choices may coordinate it in a myriad of ways. For example, by simply
including an ordering factor to organize it sequentially in time, a composer can create up to
479,001,600 of different twelve-tone rows (12!). Furthermore, its realization also involve cumulative
compositional choices concerning various musical aspects, such as pitches, their absolute duration,
their dynamic, articulation, timbre, and so on. As a consequence, the number of possibilities within

7Note that the complement for r = 12 is r = 0.
8In this paper, the idea of realizing as music expresses process thereby a musical object (or abstraction) is written in the

score, considering their temporal organization, as well as the inclusion of a series of other variables that are not implied by
them. Therefore, music that is not supported by musical notation is out of the scope of the present paper. Additionally, I
shall consider the realization only in the terms of traditional notation, which excludes graphical indications, open musical
forms, interpretative indeterminacy, and the like.
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each compositional choice to achieve its realization is astronomic, given the multiple variables
and their possible combinations. In this paper, for the sake of simplicity, the discussion of the
possible realizations of musical objects will consist of only an intermediary stage between the
compositional design, where the objects are to be chosen, and their actual realization in the music
score. Thus, when I refer to a possible realization of a given musical object, I am, in fact, speaking
about its available possibilities in the second instance in terms of this intermediary stage. A
intermediary stage may be as simple as the example above regarding the inclusion of order for the
set of pitch classes.

Figure 2: Four realizations of the ordered set of pitch classes <0123> considering pitches.

Based on the information provided by Table 1, a composer may choose four pitch classes
among 495 possible compositional alternatives. A compositional choice of the second instance may
involve the simple inclusion of order. The number of compositional choices in this second instance
is defined by the possible permutation of notes, which is equal to 24 (4!). Another compositional
choice would involve the articulation of this sequence as pitches—a note in a specific register—so
that the number of available choices is defined by the number of possible realizations of these
pitch classes as pitches. This computation is not as simple as in compositional choices of the
first instance or as that one regarding order as several factors shall be considered. For example,
it is necessary to consider the range of the instrumental mean to calculate how many different
pitches are available for each pitch class of the sequence. Within an octave, the number of available
compositional choices for their realization as pitches in a sequential order is equal to the number of
choices involved in the order (24). In these terms, the sequence of pitch classes may have different
possibilities depending on the chosen instrument to be realized. Therefore, the very choice of the
instrumental mean is a crucial factor for computing the number of possibilities in the instance
of realization. If the composer defines the sequence will be written in a flute, for example, the
number of possibilities would be considerably smaller than if he/she chooses a piano solo given
their difference in the range of available pitches. This number may also increase by including the
possibility of pitches coinciding in time.

Figure 2 illustrates some of the possible realizations of the set of pitch classes [0123], considering
both order and pitch.9 In all realizations, the order of pitch classes is preserved. In the first
measure, the notation of pitch classes and pitches is equivalent; pitch classes are arranged from
low to high in both time and register from the middle-C.10 In measures two and three, pitch
classes are ordered only in time as pitches are placed in several registral spans. Finally, in the last
measure, all pitches are articulated at once in a single temporal span, which means the order is
defined only in the register from low to high.

9The notation of pitch classes consists of ascribing an integer for each pitch class so that 0 refers to C-natural, 1 stands
for C-sharp or D-flat, 2 corresponds to D-natural, and so on up to 11 that refers to B-natural.

10In the notation of pitches, each note is written according to its intervallic relation with middle-C, that is labeled as 0.
Then, the D-flat (or C-sharp) one semitone above is 1, the adjacent D is 2, and so on. The B directly below middle-C is
defined as –1, the B-flat (or A-sharp) a semitone below is –2, and so on. See [22].
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In the context of other musical parameters, computing the number of possible realizations
in the second instance would involve different factors suitable to their specific natures. If the
musical object is a duration, for example, its variables could imply, for example, the definition of
its metric position in the temporal span. Some compositional aspects are naturally non-practical
in terms of realizations of the second instance; the very definition in the first instance provides its
realization. Consider, for example, the definition in the first instance of a given tempo marking
(e.g. quarter note equals to 100bpm). This choice already defines its unique realization that is the
tempo marking itself. So there are no variables to be chosen in the second instance.

It should be clear now, from the discussion provided so far, how compositional choices operate
in the creative process to define the elements and their possible realizations. On the face of it, a
composer may argue that the wider the set of musical objects to be chosen and/or their possible
realizations in the second instance, the better for compositional choices as it provides more options
to be chosen. Although this might be true, an extensive number of possibilities may also intricate
the compositional process.

Concerning the way people deal with the choosing process, Sheena S. Iyengar and Mark R.
Lepper [9, pp. 999-1000], based on various researchers, say that in front of an extension of choices
some people:

may actually feel more committed to the choice-making process; that is, that they may
feel more responsible for the choices they make because of the multitude of options
available. These enhanced feelings of responsibility, in turn, may inhibit choosers
from exercising their choices, out of fear of later regret. In other words, choice-makers
in extensive-choice contexts might feel more responsible for their choices given the
potential opportunity of finding the very best option, but their inability to invest
the requisite time and effort in seeking the so-called best option may heighten their
experience of regret with the options they have chosen. If so, choosers in extensive-
choice contexts should perceive the choice-making process to be more enjoyable given
all the possibilities available. They should at the same time, however, find it more
difficult and frustrating given the potentially overwhelming and confusing amount of
information to be considered.[9, p. 1000]

This situation is perfectly suitable to the compositional context, in which the choice overload
may lead to a creative block—a state in which the composer is unable to decide a path to follow
in the face of the universe of possibilities. The so-called "dilemma of the blank page", where the
composer has no idea on how to start his piece or what kind of music he/she wants to compose,
is a trivial example of this creative block. This situation can be explained by the complexity of
dealing with a wide set of variables at once. This can be a critical issue for composers to manage
both objects and their realizations.

Liduino Pitombeira proposes the idea of an organized complexity, "a category in which is located
the vast majority of human problems, including music analysis and composition." ([25, pp. 39-40]).
Based on this idea, Pitombeira defines a continuum of complexity in such a way that organized
complexity is located between organized simplicity, which involves simple deterministic problems
holding up to four variables, that "can be handled, for example, by calculus and differential
equations", and disorganized complexity, "which involves the use of probability and statistics to deal
with an astronomical number of variables." (Figure 3).11

In the compositional process, organized complexity may be understood as the realm in which
composers create their music in a more or less restricted way. Disorganized complexity is therefore

11This proposal is based on the work "Science and Complexity" by Warren Weaver.
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Figure 3: Continuum of complexity from organized simplicity to disorganized complexity ([25, pp. 40]).

the most chaotic compositional situation, where the number of available choices tends to infinite—
the blank page. Organized simplicity, in turn, may be understood as the most strict situation, in
which there is only one possible compositional path to be taken. In terms of compositional choices,
the continuum of complexity impacts the number of available possibilities in both instances. This
means the higher the number of variables, the more possibilities the composer may choose, and,
consequently, more complex will be the very choosing process. This complexity, of course, impacts
both instances.12 Let me illustrate the creative implications of the number of variables in this
continuum of complexity by discussing the simple task of creating a list of things.

