
Toward a Probabilistic Fourier
Analysis on Audio Signals

Hugo Tremonte de Carvalho

Federal University of Rio de Janeiro (UFRJ)
Institute of Mathematics (IM)

Department of Statistical Methods (DME)
hugo@dme.ufrj.br

Orcid: 0000-0003-0776-0400
DOI: 10.46926/musmat.2021v5n2.91-102

Abstract: In audio signal processing there are several tools employed to perform time-frequency analysis,
being the spectrogram one of the most widely used. In a nutshell, it can be understood as a visual
representation of the frequency content of an audio signal as it varies with time. Here we propose a
probabilistic alternative to the spectrogram, which can be roughly interpreted as the most likely frequency
to be present within an audio signal, also along time. This will be achieved by computing a specific
posterior distribution in a Bayesian context. Preliminary experiments indicating the suitability of this
object are presented, and potential applications to audio signal processing are outlined.
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I. Introduction

The main goal of this short note is to provide an answer to the following question: "how
likely is some particular frequency to be present in some audio signal, regardless of its
amplitude and phase, and the variance of any existing superimposed noise?". In fact, the

answer here is not new, being firstly proposed in [2] for more general discrete-time signals. The
novelty in this paper is the application of this general framework to audio signals, allowing
then for probabilistic counterparts of well-known objects in audio signal processing, such as the
spectrogram and the chromagram, and opening new possibilities to time-frequency related tasks,
such as fundamental frequency estimation [6]. The paper is organized as follows: Section II
introduces some basic notation to be used throughout the exposition, recalls the theory proposed
in [2, Chap. 2] with more explained details in the analytical computations, and also extends the
discussion on interpretations and suitability of the obtained quantities; in Section III, based on
the previous discussions, we propose the probabilistic spectrogram and qualitatevely compares it
with its classical counterpart; and finally, in Section IV we draw some conclusions and point out
future works in this direction.
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II. Bayesian spectrum estimation

Recall the formerly presented question: "how likely is some particular frequency to be present
in the signal x(t), regardless of its amplitude and phase, and the variance of any existing
superimposed noise?". In this Section, we follow the discussion proposed on [2, Chap. 2], with
more detail on some analytical computations and interpretations. It is important to remark
that the exposed answer is not at its greatest generality, which can be found on [2, Chap. 3];
but we choose to maintain a simpler discussion for the sake of clarity. Moreover, preliminary
computational experiments demonstrated only a negligible improvement by applying the more
general framework.

i. The model

Let x[n], for n = 1, . . . , N, be a digital audio signal, derived from an analogical audio signal,
denoted by x(t), via uniform sampling with known frequency fs, usually 44,100 Hz for an audio
signal with the typical CD quality. More specifically, x[n] is the n-th time sample of x(t) and is
given by x(n/ fs). For answering the question in the beginning of Section II, we will assume the
following model for x(t):

x(t) = f (t) + ε(t), (1)

where f (t) = B1 cos(2πωt) + B2 sin(2πωt), ε(t) ∼ N (0, σ2) are observations of independent
white noise, and ω > 0 is measured in Hz.

Notice that f (t), the systematic part of the signal x(t), is equivalent to the more intuitive
function B cos(2π(ωt + ϕ)), for adequate choices of B and ϕ. However, we will keep the former
choice, since the latter will imply in more complicated computations. Still, two points are still
unclear: 1) why only to use a single frequency to model the signal, since a musical signal will
be much more complex than a simple sinusoid? and 2) why is the hypothesis of Gaussian white
noise reasonable?

Essentially, we are looking for a compromise between simplicity and accuracy of our modeling.
If we try to superimpose more and more frequencies in function f (t), we will be approaching
a perfect representation of the musical signal x(t) by means of the Fourier Transform; and if
we try to perfectly model how the observed signal x(t) deviates from a single frequency and
then incorporate it in the noise ε(t), it will become extremely complex and thus intractable. The
gaussianity of ε(t) still could be questioned, but we justify it intuitively via the Maximum Entropy
Principle [5]: the additive noise comprises several distinct deviations of the observed signal x(t)
from the model f (t), therefore, the "most non-informative" probability distribution with finite
mean and variance and supported in R is the Gaussian distribution. Moreover, it is still possible to
argue that our goal is not to achieve a perfect substitute for the observed signal x(t) by means of
the model f (t), but to answer probabilistic questions about the presence of a particular frequency
on the observed signal x(t).

