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Abstract: We generalize first-species counterpoint theory to arbitrary rings and obtain some new count-
ing and maximization results that enrich the theory of admitted successors, pointing to a structural
approach, beyond computations. The generalization encompasses an alternative theory of contrapuntal
intervals. We also propose several variations of the model that intend to deepen into its principles. The
original motivations of the theory, as well as all technical passages, are carefully reviewed so as to
provide a complete exposition.
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1. Introduction

This article is a theoretic exercise on a model of first-species counterpoint and the mathematical
support of the musicological and computational analysis in [6]. This kind of counterpoint
is the simplest one and the didactic basis of Renaissance counterpoint, as taught by Johann
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J. Fux in [8]. The model was introduced by Mazzola in [12], where the discussion confined to
the case when the ground ring is Z12; a ring that can be used to model the algebraic behavior of
the twelve intervals between tones in the chromatic scale of Western musical tradition. Then, the
model was re-exposed with some additional computational results by Hichert in [11, Part VII].
Further generalizations to the case when the rings are of the form Zn were considered in [1, 9],
and then included in a collaborative compendium of mathematical counterpoint theory and its
computational aspects [3]. The motivation for such a generalization to Zn was the existence of
microtonal scales with more than twelve tones, which have been used for making real music [2].

The contributions of this article to the previous theory are the following.

• Complete re-exposition of the model with a careful review of all its principles, clarifying
important points, like the contrapuntal symmetry definition (Section 4).

• Generalization of the model to noncommutative rings. This offers the possibility of defining
counterpoint notions on noncommutative rings of generalized intervals, which can be worth
exploring in musical terms; see Example 3.10 and Section 9.

• Some theoretic advances on previous computational approaches. They include the deter-
mination of self-complementary dichotomies with the groupoid of intervals (Section 3.1), a
criterion for the strength of dichotomies (Lemma 3.4), the counting formulas for successors
sets cardinalities (Section 6), a maximization criterion for these cardinalities (Section 6.2),
and the derivative admitted successors computation, by hand, for Renaissance counterpoint
(Section 9).

• Some variations of the model. First, our generalization includes an alternative model of
contrapuntal intervals, namely the product ring R × R, which takes the place of the dual
numbers ring R[ϵ]. These structures only differ in their products; the first one regards
intervallic variations as elements of R, whereas the second one treats these variations as
infinitesimals; see Section 6.2. The other two variations intend to deepen into the second
principle of the model, and coincide in the case of Renaissance counterpoint (Section 11).

We organize this paper as follows. We start with the basic definitions: symmetries (natural
operations in music) in Section 2, hierarchy of dichotomies and polarities (consonance/dissonance
partitions and their symmetries) in Section 3, and contrapuntal intervals rings in Section 3.5. In
particular, in Section 3.4, we prove that several dichotomies are strong. Then, in Sections 4.1, 4.2,
and 4.3 we discuss the principles that lead to a formal definition of first-species counterpoint
in Section 4.4. The remaining Section 4 develops the mathematical details of the principles. In
Section 5, we simplify this definition, by reducing it to the case when the cantus firmus is 0 and
use a smaller group of symmetries. Based on this simplification, we prove that, for the dual
numbers case, it is always possible to find successors of a given consonant interval. This result is
the Little theorem of counterpoint (Section 7). A crucial lemma (Lemma 6.1) leads us to the counting
formulas and the maximization criterion in Section 6. With these tools, in Section 8, we obtain the
admitted successors of consonant intervals in Renaissance counterpoint. In Section 9, we explore a
noncommutative notion of counterpoint. In Section 10, we prove that our contrapuntal symmetry
condition 2 is equivalent to Mazzola’s original one in the commutative case, although it is weaker
in general. Finally, in Section 11 we discuss two conceptual variations of the model and close
this article by proving that they coincide in the case of the Renaissance dichotomy. Section 12
contains some conclusions and suggestions for further research. The appendix includes the proof
of a variation of the rearrangement inequality, which is crucial for the maximization criterion.

Throughout this paper, R denotes an arbitrary ring with unity, not necessarily commutative.
When needed, commutativity hypothesis on R is explicitly stated. Similarly, modules considered
in this paper are right R-modules, unless we indicate otherwise. So as to easily locate a numbered
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equation in this paper, we urge the reader to use hyperlinks.

2. Ring symmetries

The main goal of this section is to recall basic facts about rings and their symmetries. An
introduction to noncommutative rings is [14, Chapter B-1].

Affine homomorphisms are the natural correspondences that occur in music. They are the formalization
that encompasses musical transformations like transposition and inversion in the ring Z12 of
tones.1

Let R be a ring. Given two R-modules M and N, an affine homomorphism from M to N is the
composite ea ◦ f , where f : M −→ N is an R-homomorphism, a ∈ N, and ea : N −→ N : x 7→ x + a
is the translation associated with a. We write a typical affine homomorphism ea ◦ f as ea f , for short.
Observe that the composition rule for affine homomorphisms is (ea f ) ◦ (ebg) = e f (b)+a f g.

The monoid (with respect to the composition) EndR(M) of R-endomorphisms of an R-module
M is a ring with the usual sum of homomorphisms. However, the monoid of affine endomorphisms
of M is not a ring since the distributivity fails, except when M is the trivial module. We denote by
AutR(M) the group of R-automorphisms of an R-module M.

An affine homomorphism ea f : M −→ N is an isomorphism if and only if f is an R-
isomorphism.2 Thus, affine automorphisms of R are of the form ea f , where f ∈ AutR(R)
and a ∈ R. On the other hand, recall that there is a ring isomorphism

EndR(R) ∼= R,

which identifies an element r ∈ R with the R-endomorphism obtained by left multiplication with
r. This isomorphism restricts to a group isomorphism

AutR(R) ∼= R∗,

which establishes a bijective correspondence between R-automorphisms of R and invertible
elements of R. From this discussion we conclude that an affine automorphism of R is the function
associated with the linear polynomial bx + a, where b ∈ R∗ and a ∈ R.

In what follows, we will call affine automorphisms of R symmetries of R and denote the group
of symmetries of a ring R by Sym(R). We use the notation eab for the symmetry associated with
bx + a. Two symmetries eab and ea′b′ are equal if and only if a = a′ and b = b′. Observe that e01 is
the identity symmetry and that the composition of symmetries is given by the formula

eab ◦ ea′b′ = eba′+abb′. (1)

The inverse of a symmetry eab is e−b−1ab−1.

3. Basic motivations and definitions

In Renaissance counterpoint we divide the ring Z12 of intervals into two disjoint subsets, namely
the set K of consonances and the set D of dissonances. The consonances are unison, minor third,

1The ring Z12 models the twelve tones of the chromatic scale and, at the same time, the twelve intervals between these
tones. The distinction is usually clear from the context.

2First, suppose that ebg : N −→ M is the inverse of ea f . Then (ea f )(ebg) = e f (b)+a f g = idN and (ebg)(ea f ) =
eg(a)+bg f = idM. Therefore, f g = idN , g f = idM, and b = −g(a). Conversely, if f g = idN and g f = idM, then
(ea f )(e−g(a)g) = idN and (e−g(a)g)(ea f ) = idM .

3
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Figure 1: A contrapuntal interval.

major third, perfect fifth, minor sixth, and major sixth. The dissonances are minor second, major
second, perfect fourth, tritone, minor seventh, and major seventh. The corresponding mathematical
definitions are

K = {0, 3, 4, 7, 8, 9} and D = {1, 2, 5, 6, 10, 11}.

A composition of first-species counterpoint consists of two voices, cantus firmus and discantus, whose
notes have the same length and where each interval between the voices is a consonance. See [8,
pp. 19-29] and [6, Section 2] for details.

The germ of Mazzola’s model is the observation that there is a unique symmetry p of the ring
Z12, namely e25, that sends consonances to dissonances. In fact,

e25(0) = 2, e25(3) = 5, e25(4) = 10, e25(7) = 1, e25(8) = 6, e25(9) = 11.

We postpone the proof of the uniqueness to Section 3.4. Moreover, if a partition {K′, D′} of Z12
satisfies the conditions that e25 is the unique symmetry in Sym(Z12) sending K′ to D′ and that
7K′ is a multiplicative monoid, then K′ = K and D′ = D according to [10, Section 13.1]. Thus, we
say that these two conditions characterize {K, D}.

Up to now, we have the intervals, consonances, and dissonances of counterpoint, but we need
to model the voices in a composition. We achieve this by means of the countrapuntal intervals
ring Z12[x], which consists of all linear polynomials c + d x, with c, d ∈ Z12, where x is a dummy
variable that will be further discussed in Section 3.5. A contrapuntal interval c + d x, represents
a pitch class c, of the cantus firmus, together with the interval d between c and the pitch class
c + d from the superior discantus. As already said, in a piece of Renaissance counterpoint, it is
mandatory that d be a consonance. For instance, the contrapuntal interval 2 + 7 x in Z12[x] comes
from the musical example in Figure 1.

We have a partition of the ring Z12[x] into contrapuntal consonances and dissonances, namely
{K[x], D[x]}, where X[x] consists of all c + d x ∈ Z12[x] with d ∈ X for X = K, D. We would want
properties for this partition analogous to those that characterize {K, D}. Certainly, the symmetry
e2 x5 of Z12[x] is a quite natural3 extension of e25 sending K[x] to D[x] since e2 x5 looks simple and
acts on the interval part d of a contrapuntal interval c + d x just as e25. But in this case it is not the
unique sending K[x] to D[x]. For example, e2 x+15 also does. However, there is an induced local
uniqueness property that characterizes the partition {K[x], D[x]}, as discussed in Section 4.2.

The first-species compositions deal with finite sequences of contrapuntal consonances with
cantus firmus and discantus in a given scale; see Figure 3. However, not all sequences are valid
since counterpoint has some rules. In the model to be exposed in the following sections, we aim
to predict when a given contrapuntal consonance η can follow another one ξ, by means of the
admitted successor concept. We base the latter on the alternation principle (Section 4.1), the local
uniqueness property (Section 4.2), and the variety principle of counterpoint (Section 4.3).

3Precise statements of this naturality claim are Propositions 4.7 and 10.2.
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3.1. Dichotomies

We start to develop our theory by formalizing the common properties of the rings of intervals Z12
and Z12[x] that are relevant for counterpoint.

Let R be a ring.

• A partition {K, D} of R is a dichotomy of R if |K| = |D|. Note that a finite ring R has
dichotomies if and only if its cardinality is even.