If a task requires to randomly list ten different things whatsoever, without specifying a category,
a topic, or rules, one could be taken too long to even start. Moreover, the choice overload could
even inhibit the starting point as a creative block. After all, choosing anything from an infinitude
of possibility is not an elementary task. Some people would start listing in a pragmatic way,
choosing at once something that is in their sight or the very first haphazard idea that pops up
in their mind. Sheena S. Iyengar and Mark R. Lepper relate that this kind of response would
be a way to "simply strive to end the choice-making ordeal by finding a choice that is merely
satisfactory, rather than optimal". ([9, p. 999]) In any case, the decision for the first item in the
list would probably mitigate the choosing process. Presumably, the other elements of the list
would be related somehow to the first chosen item, because it provides a guiding principle to be
followed. This means the infinitude of possibilities would become now finite and manageable,
being confined to guidelines established from the first choice. This explains why a task requiring
to list ten different fruits or animals would be probably easier to most anyone as it involves the
definition of a specific category, reducing the number of variables in the choosing process.

The idea of reducing the number of variables to be chosen may imply a sense of control. On
this, Igor Stravinsky advocates that "the more art is controlled, limited, worked over, the more it is
free" ([31, p. 63]). Thus, for him, the limitation is a crucial aspect of the compositional process:

As for myself, I experience a sort of terror when, at the moment of setting to work and
finding myself before the infinitude of possibilities that present themselves, I have the
feeling that everything is permissible to me. If everything is permissible to me, the best
and the worst; if nothing offers me any resistance, then any effort is inconceivable, and
I cannot use anything as a basis, and consequently every undertaking becomes futile.

[. . . ]

12In section III, I introduce a way of measuring this complexity in terms of quantity of available choices.
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Let me have something finite, definite matter that can lend itself to my operation only
insofar as it is commensurate with my possibilities. And such matter presents itself to
me together with its limitations. I must in turn impose mine upon it. [31, pp. 63-64].

In fact, the constraint of creative variables is an effective way of stimulating the composer’s
imagination as it decreases the number of variables to be chosen. This constraining strategy
has been a recurrent procedure throughout the history of Western Classical Music. In the study
of common-practice species counterpoint, for example, the complexity increases along with the
species. This means the various melodic and harmonic constraints are gradually introduced to
students so their comprehension is parsimonious, that is, before learning a new set of rules, the
student shall master the previous ones.13 By doing so, the student shall gradually improve the
ability to deal with different musical aspects, such as the independence of voices, the preparation
and resolution of dissonances, the harmonic progression holding the tonal sense, the melodic
directionality, the vertical (harmonic) resultant of the superposition of voices, and so forth. If all
rules were presented at once the study of counterpoint would be probably daunting due to the
number of its restrictions. It is interesting to consider that good contrapuntal writing urges from a
set of limitations so the composer shall master those rules to accordingly create inventive pieces.
Concerning the relation between freedom of choice and constraint of possibilities, Stravinsky states
that "we find freedom in strict submission to the object" ([31, p. 76]).

Let us take the best example: the fugue, a pure form in which the music means nothing
outside itself. Doesn’t the fugue imply the composer’s submission to the rules? And is
it not within those strictures that he finds the full flowering of his freedom as a creator?
Strength, says Leonardo da Vinci, is born of constraint and dies in freedom. ([31, p.
76])

In tonal practices, composing a fugue in a given tonality compels the composer to attend to
some invariable features for any fugue, as it involves a specific type of polyphonic writing based
on imitative principles. Not following this principle means the final result is anything but a fugue.
Yet, despite its limitations, the composition of a fugue is sufficiently flexible to provide rooms for
exploring creativity in various ways. Thus, creativity is not necessarily a matter of the number of
available compositional choices, but how he/she deals with any possible limitation by inventing
creative solutions to them.

It is up to the composer to define the size of the set of variables that he/she is more comfortable
in dealing with or that is more suitable to his/her compositional goals and skills. Such a decision
may involve either a wide set of choices, leaving rooms for inventive solutions, or a more easily
manageable set of possibilities with a limited number of variables. A skilled composer would
probably see a wide set of choices in both instances as a wealthy territory to explore his/her
imaginative mind. On the other hand, as discussed above, choice overload may baffle composers
given the overwhelming amount of available variables to be chosen.

In order to choose a set of variables, the composer shall be aware of the universe of possibilities
that are available to him/her. Therefore, mapping how many possibilities are available for the
realization of a given compositional choice is a crucial database for musical composition as it
gives the composer the freedom to choose in advance the degree of complexity in the continuum
he/she would like to manage in the construction of his/her music. This degree of complexity can
be measured by what I call compositional entropy.

13Note that in this strategy, the complexity of compositional choices is also progressive, gradually increasing the number
of possibilities.
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III. Compositional Entropy

In the article "A Mathematical Theory of Communication", published in 1948, Claude Elwood
Shannon ([30]) proposes the theoretical foundations for what would be known as the Theory of
Information. According to Shannon ([30, p. 379]):

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the messages
have meaning; that is they refer to or are correlated according to some system with
certain physical or conceptual entities. These semantic aspects of communication are
irrelevant to the engineering problem. The significant aspect is that the actual message
is one selected from a set of possible messages. The system must be designed to
operate for each possible selection, not just the one which will actually be chosen since
this is unknown at the time of design.

Assume, for example, that A and B are two different messages one should choose to transmit
to someone else. Both messages are equivalent in terms of choice, as any of them can be chosen.
Nevertheless, to transmit messages A and B, it is necessary to optimize the transmission process
for the most economical as possible. For example, if message A is a sequence of zeros repeated
thirty thousand times, then it is not necessary to send the entire sequence of message A, but
only two pieces of information: number zero and thirty thousand. With that, the receiver will be
able to understand the message A. Now, if message B is, for example, a random noise, this is
information is essentially incompressible, which means the entire sequence contained in B must
be sent. This means message B is more complex than message A given the amount of information
it contains.14 In a general sense, a message can be understood as the random realization of
successive autonomous variables so that to measure the amount of information within a random
message, Shannon proposes the idea of entropy. The term was borrowed from thermodynamics,
where it refers to a molecular system, that is, it measures the degree of disorder of a given system.
In terms of information, entropy is a metric that quantifies the degree of predictability of a given
message happening in a certain context. This measurement depends on the amount of information
so that the greater the amount of information, the greater the entropy, that is, the message is more
chaotic or unpredictable (message B). Similarly, a low value of entropy indicates more predictable
information with less variables to be considered, which evokes a sense of simplicity (message B).
In his words:

Suppose we have a set of possible events whose probabilities of occurrence are
p1, p2, ..., pn. These probabilities are known but that is all we know concerning which
event will occur. Can we find a measure of how much “choice” is involved in the
selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(p1, p2, ..., pn), it is reasonable to require of it the
following properties:

1. H should be continuous in the pi.

2. If all the pi are equal, pi =
1
n , then H should be a monotonic increasing function of

n. With equally likely events there is more choice, or uncertainty, when there are more
possible events.