ii. Formulating the problem

Given the remarks at the end of the last section, we may proceed with a few steps of the inference
procedure. After the time sampling procedure, we have a sequence of observations given by

x[n] = f [n] + ε[n], for 1 ≤ n ≤ N, (2)
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where f [n] = f (n/ fs), and the ε[n] ∼ N (0, σ2) are independent. This hypothesis of white
Gaussian noise implies the following distribution for the random vector ε = [ε[1], . . . , ε[N]]T :

p(ε|σ) =
N

∏
n=1

1√
2πσ2

exp
{
− ε[n]2

2σ2

}
∝ σ−N exp

{
− 1

2σ2

N

∑
n=1

ε[n]2
}

. (3)

Note that ε[n] = x[n] − f [n], for n = 1, . . . , N, is a change of variables from vector ε to
x = [x[1], . . . , x[n]]T with unitary Jacobian, that leads to the following distribution for x:

p(x|B1, B2, ω, σ) ∝ σ−N exp

{
− 1

2σ2

N

∑
n=1

(x[n]− f [n])2

}

= σ−N exp

{
− 1

2σ2

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2

}
.

(4)

When considered as a function of {B1, B2, ω, σ}, the expression in Equation 4 is called the likelihood
and it quantifies the probability of observing the signal x if the parameters are given by some
particular value of {B1, B2, ω, σ}. Maximizing this function in variables {B1, B2, ω, σ} leads to the
maximum likelihood estimator (MLE), interpreted as as the values of {B1, B2, ω, σ} for which the
observed data x is the most probable.

But notice that this estimate has a severe problem: it does not answer our question! In order to
convince ourselves, let us compare the question with the interpretation given above:

• QUESTION: "How likely is some particular frequency (ω) to be present in the signal x(t),
regardless of its amplitude and phase (both encoded in B1 and B2), and the variance of any
existing superimposed noise (σ2)?"

• INTERPRETATION OF THE MLE: "The values of B1, B2 (encoding amplitude and phase),
ω (frequency), σ (standard deviation – square root of the variance – of the superimposed
noise) for which the observed data x is the most probable."

Notice that in the interpretation of the MLE the probability is with respect to x, where in the
question it should be considered over the frequency ω. Moreover, the question is only about the
frequency disregarding all the other parameters, but the interpretation considers all of them in the
optimization process. The key to address these issues is Bayesian inference, which will be briefly
discussed in the next subsection, in a more general context.

iii. Interlude – A glimpse of Bayesian inference

Essentially, Bayesian inference is a method of statistical inference where the information contained
in observed data can be used to update the knowledge about parameters of interest. More precisely,
let Z be a random variable which probability function of probability density function is denoted
by p(z|θ), where θ ∈ Rk is a vector of parameters. We observe z = [z1, . . . , zN ]

T independent
samples from Z and we want to estimate vector θ from this data. The likelihood function is given
by

L(θ) = p(z|θ) =
N

∏
n=1

p(zn|θ), (5)

and quantify the probability of observing data z if the parameter vector is θ. Maximizing this
function with respect to θ will lead to its maximum likelihood estimation, which can be interpreted
as the value of θ for which the observed data is the most probable.
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If we have prior information about θ, encoded in the so-called prior distribution p(θ), we can
use Bayes theorem and obtain the posterior distribution for the parameters:

p(θ|z) = L(θ)p(θ)
p(z)

∝ L(θ)p(θ), (6)

since p(z) is a normalization term which in our application can be ignored. Therefore, maximizing
the posterior distribution will lead to the maximum a posteriori (MAP) estimate for θ, representing
the most probable parameters for the corresponding set of observation, a much easily interpretable
quantity.

For more details on statistical and Bayesian inference, we refer the reader to [3, 4], respectively.

iv. The (Bayesian) inference procedure

By employing the Bayes’ theorem, we are able to invert the conditional probability p(x|B1, B2, ω, σ)
and obtain

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ). (7)

The new term p(B1, B2, ω, σ) can encode previous knowledge about these variables, but we will
adopt a conservative approach and use non-informative priors, that is, prior distributions that
describe the most vague knowledge about them. For the parameters that can assume any real
value (in this case B1, B2, ω)1, we consider an improper prior distribution p(B1, B2, ω) ∝ 1, and
for the scale parameter σ, which must be strictly positive, we impose the Jeffreys prior, given by
p(σ) ∝ 1/σ. By assuming prior independence between B1, B2, ω, σ, we have that

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ)

∝ σ−(N+1) exp

{
− 1

2σ2

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2

}
.