• A self-complementary dichotomy4 of R is a triple (K, D, p), where {K, D} is a partition of
R, p is a symmetry of R, and p(K) = D. Note that necessarily {K, D} is a dichotomy of R.

The triples
(K, D, e25) and (K[x], D[x], e2 x5)

from Renaissance counterpoint are self-complementary dichotomies. The dichotomy

{{0, 1, 3, 6, 8, 11}, {2, 4, 5, 7, 9, 10}}

of Z12 is not part of a self-complementary dichotomy of Z12 as proved at the end of this section,
so it is not a good candidate for providing notions of contrapuntal dissonance/consonance with
the characterizing properties of the Renaissance dichotomy.

We would like to construct self-complementary dichotomies other than the basic one of
Renaissance counterpoint, so as to create new notions of counterpoint. Given an arbitrary finite
ring R of even cardinality, we could start with a symmetry p of R and aim to construct a self-
complementary dichotomy (K, D, p). We pick some k1 ∈ R to be in K, and define d1 := p(k1), with
d1 to be in D. Then, if |R| > 2, we take some k2 ∈ R \ {k1, d1} to be in K and define d2 := p(k2) to
be in D \ {d1}, and so on. Note that this process produces a dichotomy {K, D} provided p has no
fixed points. We say that a symmetry p without fixed points is a derangement.

The following proposition contains some concluding properties of self-complementary di-
chotomies.

Proposition 3.1. Each self-complementary dichotomy (K, D, p) of R has the following properties:

1. The identity p(D) = K holds, so (D, K, p) is a self-complementary dichotomy.

2. The symmetry p is a derangement.

Proof. 1. Since p is a bijection, the properties of the inverse image imply that p(D) = p(R \ K) =
R \ p(K) = R \ D = K.

2. Let x ∈ R. If x ∈ K, then x ̸= p(x) ∈ D. If x ∈ D, then, by 1, x ̸= p(x) ∈ K.

Thus, self-complementary dichotomies are strongly related to derangements.
The following is a short reflection about the problem of deciding when a dichotomy {K, D} of

a ring R is not self-complementary.
Let X ⊆ R. We associate with X a categorical groupoid5 of intervals G(X) as follows. Its

set of objects is X. For each x, y ∈ X, there is a unique morphism from x to y, namely the triple
(x, y, y − x). We define the composition by

(y, z, z − y) ◦ (x, y, y − x) = (x, z, z − y + y − x) = (x, z, z − x).

4This definition is essentially the same of an autocomplementary dichotomy in [11, Definition 92].
5A groupoid is a category [11, Appendix G.1] whose morphisms are invertible. This example is an invitation to the

structural advantages of category theory. The groupoid of intervals is a very simple instance of a category in music.
However, it is the unique appearance of a category in this paper.
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The identities are of the form (x, x, 0). The inverse of (x, y, y − x) is (y, x, x − y).
Given a self-complementary dichotomy (K, D, eab) of R, we have an induced groupoid iso-

morphism [11, p. 1118] F : G(K) −→ G(D) sending6 (x, y, y − x) to (eab(x), eab(y), b(y − x)),
which acts linearly on intervallic variations. Hence, a self-complementary dichotomy induces a linear
correspondence between the intervals of K and D.

This fact can be used to prove that the dichotomy {K, D} with K = {0, 1, 3, 6, 8, 11} and
D = {2, 4, 5, 7, 9, 10} is not self-complementary. In fact, the sequence (11, 0, 1) of elements of K
has the maximum length among sequences (x1, . . . , xn) such that xi+1 − xi = 1 for i = 0, . . . n − 1.
If a symmetry eab sends K to D, then the groupoid isomorphism F sends (11, 0, 1) to a sequence
(d1, d2, d3) in D with maximum length among sequences (y1, . . . , yn) such that yi+1 − yi = b. But
the sequences of maximum length with yi+1 − yi = b are (4, 5) and (9, 10)(for b = 1), (5, 4) and
(10, 9)(for b = 11), (4, 9, 2, 7) (for b = 5), and (7, 2, 9, 4) (for b = 7), whose length is not 3; a
contradiction.

3.2. Strong dichotomies and polarities

We formalize the additional uniqueness property of the Renaissance dichotomy (K, D, e25) with
the following definitions. Let R be a ring. A self-complementary dichotomy (K, D, p) of R is a
strong dichotomy of R if p is the unique symmetry of R such that p(K) = D. In such a case, we
also say that p is a polarity.

As we will show in the next sections, once we have a strong dichotomy of a ring (made up of
generalized intervals), we have an induced self-complementary dichotomy of the contrapuntal
intervals ring, and an associated theory of admitted successors. Thus, strong dichotomies lead to
new counterpoint worlds for composing non-traditional counterpoint.

We need to determine whether a given self-complementary dichotomy (K, D, p) is strong. We
approach this problem by determining the number of symmetries sending K to D. Given another
symmetry q with q(K) = D, note that

q−1 ◦ p(K) = q−1(D) = K

and hence q−1 ◦ p is in the stabilizer θ(K), where

θ(K) := {g ∈ Sym(R) | g(K) = K}.

This suggests the right action of θ(K), by composition, on the set Sym(K, D) of symmetries of R
sending K to D, as shown in the following diagram.

◦ : Sym(K, D)× θ(K) −→ Sym(K, D)
(q, g) 7−→ q ◦ g

Every q ∈ Sym(K, D) is in the same orbit of p because q−1 ◦ p ∈ θ(K), so the action is transitive.
Also, the stabilizer of p under this action is the identity since p ◦ g = p implies g = idR. Hence,
the following proposition.

Proposition 3.2. Let (K, D, p) be a self-complementary dichotomy of a ring R. There is a bijective
correspondence between Sym(K, D) and θ(K). The bijection sends an element g ∈ θ(K) to p ◦ g.

Proof. The function θ(K) −→ Sym(K, D) : g 7→ p ◦ g is surjective since the action is transitive and
is injective since the stabilizer of p is trivial.

6It is the unique possible definition if the correspondence on objects is eab.
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Thus, we have reduced the study of Sym(K, D) to that of the stabilizer group θ(K) of K, which
coincides with θ(D) whenever {K, D} is a partition of R. Besides, we have determined when a
self-complementary dichotomy is strong, as established in the following corollary. We say that a
partition {K, D} of R is rigid if θ(K) is the trivial group. Similarly, we say that a subset K of R is
rigid if θ(K) is trivial. Note that in a rigid partition {K, D} of R both K and D are rigid.

Corollary 3.3. A self-complementary dichotomy (K, D, p) is a strong dichotomy if and only if {K, D} is
rigid.

Now, our objective is to prove a pair of lemmas that help us to decide whether a given
dichotomy is rigid, by discarding non-identity symmetries that could be in θ(K). These lemmas
could be a first approximation to a more conceptual argument.7 Consider the left action ·, by
multiplication, of the group R∗ on R.

Lemma 3.4. Let {K, D} be a dichotomy of a ring R. Suppose that a ∈ R and that C is either K or D. If
there is r ∈ R such that

1. the orbit R∗r of r under the action · is contained in C and

2. r + a /∈ C,

then eab /∈ θ(K) for each b ∈ R∗.

Proof. If r + a /∈ C for r as above, then for each b ∈ R∗, b(b−1 · r) + a /∈ C with b−1 · r ∈ R∗r ⊆ C,
and hence eab /∈ θ(C) = θ(K).

In particular, if r = 0, we obtain the following result.

Lemma 3.5. Suppose that C is either K or D and that 0 ∈ C. Each symmetry of the form eab with
a ∈ R \ C is not in θ(K).

Before using these lemmas to check that some dichotomies are strong, we first study a possible
way to construct self-complementary dichotomies that are good candidates for strong ones.

3.3. Constructing strong dichotomies: quasipolarities

A symmetry p of a ring R is involutive if p ◦ p = id. If p = eab, by Equation (1), this condition
is equivalent to eba+ab2 = e01, that is, to ba + a = 0 and b2 = 1. In the next proposition we
prove that all polarities are involutive, so if we want a polarity, we could start with an involutive
derangement, then define a suitable self-complementary dichotomy following the strategy in
Section 3.1, and finally check whether the uniqueness property holds.

Proposition 3.6. If a self-complementary dichotomy (K, D, p) is strong, then p is involutive.

Proof. If (K, D, p) is a self-complementary dichotomy and p has the uniqueness property, then
p ◦ p(K) = p(D) = K by 1 in Proposition 3.1, and hence p ◦ p = id by Corollary 3.3.

For example, the Renaissance polarity e25 is involutive. The converse of this proposition
does not hold since, in the Renaissance dichotomy (K[x], D[x], e2 x5), e2 x5 is involutive, but the
dichotomy is not strong as already observed.

7This conceptual argument can be related to the groupoid of intervals of K, briefly introduced in Section 3.1.

7
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We define a quasipolarity as an involutive derangement. A quasipolarization of R is a
self-complementary dichotomy (K, D, p) of R where p is involutive. Therefore, in view of Propo-
sition 3.1, a self-complementary dichotomy (K, D, p) is a quasipolarization if and only if p is a
quasipolarity.

Note that not all self-complementary dichotomies are quasipolarizations. For example, the self-
complementary dichotomy ({0, 2, 4, 6, 8, 10}, {1, 3, 5, 7, 9, 11}, e1) of Z12 is not a quasipolarization
since e1 ◦ e1 = e2 ̸= id.

Thus, the construction of quasipolarizations is a good beginning if we want a strong dichotomy,
though quasipolarizations need not be strong dichotomies.

3.4. Examples of strong dichotomies

In this section, we use Lemmas 3.4 and 3.5 to open up a series of counterpoint worlds. First,
consider the case when R is the commutative ring Z12 and different examples of quasipolarizations
that we will check to be strong dichotomies. The set of orbits of the action of the multiplicative
group {1, 5, 7, 11} of invertible elements of Z12 on Z12 is

{{0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}}.

In the following example we prove the claim that the Renaissance quasipolarization is a strong
dichotomy.

Example 3.7 (Renaissance counterpoint). Consider the dichotomy (K, D, e25), where

K = {0, 3, 4, 7, 8, 9} and D = {1, 2, 5, 6, 10, 11}.