3. If a choice be broken down into two successive choices, the original H should be the
weighted sum of the individual values of H. ([30, p. 379])

14See ([28]).
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Based on this idea, I shall define the compositional entropy as the measurement of the amount
of freedom a composer has in creating his/her music considering how many compositional options
are available to him/her in the scope of a given musical parameter. To put it differently, it expresses
how complex a compositional choice can be by considering the number of variables involves in it.
This means the higher the compositional entropy, the more complex is the compositional choice
as there will be a high number of possibilities to be chosen. On the other hand, a low degree of
compositional entropy implies a limited set of compositional possibilities.15

The compositional entropy may be used to measure the complexity for compositional choices
in both instances so that it expresses the complexity of choosing within the set of possibilities.
Therefore, exhaustive taxonomies are crucial for computing compositional entropy as it defines
the number of all variables to be considered the compositional choices. For example, let K be a
set of musical objects of a given nature. The compositional entropy of K, denoted by H(K), is
given by the weighted average of the logarithm of the probability of each realization of the objects
of K, where the weights are the respective probabilities themselves. This is in accordance with
Shannon’s definition of entropy in Information Theory [30], and this quantity is computed as
(Equation 2)16:

H(K) = −
n

∑
i=1

pi log pi, where n is the number of possibilities within K. (2)

Now, consider G is a set of possible realizations for a given musical object defined in K.
Then, H(G) measures the compositional entropy of available choices in a compositional choice
of the second instance. In order to differ H(K) from H(G), henceforth, I shall refer to them as,
respectively, compositional entropy of choices, that concerns the process of choosing a musical object,
and a compositional entropy of realization, in which is taken into consideration all available ways to
realize the chosen object as music. Therefore, compositional entropy of realization is conditionally
related to the nature of the musical object previously defined. Such a formulation is analogous to
the idea of conditional entropy, in which the computation of the entropy of a random variable is
conditioned to the entropy of another random variable (see [28]).

During the compositional process, all variables have the same probability to be chosen by a
composer within both instances of compositional choices. Hence, there are no preferred variables
a priori from the set of possibilities.17 Thus, the formula may be simplified as the following by
setting each pi as equal to 1/n (Equation 3)18:

H(K) = log(n) (3)

15This article does not intend to discuss in depth the concept of entropy developed by Shannon [30], but only to use it
as a quantifier of uncertainty in compositional choices based on the number of available options. Moreover, the proposal
presented here differs from those concerning the application of entropy in musical contexts. Leonard Meyer ([17][16]) was
the first to introduce the concept of entropy in music. Other musical applications can be seen, for example, in [13] [10]
[11][32][33][12]

16It is noteworthy that his is the unique function that satisfies the involved axioms.
17Note that a non-uniform probability to choose a variable would involve either a total awareness of the composer’s

idiosyncratic preferences, which would probably require a compositional maturity, or a statistical observation to catalog
the most recurrent variables in the compositional practices.

18In the present work, all logarithm base are equal to 2, but for concision, it is omitted. Entropy is usually measured in
a logarithm base of 2 in information theory due to the output is in bits—the unit. Nevertheless, any base greater than 1
may be used.
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Figure 4: Curve of compositional entropy defined by the number of possibilities demonstrated in Table 1 defined by the
formula log(n), where n is the number of possibilities to be chosen from the set of twelve pitch classes.

If K holds five musical objects, for example, and a composer wants to choose one element of
K. Then, the compositional entropy of this compositional choice of K is equal to 2.322 (i.e.,
H(K) = log((5

1) = 5) = 2.322). This means the complexity of the compositional choice in dealing
with K is relatively low for a situation of choosing a single component. Now, if a composer
is compelled to choose two elements of K, then the compositional entropy is equal to 3.322
(H(K) = log((5

2) = 10) = 3.322). Of course, for any musical object chosen from K there is also a
compositional entropy of realization (i.e., H(G)).

Figure 4 provides the curve of compositional entropy for the set of possibilities presented
in Table 1. As one would imagine, choosing the U of available choices constitutes the minimal
degree of compositional entropy since it does not involve a choice properly speaking. Also, the
highest degree of entropy is related to the set with more available compositional choices to be
made (six out of twelve). Even so, in terms of compositional entropy, the difference of its value
compared to the others is not as much greater than its difference in terms of possibilities provided
in Table combinationspc. Based on the degree of the compositional entropy, the composer may
decide the amount of complexity he/she would prefer to manage in their music.

In the following sections I will present the exhaustive taxonomy of musical textures by
considering their relations to integer partition, a proposal first introduced by Pauxy Gentil-
Nunes[6]. From this definition, I will discuss a way of mapping their possible realization as music,
enabling, thereby, the calculus of the degree of compositional entropy of realization in a textural
perspective. For this computation, I will assume the premise that the probability of compositional
choices is uniform, so the process will be as simple as counting the possibilities by using the
formula log (n), where n is either the number of musical objects to be chosen (first instance) or
the number of available realizations of a given object (second instance).19

19As aforementioned, the consideration of non-uniform probabilities is out of the scope of the present work. Such
an investigation would demand examining which are the musical textures or their realizations that are more likely to
be chosen by a composer, considering his/her compositional expertise or awareness of most traditional compositional
practices.
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IV. Musical Texture

Musical texture has been of great interest for composers since at least the late eighteenth century
as an increasingly important musical component to articulate musical syntax and its hierarchical
relations. Such poietic development has influenced not only manuals for composition and
orchestration, but also the way texture (and music) is perceived. During the twentieth century,
texture became even more significant to compositional practices as the urge to overcome the
traditional syntax of the tonal system led various composers to address texture and its potential to
unfold the musical form. In fact, the way music evolves over time can be conceived as changes of
texture and therefore functions to advance the shape or trajectory of a composition.

The definition of the term "texture" is not consensual among musicians and theorists since it
has been associated with different musical aspects throughout history. Anne Trenkamp states that
"despite problems of definition, the musician recognizes texture as a definable element." [34, p. 14].
Based on the vocabulary used to describe musical texture, the concept of texture seems to converge
into two main approaches[3]: a) texture as a musical attribute that concerns the organization of
musical materials, which is usually described by traditional labels, such as monophony, homophony,
polyphony, and heterophony; and b) texture as sonority, whose vocabulary describes the aural
perception of registral activities, combinations of timbre, variations on dynamics, and the like,
using metaphorical descriptive words, such as thin, thick, dark, light, ethereal, sparse, dense, and
so on.