(8)

Firstly, let us expand the summation of squares inside the exponential to obtain:

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2 =

=
N

∑
n=1

x[n]2 − 2B1

N

∑
n=1

x[n] cos(2πωn/ fs)− 2B2

N

∑
n=1

x[n] sin(2πωn/ fs)

+ B2
1

N

∑
n=1

cos2(2πωn/ fs) + B2
2

N

∑
n=1

sin2(2πωn/ fs)

+ 2B1B2

N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs).

(9)

Equation 9 can be simplified (exactly, without approximations) by using trigonometric identities,
but this leads to tedious computations to prove such identities, or to evocations of some aspects
from Linear Algebra ([2, Chap. 3] presents a discussion on this direction). We will not follow
this path here and opt to employ some approximations, since we want to keep this discussion
simple and easy to follow. Moreover, preliminary computational tests indicate that the gain in the

1In the beginning of Section II we constrained ω to be strictly positive for obvious physical reasons, but regarding the
periodicity of trigonometric functions negative values of ω will also be allowed, from the mathematical viewpoint, to
simplify the computations.
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accuracy of the frequency estimation with the exact procedure is mostly negligible. In the light of
these aspects we choose to approximate some of the terms in Equation 9 as follows:

• The term
N

∑
n=1

x[n]2 is constant (as a function of {B1, B2, ω, σ}), and it will be denoted as Nx2,

where x2 =
1
N

N

∑
n=1

x[n]2.

• Both terms
N

∑
n=1

x[n] cos(2πωn/ fs) and
N

∑
n=1

x[n] sin(2πωn/ fs) are related to the real and

imaginary parts of the Discrete Fourier Transform, and will be denoted, respectively, by
R(ω) and I(ω).

• Both expressions
N

∑
n=1

cos2(2πωn/ fs) and
N

∑
n=1

sin2(2πωn/ fs) can be rewritten by using the

simple trigonometric identities2 sin2(α) =
1− cos(2α)

2
and cos2(α) =

1 + cos(2α)

2
to obtain:

N

∑
n=1

cos2(2πωn/ fs) =
N
2
+

1
2

N

∑
n=1

cos(4πωn/ fs), (10)

N

∑
n=1

sin2(2πωn/ fs) =
N
2
− 1

2

N

∑
n=1

cos(4πωn/ fs). (11)

Analogously, the term
N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs) can be rewritten, using the formula

for the sine of a sum of angles, to obtain:

N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs) =
1
2

N

∑
n=1

sin(4πωn/ fs). (12)

In [2, p. 17] it is claimed that these three trigonometric sums can be neglected, when
compared to N/2, the dominant term appearing in the last two lines of Equation 9, assuming
that the rather vague conditions N � 1 and ωN/ fs � 1 are valid. Indeed, computational
tests verified that for the human hearing frequency range (about 20 Hz to 20,000 Hz), the
usual sampling rate of a CD-quality audio signal ( fs = 44,100 Hz) and the window length
here employed (N = 4,096 – see Sec. III for more details), these neglected terms are two to
three orders of magnitude smaller than N/2, validating the claims above in our context.

Given the discussion above, we can rewrite Equation 9 as3:

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2 =

= Nx2 − 2B1R(ω)− 2B2 I(ω) + B2
1

N
2
+ B2

2
N
2

= N
[

x2 − 2
N
[B1R(ω) + B2 I(ω)] +

1
2
(B2

1 + B2
2)

]
.

(13)

2Both these identities follow from the formulas for the sine and cosine of a sum of angles and from the fundamental
trigonometric relation sin2(α) + cos2(α) = 1.

3The first symbol "=" is not accurate in Equation 13, being the "≈" preferable. However, we will go ahead with the
slight abuse of notation, in order to simplify the notation.
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By substituting Equation 13 in Equation 8, we have that:

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ)

∝ σ−(N+1) exp
{
− N

2σ2

[
x2 − 2

N
[B1R(ω) + B2 I(ω)] +

1
2
(B2

1 + B2
2)

]}
.

(14)

v. Marginalization of nuisance parameters

Now, with the simplified expression for the posterior distribution, given in Equation 14, we are
able to marginalize the undesired parameters and obtain only p(ω|x), given by

p(ω|x) ∝
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
p(B1, B2, ω, σ|x) dB1dB2dσ. (15)

To perform the integrals in B1 and B2 (and then obtaining p(ω, σ|x)) we must resort to the
following Lemma:

Lemma 1. Let a ∈ R, b ∈ Rm, and C ∈ Rm×m be numerical, vectorial, and matricial constants,
respectively. Assume also that matrix C is invertible. Then, the following equality holds:∫

Rm
exp

{
−1

2
(a + bTy + yTCy)

}
dy =

(2π)m/2

|det(C)|1/2 exp
{
−1

2

[
a− bTC−1b

4

]}
. (16)

The proof of this lemma, although simple, is quite tedious, since it involves completing the
squares in the argument of the left exponential, identifying the kernel of a multivariate normal
distribution, and rearranging the terms to obtain the desired result. Here we simply employ it
and refer the interested reader to [1] for the proof.