Let us prove that the dichotomy is strong. According to Corollary 3.3, it is enough to show that
our dichotomy is rigid, or equivalently, that θ(K) = {e01}. In fact, by Lemma 3.5, eab /∈ θ(K) for
each symmetry eab with a ∈ D. The cases when a ∈ K remain. If a = 0, then since 5 × 7 = 11 /∈ K,
7 × 7 = 1 /∈ K, and 11 × 7 = 5 /∈ K, we conclude that the symmetries of the form e0b with
b = 5, 7, 9 are not in θ(K). Finally, since

3 + 8 = 8 + 3 = 11 /∈ K, 4 + 9 = 9 + 4 = 1 /∈ K, and 3 + 7 /∈ K,

Lemma 3.4 implies that all symmetries eab with a ∈ {3, 4, 7, 8, 9} are not in θ(K). We have
exhausted all possibilities, except the identity, and hence θ(K) is trivial. 3

Example 3.8 (Scriabin’s mystic chord, see [5]). Consider the dichotomy (K, D, e511), where
K = {0, 2, 4, 6, 9, 10} and D = {1, 3, 5, 7, 8, 11}. Let us show that e511 is a polarity by using the
same strategy of the preceding example.

As before, eab /∈ θ(K) for each symmetry eab with a ∈ D, and we need to discard the cases
when a ∈ K. If a = 0, then since 5 × 4 = 8 /∈ K, 7 × 9 = 3 /∈ K, and 11 × 4 = 8 /∈ K, the symmetries
of the form e0b with b = 5, 7, 11 are not in θ(K). Also, since

6 + 2 = 2 + 6 = 8 /∈ K, 5 + 4 = 9 /∈ D, 2 + 9 = 11 /∈ K, and 10 + 10 = 8 /∈ K,

Lemma 3.4 implies that all symmetries eab with a ∈ {2, 4, 6, 9, 10} are not in θ(K). Hence, θ(K) is
trivial. 3

The next computation establishes the existence of at least a strong dichotomy in Z2k for each
k ≥ 3. These dichotomies are the beginning of a lot of microtonal counterpoint worlds, which
were first studied in [1]. Recall that all invertible elements of Z2k are odd since they are coprime
with 2k.

8
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Example 3.9 (Cf. [3, Proposition 2.1] and [1, Proposition 2.6]). Let8 k ≥ 3. In Z2k, consider the
dichotomy (K, D, e−1(−1)), where

K = {0, 1, 3, . . . , 2k − 5, 2k − 3} and D = {−1, 2k − 2, 2k − 4, . . . , 4, 2}.

We already know (Lemma 3.5) that eab /∈ θ(K) for each symmetry eab with a ∈ D. If a = 0, then
b(−1) = −b ̸= −1 with −b odd whenever b ∈ Z∗

2k \ {1} and hence −b /∈ D, so the symmetries of
the form e0b with b ∈ Z∗

2k \ {1} are not in θ(D) = θ(K). Also, since all orbits of even numbers,
except the orbit {0} of 0, under the action of Z∗

2k on Z2k are contained in D, the equations

2 + 1 = 3 /∈ D, . . . , 2 + (2k − 5) = 2k − 3 /∈ D, and 4 + (2k − 3) = 1 /∈ D,

imply (Lemma 3.4) that all symmetries eab with a ∈ {1, 3, . . . , 2k − 5, 2k − 3} are not in θ(K).
Hence, θ(K) is trivial. 3

Next, we provide a noncommutative example.

Example 3.10 (A noncommutative strong dichotomy). Let R be the noncommutative ring of all
upper triangular matrices 2 × 2 with entries in Z2. The symmetry eI , where I is the identity
matrix, is a quasipolarity, so we can construct self-complementary dichotomies with the procedure
of Section 3.1. A possible choice is the dichotomy with K = {0, A1, A2, A3}, where

A1 =

[
1 0
0 0

]
, A2 =

[
1 1
0 0

]
, and A3 =

[
1 1
0 1

]
.

In this case, R∗ = {I, A3} and A1 and A2 are invariant under the left action of R∗. Let us show
that K is rigid. As usual, eAB /∈ θ(K) for each symmetry eAB with A ∈ D. The cases when A ∈ K
remain. If A = 0, then since A3 A3 = I /∈ K, the symmetry e0 A3 is not in θ(K). Also,

A2 + A1 = A1 + A2 /∈ K, and A1 + A3 /∈ K,

so, by Lemma 3.4, all symmetries eAB with A ∈ {A1, A2, A3} are not in θ(K). Thus, θ(K) is
trivial, and (K, R \ K, eI) is a strong dichotomy. The reader can obtain other examples of strong
dichotomies from quasipolarities of R, whenever the chosen K is not invariant under the left action
of A3, by using a similar argument. 3

Finally, note that there is no strong dichotomy of Z4 to define a counterpoint world with a
four-tone scale (which can be thought of as a diminished seventh chord). In fact, the possible
dichotomies {{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, and {{0, 3}, {1, 2}} are invariant under e1(−1), e2,
and e−1(−1), respectively, so they are not rigid and hence not strong (Corollary 3.3).

3.5. The contrapuntal intervals ring

Given an arbitrary ring R, we can construct the polynomial ring R[x] and the two-sided ideal
⟨p(x)⟩ consisting of all (left or right) multiples of p(x), where p(x) is the polynomial x2 − αx for
some fixed α = 0, 1. Thus, we have the quotient ring9 R[x]/ ⟨p(x)⟩, which we call the contrapuntal
intervals ring associated with R. If we denote by x the class of x, then each element of this ring
can uniquely be written10 as c + d x, and hence it makes sense to denote the ring by R[x]. Thus,

8Thanks to the hypothesis k ≥ 3, the six distinct elements 0, 1, 3, −1, 2, and 4 are in Z2k .
9See [14, p. 278] for details.

10In this representation we use the fact that R can be regarded as a subring of R[x]/ ⟨p(x)⟩. Also, the representation
follows from the fact that each polynomial f (x) in R[x] can uniquely be written (division algorithm) as q(x)p(x) + r(x),
where either r(x) = 0 or deg(r(x)) < deg(p(x)) = 2.

9
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R[x] consists of all linear polynomials c + d x subject to the relation x2 = α x. The ring R[x] is
noncommutative if R is.

Explicitly, the operations in R[x] are defined by

(c + d x) + (c′ + d′ x) = c + c′ + (d + d′) x

and
(c + d x)(c′ + d′ x) = cc′ + (cd′ + dc′ + dd′α) x .

In the case when α = 0, R[x] is the dual numbers ring R[ϵ], which was the ring used in the
original model [12, p. 556]. In the case when α = 1, R[x] is isomorphic to the product ring R × R,
whose elements can be interpreted in musical terms as pairs consisting of cantus firmus and
discantus notes, by means of the assignment

R × R −→ R[x] : (r, s) 7→ r + (s − r) x.

Both variations share the same structure as Abelian groups, but they differ in their products. In the
dual numbers case, intervallic variations are infinitesimals11 so dϵd′ϵ = dd′ϵ2 = 0, whereas in the
other case, intervallic variations are just elements of R, so d x d′ x = dd′ x2 = dd′ x. The exploration
of the latter alternative is one of the contributions of this paper.

An element c + d x ∈ R[x] is invertible if and only if c and c + dα are invertible in R. In
fact, if (c′ + d′ x)(c + d x) = 1 and (c + d x)(c′ + d′ x) = 1, then c′c + (c′d + d′c + d′dα) x = 1 and
cc′ + (cd′ + dc′ + dd′α) x = 1, so c is invertible and cd′ + dc′ + dd′α = 0. From the last equation we
deduce the following ones.

(c + dα)d′ + dc′ = 0

(c + dα)d′α + dαc′ = 0

(c + dα)d′α + dαc′ + cc′ = cc′

(c + dα)(c′ + d′α) = 1

Similarly, c + dα is left-invertible. Reciprocally, if c and c + dα are invertible, define c′ = c−1 and
d′ = −(c + dα)−1dc′. Thus, c′ + d′ x is a two-sided inverse for c + d x.

Alternatively, in the case when α = 1, by the isomorphism between R[x] and R × R, the inverse
of c + d x also has the description c−1 + ((c + d)−1 − c−1) x.

We have the following proposition regarding dichotomies of R[x] induced by dichotomies of a
ring R. Given subsets X, Y ⊆ R, we define

X + Y x = {c + d x ∈ R[x] | c ∈ X and d ∈ Y}.

Also, we denote by X[x] the set R + X x.

Proposition 3.11. Let {K, D} be a dichotomy of a ring R.

1. The pair {K[x], D[x]} is a dichotomy of R[x].

2. If (K, D, eab) is a self-complementary dichotomy of R, then (K[x], D[x], ea xb) is a self-complementary
dichotomy of R[x].

3. If (K, D, eab) is a quasipolarization of R, then (K[x], D[x], ea xb) is a quasipolarization of R[x].

As previously commented, strong dichotomies need not induce strong dichotomies on contrapuntal intervals.
11The reader can found a musical justification of the relation ϵ2 = 0 in [12, pp. 557-558].

10
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Proof. 1. First, {K[x], D[x]} is a partition of R[x] since

K[x] ∪ D[x] = (R + K x) ∪ (R + D x) = R + (K ∪ D) x = R + R x = R[x]

and
K[x] ∩ D[x] = (R + K x) ∩ (R + D x) = R + (K ∩ D) x = R + ∅ x = ∅.

On the other hand, if f : K −→ D is a bijection, then K[x] −→ D[x] : r + k x 7→ r + f (k) x is a
bijection, so |K[x]| = |D[x]|.

2. This follows from 1 and the equalities

ea xb(K[x]) = {ea xb(r + k x) | r ∈ R and k ∈ K}
= {br + (bk + a) x | r ∈ R and k ∈ K}
= bR + (eab(K)) x

= R + D x

= D[x].

As to the fourth equality above, note that bR = R since b is invertible.
3. This follows from 2 and the equation

ea xb ◦ ea xb = e(ba+a) xb2 = e01,

which is a consequence of the identity eab ◦ eab = e01, the latter being equivalent to ba + a = 0
and b2 = 1.

4. A mathematical model of first-species counterpoint

We start with a strong dichotomy (K, D, p) of a ring R, where p = eab, and construct the contrapuntal
intervals ring R[x], which models the two voices of first-species counterpoint. Then, we consider
progressions (ξ, η) of contrapuntal consonances in K[x] and aim to determine when they are valid
for counterpoint. The three principles in Sections 4.1, 4.2, and 4.3 serve this purpose.

4.1. Alternation

This principle intends to formalize the idea of tension/resolution in counterpoint. It requires the
existence of a symmetry g ∈ Sym(R[x]) such that ξ ∈ g(D[ϵ]) and η ∈ g(K[ϵ]). In such a case,
we say that (ξ, η) is polarized. Thus, (ξ, η) is the deformation, by means of g, of a progression
from a dissonance to a consonance; see Figure 2. Under a musical intuition, ξ moves to η since
dissonances resolve to consonances. However, how do we ensure that deformed consonances and
dissonances are consonances and dissonances on their own right? In the following section we
solve this problem. In Section 4.5 we give a simple characterization of polarized progressions.