In the present work, texture is understood as an organizational attribute defined by the number
of simultaneous vocal or instrumental parts therein (quantitative aspect) and the way they interact
to one another to assemble what most people would refer to as the “layers” of texture (qualitative
aspect). Formally, a given texture (or textural configuration) may be defined as the organization
of n simultaneous musical threads20 into m textural layers.21 The criteria for defining how many
layers a textural configuration holds are contextual and argumentative according to its specific
musical context. If two or more threads share one or more characteristics, such as pitch (or
pitch-class), rhythm (exact duration), register span, timbre, dynamics, and the like, they assemble
the same layer. Otherwise, each thread stands for a different layer with a thickness of 1.22

A piece of music can hold either a single or multiple textural configurations, and the way they
are diachronically arranged within the piece is intrinsically related to the perception of musical
flow. That is, depending on the contrast between two contiguous textural configurations, it may
imply a rupture in the sense of continuity. Of course, this rupture may be associated with a
structural segmentation of musical form. Parsimonious motion, on the other hand, may contribute
to a smooth musical flow without undermining the sense of unity. In order to discuss these
textural properties, each texture may be described by a different integer partition.23 A partition is
a way of representing a number by summing other numbers. Number four, for example, holds
five different partitions namely: [4], [1+3], [2+2], [1+1+2], and [1+1+1+1].

Figure 5 demonstrates how each one of the partitions of four may address a specific textural

20A musical thread (or simply thread) is the minimal constituent of a texture, which may be a single note (or sound), a
series of notes positioned in a register, a pitch within a chord, etc. See [21] for further information.

21This definition has a theoretical ground on the seminal work of Wallace Berry ([2]), Pauxy Gentil-Nunes’ proposal
called Partitional Analysis that relates texture with the Theory of Partitions ([6]), and on some of my previous works ([21]).

22In a general sense, the thickness of a layer is determined by the number of threads therein. Based on its thickness, a
layer may be classified as either a line (a single thread) or a block (a group of two or more threads).

23The use of numbers to depict textural configurations were first introduced by Berry [2], but its association with
partitions was proposed by Gentil-Nunes, which enables a series of further developments, as the access of the exhaustive
taxonomy of textural configurations for a given number of threads, as well as their topological relations defined by
partitional operators. See [6].

137

http://www.musmat.org/


Journal MusMat • June 2021 • Vol. V, No. 1

Figure 5: Partitions of four addressing textural configurations. Parts are defined by rhythmic coincidences.

configuration.24 Each number stands for a layer and their respective absolute value expresses the
number of musical threads therein (thickness). Textural parts can be classified as either a line (a
unique thread indicated by number 1) or a block (the assemble of multiple threads expressed
by any number equal to or greater than 2).25 Parts are defined by rhythmic coincidences, that is,
threads in "rhythmic unison" (where their duration are strictly aligned) assemble the same part.
Note that the criterion for segregating textural parts is also related to the diversity of elements
for the sake of the analysis. This means that the number of parts reveals the rhythmic diversity
of the texture. Similarly, if the criterion were timbral differentiation, the number of parts would
reveal the number of different timbres therein. Below each partition, there is an iconic model that
portrays the number of parts according to their classification (either lines or blocks).

In the partition [1,3], the line (part 1) shifts its position over the register, moving from one
instrument to another within the ensemble. First, the line is presented in the flute. Then, it moves
to the oboe, concluding in the clarinet. This change creates internal variations of the textural
configuration, without, however, disturbing its morphology—the organization still preserves the
superposition of a line (part 1) and a block (part 3). Thus, the variance implies a change in the

24Gentil-Nunes presents a series of original concepts and tools concerning the relation between musical elements and
integer partitions, which enables a refined analysis of texture, as well as its systematic manipulation for compositional
purposes. [6]

25For the sake of clarity and conciseness, partitions are noted within brackets in their abbreviated notation, in which the
repetition of a number is indicated by a superscript. Also, in order to avoid notational ambiguities, each part is separated
by either a comma or by the superscript of the previous part.
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spatial order of parts.26 A partition is, in essence, an unordered set of numbers, which means the
order of parts is irrelevant; partitions [1,3] and [3,1] are equivalent. Nevertheless, the inclusion of
an ordering factor may portray the registral span of parts, which would perfectly suit to describe
the variations of partition [1,3] in Figure 5. 27

Each combinatorial permutation of the parts within a partition corresponds to an ordered
partition. Obviously, the partition must have more than one part; otherwise, the ordered partition
is redundant to the partition. The number of ordered partition for a positive integer n is equal
to 2n−1. The five partitions of number four, for example, may be combined into eight ordered
partitions: <4>, <1,3>, <3,1>, <22>, <122>, <1,2,1>, <2, 12>, and <14>.28 The order factor indicates
the general registral placement of parts so that the left-to-right notation corresponds to the top-to-
down position of them in the register. Consider x and y as two different textural parts of a texture.
If part x is higher than x in the register, then the ordered partition is written as < x, y >; otherwise,
the ordered partition is < y, x >. Of course, this relation is not absolute since it depends on a
comparative observation among all parts. This means the highest part written in the leftmost
position within an ordered partition does not necessarily is located in a high register, but it is the
highest among all parts.

One may notice that ordered partitions are not suitable to describe interpolated textures, i.e.,
textures in which "threads of a part are interlaced (or interwoven) with threads of another."
([21, p. 81]). To put it differently, ordered partition can only describe textural realizations in
which the non-overlapping parts are perfectly stacked to one another. In order to portray the
spatial organization of those situations, I have introduced a specific for texture notation that I call
thread-word (see [21]). A thread-word maps the way threads are posed in the register, conveying
their organization into parts. It is based on a one-to-one correspondence between parts, their
threads, and letters. For each thread within the texture, is ascribed a letter in such a way that
all threads that assemble the same part receive the same letter. The number of different letters
corresponds to the number of different parts of the texture, and the sum of all equivalent letters
reveals its thickness. The notational principle of thread-words is identical to ordered partitions,
so the left-to-right order of letters maps their top-down disposition in the register. For example,
partition [13] can be represented as any of the following thread-words: <abc>, <bcd>, <xyz>, and
so on. In the same way, a thread-word noted as <aba2> indicates a texture holding a single line
(written as "b") and a block of thickness of three (indicated by the sum of letters "a").29 Note that
this thread-word is equivalent to partition [1,3], expressing an organization an ordered partition
is not able to.30 Figure 6 shows the comparison between ordered partitions and thread-words
describing all spatial organizations of threads of partition [1,3]. Textural parts differ from one
another in their rhythmic articulations.

Each ordered partition or thread-word provides what I call textural layout—a possible com-
positional choice of the second instance available for the composer to realize a given textural
configuration as music, considering the combinatorial permutation of its component parts in the
register. Note that the textural realization discussed here deals only with textural factors, that is, it

26By spatial order, I refer to the general vertical distribution of threads and/or parts without dealing with their
actual registral span—a conception from the same realm of Theory of Musical Contour (see [23][14]). Therefore, this
proposal differs from Berry’s texture-space in which the spatial factor of textures consists of measuring the number of
semitones between the outer parts to observe expansions and contractions of register through a textural sequence (see [2,
pp. 195-199]).