As can be verified by a simple computation, by defining a =
Nx2

σ2 , b = − 2
σ2

[
R(ω)
I(ω)

]
and

C =

[
N/2σ2 0

0 N/2σ2

]
, and substituting these values in the left-hand side of Equation 16 we

recover exactly Equation 14. Therefore, by the direct application of Lemma 1, we have that

p(ω, σ|x) ∝ σ−(N−1) exp
{
− N

2σ2

[
x2 − 2

N
C(ω)

]}
, (17)

where C(ω) is defined as [R(ω)2 + I(ω)2]/N. This quantity is called the periodogram in [2, p. 7],
and is a natural appearance in this probabilistic context of the squared-magnitude of the Discrete
Fourier Transform.

Finally, in order to integrate Equation 17 with respect to σ, we can make a change of variables
and use the kernel of an Inverse-Gamma distribution, a more classical approach – perhaps the
one employed by Bretthorst in the computations omitted in [2, pp. 18–20]. To avoid extensive
computations, we refer to the more recent work [7], where the Inverse-Nakagami distribution is
proposed, which probability density function, in the variable σ > 0, is given by

2
Γ(λ)

(
λ

ξ

)λ

σ−2λ−1 exp
(
− λ

ξσ2

)
, (18)

being λ and ξ strictly positive real parameters. By using the fact that every probability density
function must integrate 1 over its support, we can use the normalizing constant of this distribution
to obtain the result ∫ +∞

0
σ−2λ−1 exp

(
− λ

ξσ2

)
dσ =

Γ(λ)
2

(
ξ

λ

)λ

. (19)
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By comparing the term being integrated in Equation 19 with the joint density of {ω, σ} in Equation
17, we obtain that the suitable values of λ and ξ are given by

λ =
N − 2

2
, (20)

ξ =
N − 2

2

[
x2 − 2

N
C(ω)

]−1
. (21)

Therefore, by using the result of Equation 19 and discarding the multiplicative terms that does not
depend on ω, we have that that

p(ω|x) ∝
[

1− 2C(ω)

Nx2

] 2−N
2

, (22)

an expression for the distribution we are looking for.
Preliminary computational experiments indicated that trying to compute directly this quantity

may cause a numerical overflow. Therefore, we opt to compute its logarithm4, given by

log10 p(ω|x) = 2− N
2

log10

[
1− 2C(ω)

Nx2

]
+ constant terms, (23)

where the constant terms are the logarithm of the multiplicative constants unconsidered along the
computations. Recall that considering a strictly positive function or its logarithm is equivalent for
finding its local maxima, because the logarithm is a strictly crescent function.

We now present an application of this distribution to audio signal processing.

III. The probabilistic spectrogram

The spectrogram is a fundamental tool in time-frequency analysis of audio signals, and it can be
interpreted as the frequency content of an audio signal along time. In order to understand it more
precisely, recall that [8, Sec. 2.5] defines the Short-Time Fourier Transform as

Y [m, k] =
N−1

∑
n=0

y[n + mH]w[n]e−2πikn/N , (24)

for m ∈ Z5 and k = 0, . . . , bN/2c. The quantity H is the hop size, and it is related to the overlap
between two consecutive windows; a common value to adopt is H = bN/2c, indicating 50% of
overlap.

Essentially, Equation 24 computes the Discrete Fourier Transform of the signal

xm[n] = y[n + mH]w[n], for n = 0, . . . , N − 1, (25)

that is, an excerpt of length N from an audio signal y, properly smoothed on the edges by some
window function w, with support of size N. The spectrogram is then defined as the squared-
magnitude of each value of the Short-Time Fourier Transform, that is, |Y [m, k]|2. For more details
on the spectrogram and on the choice of windowing functions, see [8, Sec. 2.5].

4The base of the logarithm is of minor importance here, but we will adopt 10, since it is the standard base used to
transform magnitude to dB, an usual unit in Signal Processing.