4.2. Local characterization of consonances and dissonances

As observed in Section 3, the strength property of the Renaissance dichotomy characterizes it. In
general, given a strong dichotomy (K, D, p) as above, the induced dichotomy of the contrapuntal
intervals is not strong, but it has the following local strength property in each fiber Iz of R[x],
where Iz = z + R x and z ∈ R, as shown in Theorem 4.6 below:

11
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Figure 2: Here, g is a deformation symmetry and η an admitted successor of ξ.

• There is a unique symmetry pz[x] ∈ Sym(R[x]) of the form eu+v xc, defined by pz[x] =
e(1−b)z+a xb, such that pz[x](z + K x) = z + D x.

In the case of the Renaissance strong dichotomy (K, D, e25) of Z12, this condition locally
determines the induced dichotomy {K[x], D[x]}. This means that the following two conditions
characterize {z + K x, z + D x} among partitions {z + K′ x, z + D′ x} of Iz:

1. The symmetry pz[x] is the unique p′ ∈ Sym(R[x]) of the form eu+v xc such that p′(z+K′ x) =
z + D′ x.

2. The set 7K′ is a multiplicative monoid.

In fact, 1 is equivalent to the condition that p is the unique symmetry of Z12 sending K′ to D′, so
according to the characterization of the Renaissance dichotomy in Section 3, the conditions 1 and 2
imply K′ = K and D′ = D. Consequently, if we want to ensure that a certain partition {z+K′ x, z+
D′ x} of Iz offers a relaxed consonance/dissonance notion, we only require 1; otherwise we back
to {z + K x, z + D x}. Thus, for a general strong dichotomy, we locally characterize contrapuntal
dissonances and consonances with 1.

Now, by alternation, ξ (respectively η) is in a half of the partition

{g(K[x]) ∩ Iz, g(D[x]) ∩ Iz}, (2)

where z is the cantus firmus of ξ (respectively η). Therefore, we require the condition 1 on the
partition in Equation (2). In Theorem 4.9, we prove that this particular condition is equivalent to
the equation

pz[x](g(K[x]) ∩ Iz) = g(D[x]) ∩ Iz. (3)

Mazzola [12] requires it only for the cantus firmus12 z of ξ.

4.3. Variety

In this model, the variety principle of counterpoint [8, p. 21] corresponds to the condition that
there is a maximum of alternations from ξ, that is, the cardinality of g(K[x]) ∩ K[x] is maximum
among all g ∈ Sym(R[x]) such that

1. ξ ∈ g(D[x]) ∩ K[x] (alternation) and

2. Equation (3) holds for the cantus firmus z of ξ (local dissonance).
12In Section 11, we discuss other possibilities, like also requiring 1 for the cantus firmus of η, which need not

coincide with z. On the other hand, this condition is weaker than Mazzola’s second requirement [11, Definition 95]
pz[x](g(K[x])) = g(D[x]), and they are equivalent if R is commutative, as shown in Section 10.

12
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4.4. Defining first-species counterpoint

Now we can give the definition of admitted successor.

Definition 4.1. Let (K, D, p) be a strong dichotomy of a ring R.

• A contrapuntal symmetry for a consonance ξ ∈ K[x], with ξ = z + k x, is a symmetry g of
R[x] such that

1. ξ ∈ g(D[x]),
2. pz[x](g(K[x]) ∩ Iz) = g(D[x]) ∩ Iz, and
3. the cardinality of g(K[x]) ∩ K[x] is maximum among all g satisfying 1 and 2.

Note that the contrapuntal symmetry for a given consonance is not required to be unique.
• An admitted successor of a consonance ξ ∈ K[x] is an element η of g(K[x]) ∩ K[x] for some

contrapuntal symmetry g. See Figure 2.
• Progressions (ξ, η) usually occur in a subset X of R, which we call scale. If η is an admitted

successor of ξ we say that (ξ, η) is allowed. If it does not happen and (ξ, η) is polarized, we
say that it is forbidden.

♣
Since the model chooses suitable pairs (ξ, η) as allowed among all polarized pairs, we say that

the model does not decide on non-polarized pairs. Next we characterize polarized pairs and observe
that, in the case of dual numbers (α = 0), they are all non-constant progressions. In the case α = 1,
they could be more particular.

4.5. Polarized progressions characterization

Let ξ = z + k x and η = z′ + k′ x, where ξ, η ∈ K[x] and (K, D, p) is a strong dichotomy of a
finite ring R. We want to determine when there is g ∈ R[x] such that z + k x ∈ g(D[x]) and
z′ + k′ x ∈ g(K[x]). This property is equivalent to k x ∈ e−zg(D[x]) and z′ − z + k′ x ∈ e−zg(K[x]),
so we reduce the problem to the case when ξ = k x and η = y + k′ x. Now, the following properties
are equivalent.

1. There is g ∈ Sym(R[x]) such that k x ∈ g(D[x]) and y + k′ x ∈ g(K[x]).

2. There is g ∈ Sym(R[x]) such that g(k x) ∈ D[x] and g(y + k′ x) ∈ K[x].

3. There is eu+v x(c+ d x) ∈ Sym(R[x]) such that (c+ dα)k+ v ∈ D and (c+ dα)k′ + v+ dy ∈ K.

4. There are eu+v x(c + d x) ∈ Sym(R[x]) and κ ∈ K such that v = κ − (c + dα)k′ − dy and
κ + (c + dα)(k − k′)− dy ∈ D.

5. There is c + d x invertible such that e(c+dα)(k−k′)−dy(K) ⊈ K.

6. There is c + d x invertible such that e(c+dα)(k−k′)−dy(K) ̸= K.

7. There is c + d x invertible such that (c + dα)(k − k′)− dy ̸= 0.

The equivalence between 5 and 6 is given by the finiteness of R. Certainly, given two finite13 sets
A and B with the same number of elements, A ⊆ B if and only if A = B (that is, A ⊈ B if and
only if A ̸= B). The equivalence between 6 and 7 holds since K is rigid by Corollary 3.3.

Note that in turn 7 implies k x ̸= y + k′ x. In the dual numbers case (α = 0), we can prove that
it is also a sufficient condition.

13This fails for infinite sets: N and Z have the same cardinality but N is strictly contained in Z.
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Proposition 4.2. Let ξ, η ∈ K[ϵ], where (K, D, p) is a strong dichotomy of a finite ring R. The pair (ξ, η)
is polarized if and only if ξ ̸= η.

Proof. By 7 above, it only remains to prove that if kϵ ̸= y + k′ϵ, then there are c ∈ R∗ and d ∈ R
such that c(k − k′)− dy ̸= 0. We have two cases. First case: k − k′ ̸= 0. Take d = 0 and c = 1.
Second case: y ̸= 0 and k − k′ = 0. Take d = 1 and any c.

In the case when α = 1, this result is not true. Let us suppose that R = Z12. If k − k′ ̸= 0, we
polarize (ξ, η) as in the previous proof. However, if y ̸= 0 and k − k′ = 0, we have two possibilities.
First, if y ̸= 6, then −2y ̸= 0 with 5 + 2 x invertible. Second, if y = 6, then dy = 0 for all c + d x
invertible since d is even always. Thus, the polarized pairs (ξ, η) are all those such that k ̸= k′,
or k = k′ and y /∈ {0, 6}. In other words, the non-polarized progressions are all repetitions and
parallelisms with y = 6 (tritone skip).

4.6. The structural role of polarities

Next, we prove that there is a unique symmetry pz[x] ∈ Sym(R[x]) of the form eu+v xc that
interchanges contrapuntal consonances and dissonances in the fiber Iz. In particular, it leaves Iz
unchanged. In the case when z = 0, p0[x] is the extension ea xb studied in Proposition 3.11.

Definition 4.3. Let g be a symmetry of R[x] and z ∈ R. We say that g is z-invariant if it leaves
invariant the fiber Iz, that is, if g(Iz) = Iz. ♣

We first compute some candidates to pz[x].

Proposition 4.4. A symmetry g of R[x], where g = eu+v x(c + d x), is z-invariant if and only if
u = (1 − c)z.

Proof. Note that

g(z + R x) = eu+v x(c + d x)(z + R x)

= cz + u + ((c + dα)R + dz + v) x = cz + u + R x .

Thus, g is z-invariant if and only cz + u = z, the latter condition being equivalent to u =
(1 − c)z.

We denote by Hz the group14 of all z-invariant symmetries of R[x]. In the case when z = 0,
we simply write H instead of H0. The conjugation automorphism ez ◦ (−) ◦ e−z of Sym(R[x])
restricts to an isomorphism H −→ Hz for each z, as established in the following proposition.

Proposition 4.5. For each z ∈ R, the conjugation homomorphism ez ◦ (−) ◦ e−z : H −→ Hz is an
isomorphism of groups.

Proof. First, let us prove that the conjugation homomorphism has its images in Hz. If h ∈ H, then

ez ◦ h ◦ e−z(z + R x) = ez ◦ h(R x) = ez(R x) = z + R x .

Moreover, the inverse of ez ◦ (−) ◦ e−z is e−z ◦ (−) ◦ ez.

The uniqueness in the following theorem offers an explanation of the structural role of the
strong dichotomy (K, D, p) with p = eab.

14In fact, this set is a group since it is an stabilizer one.

14

http://www.musmat.org/


Journal MusMat • December 2021 • Vol. V, No. 2

Theorem 4.6. Let (K, D, eab) be a strong dichotomy of R. For each z ∈ R, there is a unique z-invariant
symmetry pz[x] of the form eu+v xc, defined by pz[x] = ez ◦ ea xb ◦ e−z = e(1−b)z+a xb, such that

pz[x](z + K x) = z + D x .

Proof. Since symmetries p′ ∈ Hz of the form eu+v xc such that p′(z + K x) = z + D x are in
correspondence (conjugation) with symmetries in H, of the same form, sending K x to D x, the
proof of the theorem reduces to the case when z = 0 (Proposition 4.7). In that case, p0[x] is ea xb,
so pz[x] = ez ◦ ea xb ◦ e−z = e(1−b)z+a xb.

Proposition 4.7. Let (K, D, eab) be a strong dichotomy of R. The symmetry ea xb is the unique 0-invariant
symmetry of the form eu+v xc sending K x to D x.

Proof. First, by Proposition 4.4, necessarily u = 0. Now, ev xc sends K x to D x if and only
evc(K) = D. Hence, evc = eab and eu+v xc = ea xb.