27In mathematics, an ordered partition is called composition, but this word can be confusing in musical contexts. For this
reason, in the present work, I shall refer to a partition where the order matter as ordered partition. For further discussions
on ordered partitions and their features, see [1].

28In this article, ordered partitions are enclosed with "< >" to differ them from unordered partitions.
29As in partitional notation, thread-words can use a superscript to express the multiplicity of letters.
30See [21] for further discussion on thread-words, their particularities, and applications.
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Figure 6: Comparison between ordered partitions and thread-words to describe the spatial organizations of threads of
partition [1,3]. Parts are defined by rhythmic coincidences.

is exclusively defined by aspects regarding textural morphology, regardless of the particularities of
musical materials that undergird it. In terms of realization, considering materials involved to real-
ize a given texture as music would intricate the compositional process by increasing considerably
the number of involved variables, which would, consequently, impact the degree of compositional
entropy. Concerning compositional choices, a textural layout refers to the second instance while
partitions are defined in the first instance. Therefore, the relation between a partition and its
possible textural layouts is of the same nature of the relation between pitch classes and pitches so
that the set of all layouts of a given textural configuration enables to do constitutes the exhaustive
taxonomy of its spatial realizations.

Prior to the discussion on compositional entropy in a textural perspective, it is necessary to
further examine the very notation of thread-word to compute the number of available possibilities,
what I call exhaustive taxonomy of textural layouts. Moreover, it is important to introduce some
concepts regarding textural layouts that are crucial for such a discussion.

i. Exhaustive Taxonomy of Textural Layouts

In the notation of thread-words, the letters are arbitrary, that is, any letter can be associated with
any textural part. Even so, it is possible to attribute a specific letter to a given textural part based
on an endemic characteristic of the materials that underlie it.31 By doing so, it is possible to track
the diachronic transformations of textural parts along with contiguous textures. For example, in
Figure 7, each letter refers to a different part of the thickness of two that combined forms partition
[22]. The criterion for segmentation is both timbre and pitch-class content as indicated in the
score. As letters "a" and "b" are invariably associated with the same parts, thread-letters spell out
how threads permute within partition [22], revealing its textural layout. This shows partition [22]
provides a high degree of compositional entropy as the composer may explore each one of these
possible layouts in various creative ways during the compositional process.

31According to Berry, this prominent characteristic of textural parts emerges "when materials are of such distinctive
textural cast, and when the particular qualities of texture are so vital a factor in identity and interest of thematic-motivic
material." [2, p. 254]
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Thread-words:   <a2b2>       <baab>                    <baba>                    <abab>

Block {a} Pizzicato | pc-set 3-5[016]
Block {b} Arco | pc-set 3-3[014]

Figure 7: Thread-words portraying different spatial organizations of threads within partition [22]. Parts are defined by
both timbre (either pizzicato or arco) and pitch class content. [21, p. 99]

Although differing from one another in their notation, the last two thread-words in Figure 7
can be understood as equivalent to each other as they consist of an alternation of threads from both
parts. In fact, they correspond to the same thread-word class (tw-class). A tw-class is a notational
convention akin to normal form on pitch-class set theory. It assembles all thread-classes that
share the same spatial organization. By convention, the first letter of a tw-class is always "a"
and for each new part is ascribed a new letter following the alphabetical order. For example,
the thread-word class <ab2ac> comprises thread-words all of the following: <ba2bd>, <xy2xz>,
<ca2cb>, etc. Similarly, a thread-word <x3yxz2> is rewritten as tw-class <a3bac2>. The main goal
of tw-classes is to reduce notational redundancies thereby providing the accurate number of
potential realizations of a partition—crucial information for calculating compositional entropy.
This property may be clear with the following example. Consider thread-word <abcd>. How many
permutations is it possible to form from it? A simple factorial of the number of elements reveals
thread-word <abcd> can hold 24 possible permutations (i.e. 4! = 24). Thread-words <dcba>,
<bacd>, and <cbda> are some of these permutations. However, they are essentially identical in
terms of organization: four independent threads (lines) stacked to one another. In this case,
these notational variations are only reasonable in a context where each letter express a different
musical idea, as demonstrated in Figure 7, which does not concern the spatial organization of
texture. Thus, by considering tw-classes, partition [14] has a unique partition-layout possibility of
realization expressed by the tw-class <abcd>.

In Figure 7, the tw-class <a2b2> in the first measure is unique that is equivalent to unordered
and ordered partitions. For that reason, tw-class <a2b2> is called the thread-word prime class (or
simply tw-prime). A tw-prime is a textural adaptation for the concept of prime form in pitch-
class set theory. It may be defined as a tw-class where non-intermingled parts are expressed
in increasing order so that all layouts of a given textural configuration (partition) are, in fact,
permutations (or anagrams) of the tw-prime that stands for it. Each one of these anagrams stands
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Table 2: Anagrams of tw-prime <a2b2> and their respective notation in tw-class showing redundancies.

Anagrams Tw-classes

aabb <a2b2>

baab <ab2a>

abab <abab>

baba <abab>

abba <ab2a>

bbaa <a2b2>

for a different textural layout.
In order to eliminate redundancies, all anagrams from a tw-prime must be rewritten in the

form of a tw-class. Consider, for example, the thread-word <b2a>. It is an anagram of tw-prime
<ab2>. Yet it is not a tw-class given its first letter is "b" instead of "a". In order to access all textural
layouts of tw-prime <ab2>, the anagram <b2a>must be rewritten as the tw-class <a2b>. Note that
their spatial organization is invariable, but this rewriting process is necessary to compute the
number of textural layouts. Table 2 shows this relation between anagrams and their notations as
tw-classes to map all layouts of partition <22>. Despite threads can be arranged into six different
anagrams, they provide only three tw-classes, namely: <a2b2>, <ab2a>, and <abab>.

To calculate how many textural layouts are available for a composer from a given tw-prime, it
is necessary to compute the possible permutation of its component parts, eliminating possible
redundancies. The number of component parts is defined by its density-number(DN).32 So the
number of permutations can be accessed by its factorial (i.e., TL = DN!, where TL is the quantity
of available textural layouts). Nevertheless, not all permutation shall be computed as commuting
repeated letters is useless in terms of textural layout. For example, the DN of tw-prime <a3>
is equal to 3 so that there are six possible permutations of it (DN! = 6). Since all of these
permutations are identical the number of textural layouts is one, represented by tw-prime <a3>
itself. To eliminate the redundancies of these cases, it is necessary to divide the number of
permutations by the factorial of each part (expressed by the sum of each letter). This is expressed
in the following formula, where {p1, ..., pi} are the parts of a partition P and i ∈ Z+ (Equation 4):

TL =
DN!

p1!...pi!
. (4)

For example, the number of layouts of tw-prime <a2b3> is equal to 5!
2!3! = 10. Similarly, tw-prime

<ab2c3> provides 60 textural layouts (TL = 6!
1!2!3! = 60). Note that if the tw-prime comprises a

unitary part, the number of layouts will be always one since the thickness of the part is equal to
the density-number (TL = DN!