5Note that m is in practice restricted to a finite set {0, . . . , M} such that these successive hops of size H cover the entire
signal y. Since this specific range will not be directly used here, we avoided its explicit introduction, for the sake of clarity.
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Since the probability density function on Equation 22 is related to the presence of frequencies
ω in signal x, instead of computing the Discrete Fourier Transform of the windowed signal xm,
we can compute the probability distribution p(ω|xm), for each m ∈ Z. The collection of all these
probability distributions for m ∈ Z is called the probabilistic spectrogram of the signal y. This
representation is expected to be more sparse than the spectrogram, since it computes the most
likely frequencies at each time-frame and may disregard high-order harmonics of the instrument.
Moreover, for each m ∈ Z, we can compute the maximum a posteriori estimate for ω, that is,
argmax p(ω|xm). This sequence of values may provide an interesting low-dimensional feature
useful in Music Information Retrieval6.

In order to illustrate this concept, we consider the subject of Ricercar a 6, the six-voice fugue that
is commonly regarded as the high point of The Musical Offering (BWV 1079), by Johann Sebastian
Bach, interpreted in two instruments: the fortepiano and the harpsichord7. Both audio signals
were downloaded from YouTube in MP3 format with 320 Kbps, manually trimmed to contain
only the subject, exported in WAV format and reduced to a monophonic signal. The sampling
frequency is 44,100 Hz, the length of the analysis window was taken to be N = 4,096 time-samples
with hop size of H = 2,048, implying in 50% of overlap between adjacent windows.

Figures 1 and 2 display the spectrogram of the subject of Ricercar a 6 played on the fortepiano
and the harpsichord, respectively. Note that the harpsichord signal contains much more harmonics
than the fortepiano one, as it is naturally expected for both instruments.

In Figures 3 and 4 are displayed the logarithm of the probabilistic spectrogram of the subject of
Ricercar a 6, played on the pianoforte and harpsichord, respectively. Blue color indicates negligible
probability, and colors close to yellow indicate more likely ones. The y axis is restricted from 0 Hz
to 2,500 Hz, since there are no likely frequencies above this value. Notice that these representations
also capture higher harmonics of the harpsichord, but are cleaner than the spectrogram.

Indeed, Figures 5 and 6 display both the probabilistic spectrograms as in Figures 3 and 4, but
the red dots indicate the most likely frequencies at each time frame. Notice that, although visually
distinct, they look more similar than the spectrograms in Figures 1 and 2. This fact indicates that
these sequences of frequencies can be regarded as an interesting audio feature, and a refinement
of this quantity may lead to advances in algorithms of fundamental frequency detection.

IV. Conclusion and future works

In this paper we recalled and detailed the computations done in [2, Cap. 2], in order to study the
posterior distribution of frequencies present within an audio signal, disregarding its amplitude
and phase, and also the variance of any existing superimposed noise. This probability distribution
was used to propose a new concept in time-frequency analysis of audio signals, the probabilistic
spectrogram, illustrated by two musical examples.

Althoguh not quantitatively analyzed, the proposed quantity seems promising to be further
investigated, specially its usage in Music Information Retrieval tasks, mainly because of its
sparseness and high interpretability. This is addressed as a future work, together with the
development of the probabilistic chroma features, corresponding to the probability allocated in the
frequencies bands related to the twelve pitch classes8.

6In [8, Sec. 7.1.2] it is described that peaks of the spectrogram provides an useful fingerprint for the taks of content-based
audio retrieval.

7Both interpretations are available on YouTube. The fortepiano version is played by Leo van Doeselaar (https://www.
youtube.com/watch?v=fjxKy3pP41w) and the harpsichord one is interpreted by Iain Simcock (https://www.youtube.
com/watch?v=AYw2E5F930M).

8Assuming an equal emperament tuning with fundamental frequency of A4 defined as 440 Hz.
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Figure 1: Spectrogram of the subject of Ricercar a 6, played on the fortepiano.

2 4 6 8 10 12 14 16 18

Time (secs)

0

5

10

15

20

F
re

q
u
en

cy
 (

k
H

z)

-140

-120

-100

-80

-60

-40

P
o

w
er

/f
re

q
u

en
cy

 (
d

B
/H

z)

Figure 2: Spectrogram of the subject of Ricercar a 6, played on the harpsichord.
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Figure 3: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the fortepiano.

Figure 4: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the harpsichord.
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Figure 5: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the fortepiano. The red dots indicate most likely frequency at each time-frame.

Figure 6: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the harpsichord. The red dots indicate most likely frequency at each time-frame.
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