4.7. The local condition on the deformed dichotomy

Lemma 4.8. Let g be a symmetry of R[x]. For each z ∈ R, there is γz ∈ Sym(R) such that

g(X[x]) ∩ Iz = z + γz(X) x

for any subset X of R. Concretely, if g = eu+v x(c + d x), we define

γz = ev+dc−1(z−u)(c + dα).

Proof. If g = eu+v x(c + d x), then

g(X[x]) ∩ Iz = z + ((c + dα)X + v + dc−1(z − u)) x = z + γz(X) x .

Theorem 4.9. Let (K, D, p) be a strong dichotomy of R and g ∈ Sym(R[x]). The following conditions are
equivalent.

1. The symmetry pz[x] is the unique p′ ∈ Hz of the form eu+v xc such that

p′(g(K[x]) ∩ Iz) = g(D[x]) ∩ Iz. (4)

2. The equation pz[x](g(K[x]) ∩ Iz) = g(D[x]) ∩ Iz holds.

3. The equation pγz = γz p holds, where γz is as in Lemma 4.8.

Proof. Equation (4), for p′ = eu+v xc ∈ Hz, is equivalent to the equations (evc)γz(K) = γz(D),
γ−1

z (evc)γz(K) = D, and (evc)γz = γz p, by Lemma 4.8 and the fact that p is a polarity. The last
equation (and hence Equation (4)) has a unique solution for evc (respectively p′) and Equation (4),
for p′ = pz[x], is equivalent to pγz = γz p, so 1 is equivalent to 3 and 2.

5. Simplified computation of admitted successors

In this section we characterize the admitted successors of a contrapuntal consonance z + k x as the
translations, by z, of the admitted successors of k x associated with contrapuntal symmetries in H.
This offers an important simplification of the original computation.

First, we transfer the symmetries satisfying conditions 1, 2, and 3 in Definition 4.1, and admitted
successors, between the consonances z + k x and k x. The basic tool is the translation permutation
ez ◦ (−) : Sym(R[x]) −→ Sym(R[x]), whose inverse is e−z ◦ (−).
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5.1. Transfer of the first condition

Let z+ k x be a contrapuntal consonance. We define S1
z+k x as the set of all g ∈ Sym(R[x]) satisfying

condition 1 in Definition 4.1, namely z + k x ∈ g(D[x]). Note that the translation ez ◦ (−) restricts
to a bijection S1

k x −→ S1
z+k x. This means that k x ∈ g(D[x]) if and only if z + k x ∈ ezg(D[x]).

5.2. Transfer of the second condition

We define S2
z as the set of all g ∈ Sym(R[x]) satisfying condition 2 in Definition 4.1, namely

pz[x](g(K[x]) ∩ Iz) = g(K[x]) ∩ Iz. The translation ez ◦ (−) restricts to a bijection S2
0 −→ S2

z , as
proved by the following equivalences. Recall that p0[x] = e−z ◦ pz[x] ◦ ez by Theorem 4.6.

p0[x](g(K[x]) ∩ I0) = g(D[x]) ∩ I0 ⇔
e−z pz[x]ez(g(K[x]) ∩ I0) = g(D[x]) ∩ I0 ⇔
pz[x]ez(g(K[x]) ∩ I0) = ez(g(D[x]) ∩ I0) ⇔

pz[x](ezg(K[x]) ∩ Iz) = ezg(D[x]) ∩ Iz

In fact, ez, as a bijection, commutes with intersections and ez(I0) = Iz.

5.3. Transfer of the third condition and admitted successors

Let z + k x be a contrapuntal consonance and Sz+k x the set of all g ∈ Sym(R[x]) satisfying 1 and 2
in Definition 4.1. Since the translation ez ◦ (−) restricts to bijections between sets of symmetries
satisfying 1 and 2, respectively (Sections 5.1 and 5.2), then it restricts to a bijection Sk x −→ Sz+k x.

On the other hand, note that

ez(g(K[x]) ∩ K[x]) = ezg(K[x]) ∩ ez(K[x])

= ezg(K[x]) ∩ K[x].

The second equation holds because X[x] (for any X) is invariant under transformations of the form
ey. In particular, this means that |g(K[x]) ∩ K[x]| = |ezg(K[x]) ∩ K[x]| and hence, in that sense, the
bijection Sk x −→ Sz+k x preserves the cardinality of the sets of the form g(K[x]) ∩ K[x].

Thus, |g(K[x]) ∩ K[x]| is maximum, among all g satisfying 1 and 2 in Definition 4.1, for the
consonance k x, if and only |ezg(K[x])∩ K[x]| is for z + k x. This means that Sk x −→ Sz+k x restricts
to a bijective correspondence between contrapuntal symmetries.

In particular, g(K[x]) ∩ K[x] is a set of admitted successors of k x if and only if ezg(K[x]) ∩ K[x]
is for z + k x. This implies the following lemma.

Lemma 5.1. The sets of admitted successors of z + k x can be computed as those of the form

ez(g(K[x]) ∩ K[x]),

where g is a contrapuntal symmetry for k x.

5.4. Restricting symmetries

Given a symmetry g, we next prove that g(K[x]) = h(K[x]), where h ∈ H. Note that this
immediately implies that h is contrapuntal for z + k x whenever g is. This suggests drawing our
attention to the contrapuntal symmetries in H.

Recall that Hz consists of all z-invariant symmetries of R[x], that is, the symmetries of the form
e(1−c)z+v x(c + d x) with c, c + dα ∈ R∗ (Proposition 4.4).
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Proposition 5.2. Let g be a symmetry of R[x]. For each z ∈ R, there is gz ∈ Hz such that

g(X[x]) = gz(X[x])

for any subset X of R. Concretely, if g = eu+v x(c + d x), then gz is gew, where w = c−1(z − u)− z.

Proof. Note that the symmetry gz defined above is in Hz, by Proposition 4.4, since cw+ u = (1− c)z.
Thus,

gz(X[x]) = gew(X[x]) = g(X[x]).

5.5. Main theorem

Our previous observations lead to a considerably simpler characterization of contrapuntal symme-
tries and admitted successors, only involving symmetries in H.

Proposition 5.3. The admitted successors of a consonance z + k x ∈ K[x] can be computed as the elements
of the sets of the form

ez(h(K[x]) ∩ K[x]), (5)

where h ∈ H and

(a) k x ∈ h(D[x]),
(b) p0[x](h(K[x]) ∩ I0) = h(D[x]) ∩ I0, and
(c) the cardinality of h(K[x]) ∩ K[x] is maximum among all h ∈ H satisfying (a) and (b).

Proof. By Lemma 5.1, it is enough to show that the collection of all sets of the form g(K[x])∩ K[x]),
with g contrapuntal symmetry for k x, is equal to the set of all intersections h(K[x]) ∩ K[x]) with h
satisfying (a), (b), and (c) above.

If g is a contrapuntal symmetry for k x, then, since g(K[x]) = g0(K[x]) (Proposition 5.2),
g0 is a contrapuntal symmetry and, in particular, satisfies (a) and (b). Also, g(K[x]) ∩ K[x] =
g0(K[x]) ∩ K[x] and g0 satisfies (c) because H ⊆ Sym(R[x]).

Conversely, if h satisfies (a), (b), and (c), we claim that h is a contrapuntal symmetry and hence
h(K[x]) ∩ K[x] is an usual admitted successors set. To prove the claim, take g satisfying 1 and 2 in
Definition 4.1 for the consonance k x. The symmetry g satisfies (a), (b), and g(K[x]) = g0(K[x]), so

|g(K[x]) ∩ K[x]| = |g0(K[x]) ∩ K[x]| ≤ |h(K[x]) ∩ K[x]|,

and h is contrapuntal.

If we replace condition (b) in Proposition 5.3 by its equivalent 3 in Theorem 4.9, we immediately
obtain the main theorem.

Theorem 5.4. The admitted successors of a consonance z + k x ∈ K[x] can be computed as the elements of
the sets of the form

ez(h(K[x]) ∩ K[x]), (6)

where h = ev x(c + d x) ∈ H and

1. k x ∈ h(D[x]),

2. p ◦ ev(c + dα) = ev(c + dα) ◦ p, and

3. the cardinality of h(K[x]) ∩ K[x] is maximum among all h ∈ H satisfying 1 and 2.
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This theorem says that, to compute the admitted successors of a consonance z+ k x, it is enough
to do so for k x, and then apply the transposition ez (Equation (6)). In this simplification we only
use symmetries in H and reduce the condition 2 to a suitable commutativity. This situation agrees
with the fact that in Renaissance and the common-practice period contrapuntal consonances are
invariant with respect to musical transposition.

6. Counting formulas and maximization

Let R be a finite ring, (K, D, p) a strong dichotomy of R with p = eab, and {K[x], D[x]} the induced
dichotomy of R[x]; see Proposition 3.11.

According to Theorem 5.4, it is desirable to count the number of elements of the sets of the
form h(K[x]) ∩ K[x], for h ∈ H, so as to choose suitable maximum cardinals.

If ev x(c + d x), with c, c + dα ∈ R∗, belongs to H and r + k x ∈ K[x], then

ev x(c + d x)(r + k x) = cr + ((c + dα)k + v + dr) x .

Let ⊔ denote the disjoint union of sets. Thus,

ev x(c + d x)(K[x]) =
⊔

r∈R
cr + ((c + dα)K + v + dr) x

and
ev x(c + d x)(K[x]) ∩ K[x] =

⊔
r∈R

cr + (((c + dα)K + v + dr) ∩ K) x (7)

because e0c is a permutation of R, and hence

|ev x(c + d x)(K[x]) ∩ K[x]| = ∑
r∈R

|((c + dα)K + v + dr) ∩ K|. (8)

Moreover, we can assume that α = 0 in the last equation in view of the following ones, where
χK : R −→ {0, 1} is the characteristic function15 of K.

∑
r∈R

|((c + dα)K + v + dr) ∩ K| = ∑
r∈R

∑
k∈K

χK((c + dα)k + v + dr)

= ∑
r∈R

∑
k∈K

χK(ck + v + d(αk + r))

= ∑
k∈K

∑
r∈R

χK(ck + v + d(αk + r))

= ∑
k∈K

∑
r∈R

χK(ck + v + dr)

= ∑
r∈R

|(cK + v + dr) ∩ K|

Given an element d in a ring R, we have the R-endomorphism d · − : R −→ R : r 7→ dr, which
is useful in the following discussion.