P! = 1, where P = DN).
None of these examples includes tw-primes with duplicated parts, that is, textural configuration

with two or more parts holding the same thickness. These textural configurations are those written
with a superscript in the form of ordered partitions. For example, in thread-word <ab>, both parts
hold a thickness of 1. Given the notational convention of tw-class, this is significant information
that impacts the output computation. After all, although <ab> and <ba> are possible anagrams,

32This term was coined by Berry [2] to refer to the sum of all threads within a textural configuration. In the realm of
partitions, it corresponds to the positive integer n that is partitioned into various ways.
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they are members of the same tw-class <ab>. Thus, it is necessary to exclude permutations
between and among parts with the same thickness from the computation of textural layouts. To so,
the formula presented in Equation 4 shall be divided by the factorial of the number of duplicate
parts, as demonstrated in the following formula33 (Equation 5):

TL =
( DN!

p1!...pi !
)

d!
, (5)

where d is the quantity of duplicated parts within the textural configuration. For example,
in the tw-prime <abc2d2> there are four duplicated parts: a and b, and c2 and d2 so that it
provides 45 textural layouts as (TL = 6!

1!1!2!2! /4! = 45). In the same way, tw-prime <abcd> holds
a unique partition layout since the density-number is equal to the number of duplicated parts
(TL = 4!

1!1!1!1! /4! = 4!
4! = 1). Considering the factorial of zero is equal to one (0! = 1), this formula

is applicable to any tw-prime.
Table 3 provides the exhaustive taxonomy of textural layouts in the form of tw-prime, as well

as their respective anagrams in the form o tw-class, for the partition lexical set for n = 4. Each
partition can be classified into three distinct types: a) massive partitions (type M), formed by a
single block ([2], [3], and [4]); b) polyphonic partitions (type P), whose the number of lines therein
is equal to the density-number ([1], [12], [13] and [14]); and c) mixed partitions (type X), when
blocks and lines are combined ([1,2], [1,3], [22], and [122]). While type X contains the textural
configurations with more textural layouts, in both types M and P the number of textural layouts
is equal to their respective tw-prime. In this lexical set, tw-prime <abc2> provides more textural
layouts (6).

Figure 8 shows the topological relation among adjacent tw-class within the lexical set for n = 4,
organized in a structure called thread-word classes Young Lattice (TYL). TYL can be understood
as an ordered version of Gentil-Nunes’ Partitional Young Lattice ([6, pp. 50-51]. It provides the
exhaustive taxonomy of textural layouts in the form of tw-classes for n threads. Each square
is a different tw-classes so that abreast squares are textural configurations of the same density-
number.34 Lines indicate a different transformational operation that connects them. In summary,
resizing (m) consists of the increment or decrement of the thickness of a given part by including
a singular thread in it (indicated by full blue lines). Revariance (v) describes the operation of
adding or excluding a unitary part (line) from the textural configuration (indicated by dotted
green lines). Finally, permutation (T) is an operation where threads swap their spatial position
within the textural configuration thereby preserving the density-number (indicated by double red
lines).35 All these operators involves a parsimonious change from a tw-class to another, which
means a composer may choose a sequence of textures by moving along edges to ensure a smooth
textural flow if this is his/her goal.36

33Despite its logical construction, this equation is still a conjecture. The proof of its infallibility will be left for future
works.

34Note that below each tw-class there is a pair of numbers separated by a comma. They indicate the calculus of the
binary relations among all threads to express whether they hold a relation of either agglomeration (in cooperation to
assemble a textural part) or dispersion (non-congruence or divergence). This pair of indices provides crucial information
for the very definition of textural parts. See [6, pp. 33-38].

35Permutation is an operation I formulate in my Ph.D. Dissertation, while both resizing and revariance were proposed
by Gentil-Nunes to deal with the topological relations among partitions. Hence, their applications in the present article
consist of a simple translation of their principles to the realm of thread-word classes. For further information regarding
these operations, see [6] [8] and [21].

36Obviously, this sense of continuity deals only with textural factors since an actual smooth flow also depends on the
materials the composer choose to realize the tw-classes.
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The number of textural layouts may also consider the number of available threads. For example,
suppose a composer wants to use the partition [1,2] in an instrumental set comprising up to four
threads. This means that one thread will necessarily be in silence. So the composer may ask
how many ways the composer can realize it within the compositional process? To answer this
question, it is necessary to compute the combination of the number of available threads (T) and
the density-number of the textural configuration (DN) multiplied by the number of its textural
layouts (L), as can be observed in the formula (Equation 6):

TL =

(
T

DN

)
L =

T!
DN!(I − DN)!

L, for T > DN. (6)

Returning to the question below, the number of partition layout for [1,2] is three (i.e., L = 3) so
that it can be realized in twelve different ways in a context of four of threads by equation(4

3)3 = 12
(Figure 9). In order to indicate which thread is at rest in the realization, I have included the
number zero in the notation of tw-class. In this case, instead of mapping the general register span
of threads, the spatial order within tw-class is associated with the timbral distribution of threads
according to the way they are written in the score so that, the first position within the tw-class
corresponds to the first violin, the second position indicates the second violin, and so on. Needless
to say that the number of possibilities may increase significantly in contexts where the difference
between the number of available parts and the density-number of the texture is greater. Textural
parts are defined by timbre (either pizzicato or arco), rhythmic coincidence, and dynamics.

As discussed above, when the tw-class is a single block (type M), its realization comprises a
unique textural layout each that corresponds to their respective tw-prime. Nevertheless, from
the analysis of the repertoire, it is possible to observe that blocks usually assume various forms
of articulation other than common sense. In my Ph.D. thesis, I proposed five modes of textural
realization that probably "cover the most recurrent textural realizations of concert music inferred
by various analyses" ([21, p. 166]). One of the modes, called evolving realization, deals specifically
with the possible realizations of blocks.37 The main premise of evolving realization is a block
can be realized by "the successive superposition of its constituting parts" in such a way that "the
block is not understood as such until it is fully constructed; or one can say it is retrospectively
defined by the stationary motion of staggered entrance of sustaining notes." ([21, p. 174]).38 This
means the block evolves over time from a polyphonic (or mixed) to a massive presentation. An
opposite effect of this construction may involve the "dilution" of blocks by gradually removing its
constituting parts, as a "filtering" process. The difference between gradual construction and dilution
of blocks is their onsets and offsets (endpoints). In the first, all threads assembling the block hold
the same offset, but differing on their onsets. The latter, in turn, has exactly the opposite relation,
with threads aligned on their onsets, but shifting their offsets. On the other hand, the traditional
sense of blocks is that where the onsets and offsets of all threads match in time.