Lemma 6.1. Let K and K′ be subsets of a finite ring R and d ∈ R. The equation

∑
r∈R

|(K′ + dr) ∩ K| = ρ ∑
γ∈Coker(d·−)

|K′
γ||Kγ| (9)

15It sends r to 1 if r ∈ K and sends r to 0 otherwise.
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holds, where Coker(d · −) = R/dR,

Xγ = {x ∈ X | [x] = γ}

for each X ⊆ R, and ρ = |Ker(d · −)|. Here, [x] denotes the class of x in Coker(d · −).

Proof.

∑
r∈R

|(K′ + dr) ∩ K| = ρ ∑
r∈dR

|(K′ + r) ∩ K|

= ρ ∑
r∈dR

∑
s∈K′

χK(s + r)

= ρ ∑
s∈K′

∑
r∈dR

χK(s + r)

= ρ ∑
s∈K′

|K[s]|

= ρ ∑
γ∈K′/dR

|K′
γ||Kγ| = ρ ∑

γ∈Coker(d·−)

|K′
γ||Kγ|.

As to the last equality, note that if γ is not in the image K′/dR of K′ under the canonical projection
onto the cokernel, then |K′

γ| = 0.

Let us remark a curiosity. In Lemma 6.1, the cases d = 1 and d = 0 correspond to the formulas

∑
r∈R

|(K′ + r) ∩ K| = |K′||K|

and
∑
r∈R

|K′ ∩ K| = |R||K′ ∩ K|

respectively; see [11, Lemma 48]. We can exemplify the first formula by saying that the total
number of common notes between the C major triad {C, E, G} and all its transpositions in Z12
is 3 × 3: three common notes with itself and a common note with E, G, A♭, E♭, F, and A major
chords.

The following corollary illustrates the lemma in the important case when the ring is Zn.

Corollary 6.2. Let K and K′ be subsets of Zn and d ∈ Zn. The equation

n−1

∑
r=0

|(K′ + dr) ∩ K| = ρ
ρ−1

∑
i=0

|K′
i ||Ki| (10)

holds, where
Xi = {x ∈ X | x ≡ i (mod ρ)}

for each X ⊆ Z12 and ρ = gcd(d, n).

Proof. Note that for each finite ring R (isomorphism and index theorems for groups)

|Ker(d · −)| = |R|/|dR| = |R/dR| = |Coker(d · −)|.

If R = Zn, then by [7, Theorem 6.14], R/dR = Zn/dZn = Zn/ρZn ∼= Zρ, where ρ = gcd(d, n),
so |Ker(d · −)| = |Coker(d · −)| = ρ. Moreover, [x] = γ for γ ∈ Coker(d · −) if and only if x ≡ i
(mod ρ) by identifying γ and i through the isomorphism Coker(d · −) ∼= Zρ.
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d ρ
11
∑

r=0
|(K′ + dr) ∩ K|

0 12 12(|K′
0|+ |K′

3|+ |K′
4|+ |K′

7|+ |K′
8|+ |K′

9|)
1, 5, 7, 11 1 36
2, 10 2 36
3, 9 3 3(|K′

0|3 + |K′
1|2 + |K′

2|)
4, 8 4 4(|K′

0|3 + |K′
1|+ |K′

3|2)
6 6 6(|K′

0|+ |K′
1|+ |K′

2|+ |K′
3|2 + |K′

4|)

Table 1: Values of the right-hand side of Equation (8) for the Renaissance dichotomy.

Example 6.3. Let (K, D, e25) be the Renaissance strong dichotomy of Z12, with K = {0, 3, 4, 7, 8, 9}
and D = {1, 2, 5, 6, 10, 11}. Table 1 contains the particular values of the right-hand side of
Equation (8), by using Equation (10) with K′ = cK + v, for d ranging over Z12. Next, we briefly
justify each row.

Case d = 0. The number of elements in K congruent to i modulo 12 is just given by the
characteristic function of K as a subset of Z12.

Case d = 1, 5, 7, 11. Since all integers are congruent modulo 1, we obtain the expression |K′||K|
for the sum, whose exact value is 6 × 6.

The case d = 2, 10 is quite interesting. The integers congruent to 0 (respectively 1) modulo 2 are
the even (respectively odd) ones. Now, there are three even numbers (0, 4, and 8) and three odd
numbers (3, 7, and 9) in K. Thus, the counting formula becomes 2(|K′

0|3 + |K′
1|3). But multiplying

K by c (which is always odd because it is invertible) does not alter the parity of its elements, and
adding v to cK does not alter the number of odd or even elements. For this reason, |K′

0| = |K′
1| = 3

and the exact value of the counting formula is 2((3 × 3) + (3 × 3)).
Case d = 3, 9. In this case, |K0| = |{0, 3, 9}| = 3, |K1| = |{4, 7}| = 2, |K2| = |{8}| = 1, and the

remaining terms of the form Ki are empty.
Case d = 4, 8. Here |K0| = |{0, 4, 8}| = 3, |K1| = |{9}| = 1, |K3| = |{3, 7}| = 2, and the

remaining terms of the form Ki are empty.
Case d = 6. Here |K0| = |{0}| = 1, |K1| = |{7}| = 1, |K2| = |{8}| = 1, |K3| = |{3, 9}| = 2,

|K4| = |{4}| = 1, and the remaining terms of the form Ki are empty. 3

Another important consequence of the equation

∑
r∈R

|(K′ + dr) ∩ K| = ρd ∑
r∈dR

|(K′ + r) ∩ K|

in the proof of Lemma 6.1 is that if dR = d′R, then

ρd = |Ker(d · −)| = |R|/|dR| = |R|/|d′R| = ρd′

and hence

∑
r∈R

|(K′ + dr) ∩ K| = ∑
r∈R

|(K′ + d′r) ∩ K|.

Moreover, in the case when R = Zn, we observe from Equation (10) that we can reduce the
computation of the sums of the form ∑

r∈R
|(K′ + dr) ∩ K| for all d with the same ρ (recall that

ρ = gcd(d, n)) to that of the sum ∑
r∈R

|(K′ + ρr) ∩ K|, since these sums coincide.
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6.1. Main counting formulas

Now, according to Equation (8) (with α = 0), we will focus on the case when K′ = cK + v with
c invertible in R. Let us assume that d is in the center16 Z(R) of R. We claim that the sequence
(|K′

γ|)γ is a rearrangement17 of (|Kγ|)γ, where γ ranges over Coker(d · −). In fact,

|K′
[r]| = |{evc(k) | k ∈ K and [evc(k)] = [r] in Coker(d · −)}| (11)

= |{evc(k) | k ∈ K, ck + v − r ∈ dR}| (12)

= |{evc(k) | k ∈ K, k − (c−1r − c−1v) ∈ dR}| (13)

= |{evc(k) | k ∈ K, k − (evc)−1(r) ∈ dR}| (14)

= |{evc(k) | k ∈ K, [k] = [(evc)−1(r)] in Coker(d · −)}| (15)

= |{k ∈ K | [k] = [(evc)−1(r)]}| (16)

= |K[(evc)−1(r)]|.

Equation (11) holds by the definitions in Lemma 6.1. Equation (12) corresponds to the definition
of equality in the quotient Coker(d · −). Equation 13 follows from the fact that z ∈ dR implies
c−1z ∈ c−1dR = dc−1R = dR whenever d ∈ Z(R). Equation (14) holds since the inverse of evc is
e−c−1vc−1 according to Section 2. Equation (15) is the definition of equality in the cokernel again.
The equality of cardinalities in Equation (16) holds because evc is a bijection.

Second, since d ∈ Z(R), the function (actually a ring symmetry according to [14, p. 278]
because Coker(d · −) is a two-sided ideal of R)

[evc] : Coker(d · −) −→ Coker(d · −)
[r] 7−→ [evc(r)]

is well defined (check) with inverse [(evc)−1], so [evc] and [(evc)−1] are permutations of the
cokernel. Thus, regarding (|K′

γ|)γ and (|Kγ|)γ as functions from the cokernel to N, the former is
the composite of the latter with [(evc)−1] by the equality |K′

[r]| = |K[(evc)−1(r)]| above. Also, note

that [(evc)−1] = [e−c−1vc−1] = e−[c]−1[v][c]−1. This proves the main counting formulas.

Theorem 6.4 (Main counting formulas). Let R be a finite ring, d ∈ Z(R), K ⊆ R, and ev x(c + d x) a
symmetry in H. The equation

|ev x(c + d x)(K[x]) ∩ K[x]| = ρ ∑
γ∈Coker(d·−)

|K[(evc)−1](γ)||Kγ| = ρ ∑
δ∈Coker(d·−)

|Kδ||K[evc](δ)| (17)

holds, where Kγ = {x ∈ K | [x] = γ} and ρ = |Ker(d · −)|. In particular, if R = Zn, the right-hand
term of Equation (17) coincides with

ρ
ρ−1

∑
i=0

|Ki||Kevc(i)|, (18)

where Ki = {x ∈ K | x ≡ i (mod ρ)}, ρ = gcd(d, n), and evc is reduced modulo ρ.

Proof. Combine the previous discussion with Equation (8), Lemma 6.1, and Corollary 6.2. The
second equality in Equation (17) follows from the first one and the change of variable δ =
[(evc)−1](γ).

16It consists of those r in R such that rs = sr for all s ∈ R.
17A rearrangement of a function (sequence) f : S −→ X is a function of the form f ◦ σ, where σ is a permutation of S.
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6.2. Maximization criterion

The following maximization criterion helps to find symmetries h such that |h(K[x]) ∩ K[x]| is
maximum among all symmetries with h = ev x(c + d x) and d ∈ Z(R) fixed. It is important to
emphasize that it need not find symmetries with maximum values among all symmetries satisfying
conditions 1 and 2 of contrapuntal symmetry, but is very useful to discard a number of symmetries
whose values are not maximum.

Theorem 6.5 (Maximization criterion). Assume the hypotheses of Theorem 6.4. The right-hand side of
Equation (17)

ρ ∑
γ∈Coker(d·−)

|Kγ||K[evc](γ)|

is maximum, for evc ranging over all symmetries of R, if and only if |K[evc](γ)| = |Kγ| for each γ ∈
Coker(d · −). In particular, the sum is maximum if evc ≡ e01 (mod d), that is,18 if v ≡ 0 (mod d) and
c ≡ 1 (mod d). Further, the maximum value is

ρ ∑
γ∈Coker(d·−)

|Kγ|2.

Proof. Apply the rearrangement inequality (Theorem 13.1) to the sequences

(|Kγ|)γ and (|K[evc](γ)|)γ,

the latter being a rearrangement of the former by Section 6.1.