Figure 10 exemplifies all three ways of realizing a block with three notes.39 Below each
realization there is an iconic model that portrays their onset/offset relation as described above.
Note that both gradual construction and dilution emerge from the cumulative superimposition of

37This mode is, in part, based on the proposal of Bernardo Ramos in the analysis of the ways thereby blocks can be
articulated in the guitar. See [26].

38To better understand the principle of evolving realization, it is important to consider a wide window of observation, that
is, the temporal frame whereby all components therein are understood as assembling the same texture. This In a wider
window of observation

39Needless to say that the idea of block is not necessarily restricted to notes as instruments with undefined pitches can
also assemble blocks according to given criteria.
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Figure 9: Exhaustive taxonomy of textural layouts for partition [1,2] in a context of four threads. Parts defined by both
timbre, rhythmic coincidence, and dynamics.

each thread, which would be understood, in a strict perspective, as the combination of three lines
(partition [14]).40

A block with a thickness n can be presented in evolving realization as any of the partitions of
n. This means a block with three threads can be presented as any of the following: a) a standard
realization of a block (partition [3]), b) three lines ([13]), and c) a block of two and a line ([1,2]).
Just those possibilities are of great significance to composers; however, the spatial factor may
be considered in order to increase significantly the set of compositional choices. Hence, the
spatial organization of threads within a block, as well as the order of their onsets/offsets may

40The music of Edgar Varèse is full of examples of both gradual construction and dilution of blocks. See, for example,
the various blocks of Déserts (1950/1954)—more specifically mm. 21-26 and mm. 171-174 where this strategy is clearer.
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Figure 10: Three ways of realizing a block with three notes considering the evolving realization: standard realization,
gradual construction, and gradual dilution. Parts are defined by their stationary motion.

include textural layouts for textures of type M, expanding, thereby, the set of layouts in tw-classes
discussed above.

To compute all possible layouts for a block with a thickness of n, it is necessary to sum all
layouts of all partitions of n. This may be accessed by using the same formula provided in
Equation 5, but multiplying the output by i!, where i is the number of parts within the partition,
and then by two. The first multiplication is meant to consider permutations of threads in all
available time-points while the second includes the computation of both gradual constructions
and dilutions, (Equation 7)41:

L(K) = 2
( DN!

p1!...pi !
)

d!
j! . (7)

With this formula, the computation of all layouts is just a matter of summing all outputs for all
partitions of n, subtracting one from it to exclude the duplicated standard realization of the block
(where K = n). This is given by the formula, where n is the thickness of the block to be realized
(Equation 8):

TL(n) =
K

∑
j=1

L(Kj)− 1. (8)

For example, a block of three can be presented in 25 different textural layouts considering evolving
realization, as demonstrated below (Equation 9):

41In the formula K is a partition of n, pi is its parts, i is the number of parts, and d is the quantity of duplicated parts
within the partition.

148

http://www.musmat.org/


Journal MusMat • June 2021 • Vol. V, No. 1

P(3) = {[3], [1, 2], [13]}

L([3]) = 2 ( 3!
3! )
0! 1! = 2

L([1, 2]) = 2 ( 3!
1!2! )
0! 2! = 12

L([13]) = 2 ( 3!
1!1!1! )

3! 3! = 12

TLn = 2 + 12 + 12− 1 = 25

(9)

Figure 11 shows a set of iconic models to portray each one of these 25 textural layouts, relating
them with their respective partition.42 Letter (a) shows the standard realization of [3], with
both onsets and offsets of all threads strictly aligned. This corresponds to the textural layout for
tw-prime <a3> presented in Table 3. The non-coincidence of either onsets or offsets produces,
as mentioned above, gradual constructions (Figure 11b and c) and dilutions (Figure 11d and e),
respectively. Below each iconic model has its description as a contour in duration space (see [15, pp.
150-167]).

Figure 11: Exhaustive taxonomy of textural layouts of three threads to assemble a block of a thickness of three considering
the evolving realization: onset and offset alignment (a); offset alignment (b and c); and onset alignment (d
and e). Revised version of [21, p. 176].

42These iconic models are based on Robert Morris organization of sequential tones in time and space (see [22, pp.
295-299][24, p. 346])
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Each thread in this textural layout corresponds to a sequence of attack points in the register so
the contour expresses their spatial order of presentation according to their relative duration. In
the contour, each thread is identified by a number from zero (the shortest duration) to n – 1 (the
longest duration), where n stands for the number of different durations therein.43 Also, within the
contour, the first element refers to the relative duration of the highest note, the second element
indicates the duration of the note contiguously above that, and so on, so that the left-to-right order
in the contour depicts the top-to-down disposition of threads in the register. Note that all contours
in gradual construction have a version in gradual dilution as they are the very retrogradation of
each other. In the iconic models, they may be understood as the rotational operation from one
another.

During the compositional process, a composer may be compelled to combine gradual con-
structions and dilutions to produce more complex articulations of the block of three in evolving
realization. In this case, there are 144 possible combinations available for the composer. This
wealth amount of possibilities may be a fruitful compositional inventory for composers to explore
their creativity in dealing with blocks. As could not be otherwise, the greater the thickness of the
block, the higher the number of its textural layouts to be considered in evolving realization.

From the computation of an exhaustive taxonomy of textural layout presented here, it is
possible to measure the compositional entropy of both the set of musical textures and textural
layouts. This is the subject of the next section.

V. Compositional Entropy Applied to Musical Texture

A compositional entropy applied to texture consists of the measurement of the amount of choices
a composer may have to choose both textural configurations in the form of partitions for a given
number of threads (the first instance of compositional choices—compositional entropy of choice)
and the variety of textural layouts a chosen partition holds (second instance of compositional
choices—compositional entropy of realization). In any case, the higher the number of options
available for the composer, the higher is the compositional entropy. In order to proceed in this
discussion, let me exemplify the relation between textural entropy in both instances: partitions
and textural layouts.

By examining all partitions from 1 to n, one may notice that the higher the number of threads,
the greater will be the set of available partitions for it, and, consequently, the more complex will
be the choosing process expressed by the compositional entropy. If a composer chooses to create
a piece for a wind quintet, for example, despite multiphonics and other extended techniques, it
involves a set of five available threads. Then, there are eighteen different partitions to be chosen in
the construction of his/her piece (Table 4).

The compositional entropy involved in the choosing process of a single partition from this set is
equal to log(18) = 4.17. Nevertheless, it is not common for an entire piece to comprise only a single
partition, except, perhaps, in cases of monophonic pieces as it comprises a single thread. Therefore,
the number of compositional entropy may increase depending on the number of partitions to be
chosen. A compositional choice involves five different partitions of the set presented in Table 4
denotes a compositional entropy equal to 13.065. Figure 12 provides the curve of compositional
entropy of the lexical set of partition for n = 5 given a number of compositional choices ranging
from one to eighteen so that the composer may decide on how much freedom he/she would like
to manage during the compositional process based on the degree of compositional entropy.

43In musical contour, the relation among its internal elements is not absolute, but relative, so that two distinct musical
structures (e.g., melodies or rhythms) can be depicted by the same contour. Thus, the duration discussed here is based
only on the relative proportion among threads, without considering their actual duration.
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Table 4: Lexical set of partitions (exhaustive taxonomy) for n = 5.

1 2 3 4 5 6 7

Partitions of 1 [1]

Partitions of 2 [2] [12]

Partitions of 3 [3] [1,2] [13]

Partitions of 4 [4] [1,3] [22] [122] [14]

Partitions of 5 [5] [1,4] [2,3] [123] [1, 22] [132] [15]

Figure 12: Curve of compositional entropy applied to the 18 partitions provided in of Table 4 considering the number of
compositional choices involved.

Most composers are not aware of all textural possibilities provided in Table 4. Indeed, despite
its importance:

the compositional potential of texture is a topic not often discussed or analyzed in the
theoretical literature. Even recent composers (most often) do not explicitly present
in their writings on their own music ideas about textural organization; nor do they
display any concern about a systematic approach to texture. If their music seems to be
constructed out of various textural configurations, these are conceived intuitively, as
the outcome of the interaction of the other musical parameters ([21, p. 58]).

Thus, by accessing the exhaustive taxonomy of partitions of a given number of threads is
significant to musical compositional as it provides all possible creative paths a composer may
take This means that exhaustive taxonomies of partitions enable the composer to be aware of
the most recurrent textural configurations in his/her music, thereby bringing texture to a more
conscious zone of the creative process. Furthermore, it may allow the composer to explore textural
configurations that would probably not otherwise be used in his/her music.

A short musical example of the realization of the sequence of partitions <[22][2,3][4][12][2]>
made from partitions of Table 4 may contribute to this still embryonic discussion on both com-
positional entropy applied to the texture (Figure 13). Textural parts are defined by the rhythmic
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Figure 13: A possible realization of the sequence of partitions <[22][2,3][4][12][2]> and the number of possible choices
involved in both their very definition, considering its probability of being chosen within partitions of its
density-number, and the number of their possible textural layouts. Parts are defined by rhythmic coincidence.

coincidence of threads. Despite the instrumental mean (piano solo) provides the possibility to use
more than five simultaneous threads, for the sake of simplicity, the maximum value of n is five.
Below each realization is its corresponding partition, the number of possible choices involved in
their definition (first instance), considering its probability of being chosen within partitions of its
density-number, and the number of their respective possible textural layouts (second instance).
Such information is decisive for computing textural entropy of partitions and their respective
realizations. Not all available density-numbers were used in this example; only partitions for n
equal to either two, four, or five.

A graph can be plotted to compare the difference of compositional entropy of choice and
realization (Figure 14). The graph shows each compositional entropy is independent of one
another and their value can diverge considerably. This means a partition with a low degree of
compositional entropy may imply a high entropy in terms of its realization and vice-versa. Take,
for example, the last two partitions of the sequence [12] and [2]. Both constitute all partitions of
n = 2 so their compositional entropy of choice is equivalent as they have the same probability to
be chosen. Yet, while [12] has the minimal degree of compositional entropy of realization (zero),
which means there is only one way of realizing it, partition [2] has an entropy of realization of
2.322.

A striking feature may be observed in partition [4]. It holds a compositional entropy of choice
equals to 2, but provides an entropy of realization equals to 7.219 given its 149 possible realizations,
which includes the standard realization of the block of four (the very realization presented in the
score) and all its possible gradual constructions and dilutions in evolving realization. In face of
that, one may logically conclude that for any value of n, a block with a thickness of n is, by far, the
most complex situation in terms of realization measured by the compositional entropy. This is
quite curious information given the simplicity of the idea of a block may evoke in textural aspects.
Indeed, blocks hold the lowest degree of textural complexity within their density-number.44 In fact,

44The complexity of a given textural configuration can be measured by the evaluation of the degree of independence of
threads so that polyphonic textural organizations tend to be understood as more complex than massive ones. Of course,
this definition is based only in regards of textural aspects. See [18], [20], and [21].
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Figure 14: Compositional entropy of choice and compositional entropy of realization for the sequence of partitions
<[22][2,3][4][12][2]>.

the compositional practices of texture show that blocks are commonly associated with opening
or cadential gestures, situations in which they are more likely to be understood as simpler than
textural those configurations with a higher sense of polyphony (multiple parts).45 Nevertheless,
the compositional entropy brings to lights that blocks are way more complex to be implemented
as music than one could imagine, by simply considering their combinatorial permutation of
threads in evolving realization. This complexity increases astronomically by combining gradual
construction and dilutions.

VI. Concluding remarks

This article introduces the idea of compositional entropy—a proposal for measuring the amount of
freedom a given object in the scope of a musical parameter or attribute provides for compositional
purposes so that the more possibilities (variables) to be chosen are given by the object, the
higher will be its compositional entropy. The main interest of such a formulation is to discuss
compositional choices in a view of probability and combinatorial permutation, considering
the number of available compositional choices a composer may operate during the creative
process. Further applications in various musical parameters and compositional situations shall be
considered in future works to verify all potentialities of this still embryonic proposal.

In order to apply this proposal in the realm of musical texture to verify its potentialities in
terms of compositional choices, a series of concepts and mathematical tools regarding textural
morphology, as well as their possible spatial organizations, were introduced. This can contribute
to the development of the textural field from both analytical and compositional perspectives.
Moreover, the exhaustive taxonomy of textural layouts presented in this article opens avenues for
compositional and analytical—which shall be further developed in future works.

All examples presented in this article, but those in evolving realization, were given according
to a standard mode of presentation, which may be understood as "a simple articulation of all
parts of a textural configuration in a strict way within the same time span", constituting, therefore,

45See [6].
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"a strict one-to-one relation with the referential configuration and its musical realization." ([21,
p. 167]). The inclusion of the other modes in the perspective proposed here may expand the
number of possible realizations of a given partition. For example, Gentil-Nunes [8] elaborates
the idea of a partitional complex, in which small deviations of textural parts may produce subsets
and other derived parts of the referential partition. Unlike evolving mode, in partitional complex,
polyphonic partitions provide a wider set of possible realizations. Hence, taking the formulation
of partitional complexes into consideration may expand the number of possible realizations for all
partitions, thereby impacting the computation of compositional entropy. Another possibility to be
considered is the application of the principles of evolving realization in any block in contexts of
multiple parts. For example, each block of partitions [22] and [2,3] in Figure ?? could be realized
as the cumulative superimposition of threads therein. All these possibilities discussed here are a
wealthy territory to be explored in future works.

The elaboration of computational tools for automatizing the process of computing the number
of possibilities and their compositional entropy may be devised to further improve this discussion.
Also, the automatic elaboration of the list of exhaustive taxonomies for textural layouts of a given
partition may facilitate their application within the compositional process, also contributing to
further theoretical developments from it. Finally, the automatic generation of graphs from a
MIDI file may enable analytical applications in a more systematic way. All these computational
implementations are left for future works.
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