Certainly, the criterion is useful because if a symmetry ev x(c + d x) satisfies the conditions 1
and 2 for a contrapuntal symmetry and evc ≡ e01 (mod d), then we get rid of all symmetries
with the same d that induce a rearrangement of (|Kγ|)γ, which are usually all but those satisfying
evc ≡ e01 (mod d).

7. The little theorem of first-species counterpoint

The task of finding maximum cardinals subject to the conditions 1 and 2 seems to be difficult
in general. In the Little theorem of counterpoint, which we prove for the dual numbers case, we
establish that each consonance has at least |K|2 admitted successors. For example, in Renaissance
counterpoint, each consonance has at least 36 admitted successors. However, this approximation
theorem does not provide the admitted successors explicitly, which requires a greater effort.

The proof idea of the little theorem of counterpoint is the following. If we prove that there is at
least an h ∈ H satisfying the conditions 1 and 2 in Theorem 5.4 for all consonances k x ∈ K[x], then
we deduce that the number of admissible successors is at least |h(K[x]) ∩ K[x]| by the maximum
property of admitted successors sets associated with contrapuntal symmetries. Finally, Theorem 6.4
gives the exact value of |h(K[x]) ∩ K[x]|.

So as to prove the existence of such an h, we first need to give concrete criteria for deciding
when an h ∈ H satisfies 1 or 2. We do this in Sections 7.1 and 7.2. Finally, we translate our result
to any consonance z + k x, by using the bijective translation ez.

18Definition. We say that x ≡ y (mod d) if [x] = [y] in R/dR.
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7.1. The first condition criterion

Regarding the condition 1 in Theorem 5.4, given h = ev x(c + d x), we have the following equiva-
lences, where p is the polarity eab of (K, D, eab).

k x ∈ h(D[x]) ⇔ k ∈ (c + dα)D + v

⇔ k ∈ (c + dα) · p(K) + v

⇔ v = k − (c + dα) · p(s) for some s ∈ K

7.2. The second condition criterion

As to 2 in Theorem 5.4, given h = ev x(c + d x), we have the following equivalences.

p ◦ ev(c + dα) = ev(c + dα) ◦ p ⇔ eab ◦ ev(c + dα) = ev(c + dα) ◦ eab

⇔ ebv+ab(c + dα) = e(c+dα)a+v(c + dα)b

⇔ bv + a = (c + dα)a + v and b(c + dα) = (c + dα)b

7.3. The little theorem

In the dual numbers case (α = 0), we can prove the existence of an h ∈ H with d = 1 that satisfies
1 and 2 in Theorem 5.4, for the consonance kϵ. In fact, according to Sections 7.1 and 7.2, it is
enough to show that the following system of equations, in the unknowns v ∈ R, c ∈ R∗, d ∈ R
and s ∈ K, has at least a solution. 

v = k − cbs − ca
bv + a = ca + v

bc = cb

Certainly, it has the solution v = −ba = a, c = b, d = 1, s = k (note that b2 = 1 and ba + a = 0
since eab is involutive by Proposition 3.6). To conclude, e−baϵ(b + ϵ) is the desired h.

Lemma 7.1. Let R be a finite ring and (K, D, p) a strong dichotomy. Each consonance kϵ has at least |K|2
admitted successors.

Proof. If h ∈ H satisfies d = 1, then, according to Lemma 6.1,

|h(K[ϵ]) ∩ K[ϵ]| = ∑
r∈R

|(cK + v + r) ∩ K| = |cK + v||K| = |K|2.

Hence, h, with h = e−baϵ(b + ϵ), satisfies 1, 2, and the previous equation. Now, let N be the
number of admitted successors of kϵ. If h′ satisfies the conditions of Theorem 5.4, for kϵ, then

N ≥ |h′(K[ϵ]) ∩ K[ϵ]| ≥ |h(K[ϵ]) ∩ K[ϵ]| = |K|2.

An upper bound for a single contrapuntal symmetry can be obtained as well. First, suppose
that d is not 0. Note that

∑
r∈R

|(cK + v + dr) ∩ K| = ρ ∑
r∈dR

|(cK + v + r) ∩ K|,

where d · − : R −→ R is the R-endomorphism that sends an element r ∈ R to dr, and ρ =
|Ker(d · −)|.
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In the case when ev+rc is not the identity e01, note that |(cK + v + r) ∩ K| is at most |K| − 1
since K is rigid. On the other hand, there is at most a value of r in dR that makes ev+rc the identity,
and hence there is at most an r such that |(cK + v + r) ∩ K| = |K|. Thus,

ρ ∑
r∈dR

|(cK + v + r) ∩ K| ≤ ρ[(|dR| − 1)(|K| − 1) + |K|]

= ρ

[(
|R|
ρ

− 1
)
(|K| − 1) + |K|

]
= ρ

[(
2|K|

ρ
− 1

)
(|K| − 1) + |K|

]
= 2|K|2 − 2|K|+ ρ

≤ 2|K|2 − 2|K|+ |K| = 2|K|2 − |K|.

As to the last inequality note that ρ, as a divisor of |R| that is not19 |R|, must be less than or equal
to |K| (which coincides with |R|/2), the greatest divisor of |R| different from |R|.

Now suppose that d = 0. So as to find an upper bound for

∑
r∈R

|(cK + v) ∩ K|

we consider two cases. If c ̸= 1, then evc is not the identity e01. If c = 1, then, since we require
h (for h = evϵc) to satisfy condition 1 in Theorem 5.4, by Section 7.1, v = k − p(s) for some
s ∈ K. This means that v ̸= 0 since p(s) ∈ D, and hence evc is not the identity. In both cases,
|(cK + v) ∩ K| ≤ |K| − 1 since K is rigid. Thus,

∑
r∈R

|(cK + v) ∩ K| ≤ |R|(|K| − 1) = 2|K|(|K| − 1)< 2|K|2 − |K|.

To sum up, by collecting the results for d ̸= 0 and d = 0 and using Theorem 5.4, we obtain the
upper bound in the following theorem.

Theorem 7.2 (Little theorem of counterpoint). Let R be a finite ring and (K, D, p) a strong dichotomy.
Each consonance x + kϵ has at least |K|2 admitted successors, and at most 2|K|2 − |K| for a single
contrapuntal symmetry.

Proof. By Theorem 5.4, ez is a bijection between the sets of admitted successors of kϵ and z + kϵ.
Thus, the number of admitted successors of z + kϵ is equal to the number of admitted successors
of kϵ. The lower bound now follows from Lemma 7.1. The upper bound corresponds to the
preceding discussion.

7.4. Steps for the computation of contrapuntal symmetries

The steps for calculating the contrapuntal symmetries ev x(c + d x) in H, for a consonance of the
form k x, are the following. We start with a strong dichotomy (K, D, eab).

1. Solve the following system of equations in the unknowns c ∈ R∗, v, and d.{
bv + a = (c + dα)a + v
b(c + dα) = (c + dα)b

This corresponds to condition 2 of contrapuntal symmetry (Section 7.2).
19In fact ρ, which is by definition |Ker(d · −)|, is equal to |R| if and only if d = 0; but we are assuming d ̸= 0.
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2. For each consonance k x, among the symmetries of the form ev x(c+ d x) obtained in 1, choose
those with v ∈ k − cD. This corresponds to condition 1 of contrapuntal symmetry (Section
7.1). The reason for first computing the symmetries satisfying condition 2 is that those
symmetries are usually less than those satisfying condition 1, so we perform less operations.

3. For each consonance k x, among the symmetries ev x(c + d x) obtained in 2, choose those
such that the right-hand term of Equation (9)

ρ ∑
γ∈Coker(d·−)

|(cK + v)γ||Kγ|

with K′ = cK + v is maximum. This ensures that the condition 3 holds by Equation (8). In
the case when R is commutative, maximize the right-hand side of Equation (17). In the case
when R = Zn, maximize Equation (18). So as to discard a number of symmetries, if R is
commutative, Theorem 6.5 can be used.

In the next section we apply the previous steps to computing the contrapuntal symmetries in
the case of first-species Renaissance counterpoint.

8. First-species Renaissance counterpoint

Let (K, D, e25) be the Renaissance strong dichotomy of Z12, with K = {0, 3, 4, 7, 8, 9} and
D = {1, 2, 5, 6, 10, 11}. Next, we compute the respective contrapuntal symmetries and admit-
ted successors, in the dual numbers case (α = 0). In Section 11.1, we explain a simple procedure
for obtaining the contrapuntal symmetries in the case α = 1.

8.1. Condition 2

By the commutativity of Z12, the condition 2 for symmetries evϵ(c + dϵ) ∈ H, c ∈ R∗, reduces to
solve the equation

5v + 2 = c2 + v,

which is equivalent to
4v = 2(c − 1).

If c = 1, 7, then the equation becomes 4v = 0, so v = 0, 3, 6, 9. If c = 5, 11, then the equation
becomes 4(v − 2) = 0 and hence v = 2, 5, 8, 11. The solutions are summarized in the following
table.

c v
1, 7 0, 3, 6, 9
5, 11 2, 5, 8, 11

8.2. Condition 1

Now, among these solutions we choose, for each consonance kϵ, those satisfying

v ∈ k − cD.

In the following table, we organize the results of the operations involved. Specifically, we compute
3Z12 ∩ (k − cD) for c = 1, 7 and (2 + 3Z12) ∩ (k − cD) for c = 5, 11.
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H
HHH

HHc
k

0 3 4 7 8 9

1 {6} {9} {3, 6} {6, 9} {3, 6, 9} {3}
5 {2, 5, 11} {2, 5, 8} {2, 11} {2, 5} {2} {2, 8, 11}
7 {6} {9} {6, 9} {0, 9} {3, 6, 9} {3}
11 {2, 5, 11} {2, 5, 8} {2, 5} {5, 8} {2} {2, 8, 11}

We can easily fill in the table as follows. There are six entries, namely those labelled by (c, k)
with c = 1, 5 and k = 0, 4, 8, which we can start from, the other being obtained by using certain
symmetries. In fact, note that

7(3Z12 ∩ (k − D)) = 3Z12 ∩ (7k − 7D)),

7((2 + 3Z12) ∩ (k − 5D)) = (2 + 3Z12) ∩ (7k − 11D),

±3 + (3Z12 ∩ (k − cD)) = 3Z12 ∩ (±3 + k − cD),

and
±3 + ((2 + 3Z12) ∩ (k − cD)) = (2 + 3Z12) ∩ (±3 + k − cD).

For example, the entry (1, 3) is obtained by adding 3 to the entry (1, 0), and the entry (7, 0) is
obtained by multiplying the entry (1, 0) by 7.

8.3. Maximization

In the case of the Renaissance dichotomy, Theorem 6.5 allows us to obtain the following table
of maximum values, without the restrictions of conditions 1 and 2 of contrapuntal symmetry,
and their corresponding symmetries. We do not include the value d = 0, whose maximum is not
useful because the identity does not satisfy the condition 1. After the table we justify the results.

d ρ maximum
11
∑

r=0
|(cK + v + dr) ∩ K| evc

1, 5, 7, 11 1 36 any
2, 10 2 36 any
3, 9 3 42 ≡ e01 (mod 3)
4, 8 4 56 ≡ e01 (mod 4)
6 6 48 ≡ e01 (mod 6)

If ρ = 3, since all entries of the vector (|K0|, |K1|, |K2|) are different (Example 6.3), then
the unique rearrangement that coincides with it is the composition with e01, and hence the
maximum is only taken for the identity modulo 3. The same is true for ρ = 4. If ρ = 6, then
(|K0|, |K1|, |K2|, |K3|, |K4|, |K5|) = (1, 1, 1, 2, 1, 0). Now, if a symmetry evc modulo 6 induces a
rearrangement that leaves the vector invariant, then the rearrangement leaves K3 invariant, but
evc(3) = 3 + v = 3 and hence v = 0. Moreover, e05(1) = 5 and hence it does not induce a
rearrangement that leaves K1 invariant, so evc = e01.

Contrapuntal symmetries for 0ϵ.

According to the table in Section 8.2, there are exactly two symmetries for ρ = 6, namely
e6ϵ(1 + 6ϵ) and e6ϵ(7 + 6ϵ), with evc congruent to e01 modulo 6. This allows us to discard the
cases ρ = 3, 2, 1. Up to now the maximum is 48, and it remains to examine the cases ρ = 4, 12.

In the case when ρ = 4, the residues modulo 4 of the candidates in the table produce the
following sums, calculated with Equation (18).
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H
HHH

HHc
v

1 2 3

1 36 16 36
3 24 20 48

Thus, we have found two new symmetries with sum 48 (the maximum up to now), namely
e11ϵ(11 + 8ϵ) and e11ϵ(11 + 4ϵ). Here, e1111 ≡ e33 (mod 4).

It remains to examine the case ρ = 12. We have the following sums.

HH
HHHHc

v
6 2 5 11

1 24
7 36
5 0 36 36
11 12 24 48

This means that the maximum sum is 48 and that there is yet another symmetry e11ϵ11.

Contrapuntal symmetries for 3ϵ

According to the table in Section 8.2, there are exactly two symmetries for ρ = 4, namely e8ϵ(5+ 4ϵ)
and e8ϵ(5 + 8ϵ), with evc congruent to e01 modulo 4. We thus discard the cases ρ = 6, 3, 2, 1. Up to
now the maximum is 56.

The remaining case is ρ = 12. We have the following sums.

HH
HHHHc

v
9 2 5 8

1 36
7 24
5 0 36 48
11 12 24 36

The maximum is 56 and there are no more contrapuntal symmetries.

Contrapuntal symmetries for 4ϵ

There are exactly two symmetries for ρ = 6, namely e6ϵ(1+ 6ϵ) and e6ϵ(7+ 6ϵ), with evc congruent
to e01 modulo 6. This allows us to discard the cases ρ = 3, 2, 1. Up to now the maximum is 48.
The sums are less than 48 for ρ = 4 as shown in the following table.

HHH
HHHc

v
1 2 3

1 16 36
3 24 20

The case ρ = 12 yields the following sums.

H
HHH

HHc
v

3 6 2 11 9 5

1 36 24
5 0 36
7 36 24
11 12 24
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Hence, the maximum is 48 and there are no more contrapuntal symmetries.

Contrapuntal symmetries for 7ϵ

The case ρ = 12 yields the following sums.

H
HHH

HHc
v

0 6 2 8 9 5

1 24 36
5 0 36
7 60 24
11 36 24

Thus, we discard all remaining cases for ρ and the maximum is 60, corresponding to a unique
contrapuntal symmetry e07.

Contrapuntal symmetries for 8ϵ

There are exactly two symmetries for ρ = 6, namely e6ϵ(1+ 6ϵ) and e6ϵ(7+ 6ϵ), with evc congruent
to e01 modulo 6. This allows us to discard the cases ρ = 3, 2, 1. Up to now the maximum is 48.

The sums for ρ = 4 are the same of the consonance 0ϵ. In the table from Section 8.2, we observe
that there are two additional symmetries, namely e3ϵ(7 + 4ϵ) and e3ϵ(7 + 8ϵ), with evc congruent
to e33 modulo 4.

The case ρ = 12 yields the following sums.

HHH
HHHc

v
2 3 6 9

1 36 24 36
5 0
7 48 36 24
11 12

Hence, the maximum is 48 and there is an additional contrapuntal symmetry e3ϵ7.

Contrapuntal symmetries for 9ϵ

There are exactly two symmetries for ρ = 4, namely e8ϵ(5+ 4ϵ) and e8ϵ(5+ 8ϵ), with evc congruent
to e01 modulo 4. We thus discard the cases ρ = 6, 3, 2, 1. Up to now the maximum is 56.

For ρ = 12 we have the following sums.

HH
HHHHc

v
3 2 11 8

1 36
7 48
5 0 36 48
11 12 48 36

The maximum is 56 and there are no more contrapuntal symmetries.
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Figure 3: A first-species counterpoint example given by Fux, which is in the Dorian mode, and the contrapuntal
intervals involved.

8.4. Admitted successors

We can finally obtain the list of admitted successors, by directly using Equation (7) for each
contrapuntal symmetry h obtained in Section 8.3; see Table 2.

The prohibition of parallel fifths is an important conclusion that we can draw from the table.
In fact, the consonance 7ϵ has as set of admitted successors Z12 + (K \ {7})ϵ, that is, any interval
can follow a fifth, except a fifth.

Figure 3 is an example of first-species composition in Dorian mode by Fux [8, p. 29]. After
suitably transposing the transition from each bar to the next, we have the following counterpoint
symmetries. The symmetry e07 occurs from bars 1 to 2, 4 to 5, and 6 to 7. The symmetry
e8ϵ(5 + 4ϵ) occurs from bars 3 to 4 and 9 to 10. The symmetry e6ϵ(7 + 6ϵ) occurs from bar 5 to bar
6. The symmetries e6ϵ(7 + 6ϵ) and e6ϵ(1 + 6ϵ) occur from bars 2 to 3 and 8 to 9. The symmetries
e8ϵ(5 + 4ϵ) and e8ϵ(5 + 8ϵ) occur from bars 7 to 8 and 10 to 11.

9. A non-commutative counterpoint

Consider the data of Example 3.10. There, we have the strong dichotomy (K, D, eI) of the ring
R of upper triangular matrices on Z2, with K = {0, A1, A2, A3} and D = {I, B1, B2, B3}, where
Bi = Ai + I for i = 1, 2, 3. In this case, b = I and a = I. Let us compute the contrapuntal
symmetries and admitted successors in the dual numbers case.

9.1. Condition 2

We solve the equation
v + I = c + v,

so c = I, and v and d range over R.

9.2. Condition 1

Now, among the previous solutions, we take, for each consonance kϵ, those satisfying

v ∈ k − D = k + D.

The following table contains the results.

k 0 A1 A2 A3
k + D D {B1, I, A3, A2} {B2, A3, I, A1} {B3, A2, A1, I}
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k |h(K[ϵ]) ∩ K[ϵ]| h admitted successors of kϵ

0 48

e6ϵ(1 + 6ϵ)
r + {3, 9}ϵ, r even

r + Kϵ, r odd

e6ϵ(7 + 6ϵ)
r + {3, 7, 9}ϵ, r even
r + (K \ {7})ϵ, r odd

e11ϵ(11 + 8ϵ)
{0, 3, 6, 9}+ {3, 4, 7, 8}ϵ
{1, 4, 7, 10}+ {0, 3, 7, 8}ϵ
{2, 5, 8, 11}+ {0, 3, 4, 7}ϵ

e11ϵ(11 + 4ϵ)
{0, 3, 6, 9}+ {3, 4, 7, 8}ϵ
{1, 4, 7, 10}+ {0, 3, 4, 7}ϵ
{2, 5, 8, 11}+ {0, 3, 7, 8}ϵ

e11ϵ11 Z12 + {3, 4, 7, 8}ϵ

3 56

e8ϵ(5 + 8ϵ)
{0, 3, 6, 9}+ {0, 4, 7, 8}ϵ
{1, 4, 7, 10}+ (K \ {7})ϵ
{2, 5, 8, 11}+ (K \ {9})ϵ

e8ϵ(5 + 4ϵ)
{0, 3, 6, 9}+ {0, 4, 7, 8}ϵ
{1, 4, 7, 10}+ (K \ {9})ϵ
{2, 5, 8, 11}+ (K \ {7})ϵ

4 48
e6ϵ(1 + 6ϵ)

see k = 0
e6ϵ(7 + 6ϵ)

7 60 e07 Z12 + (K \ {7})ϵ

8 48

e3ϵ7 Z12 + {0, 3, 4, 7}ϵ
e6ϵ(1 + 6ϵ)

see k = 0
e6ϵ(7 + 6ϵ)

e3ϵ(7 + 4ϵ)
{0, 3, 6, 9}+ {0, 3, 4, 7}ϵ
{1, 4, 7, 10}+ {3, 4, 7, 8}ϵ
{2, 5, 8, 11}+ {0, 3, 7, 8}ϵ

e3ϵ(7 + 8ϵ)
{0, 3, 6, 9}+ {0, 3, 4, 7}ϵ
{1, 4, 7, 10}+ {0, 3, 7, 8}ϵ
{2, 5, 8, 11}+ {3, 4, 7, 8}ϵ

9 56
e8ϵ(5 + 8ϵ)

see k = 3
e8ϵ(5 + 4ϵ)

Table 2: Contrapuntal symmetries and admitted successors for the cantus firmus 0. We obtain the admitted successors
of z + kϵ by adding z to the cantus firmus of the results.
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9.3. Maximization

Since c = I, and I ∈ Z(R), the maximization criterion (Theorem 6.5) remains valid in this case and
we use it.

We start by computing rR, ρ, K/rR, and (|Kγ|γ) in the following table. The ordering on γ is
that written for the classes in K/rR. As before, the maximization criterion is not useful for the
case d = 0 since the identity does not satisfy the condition 1.

r rR ρ K/rR (|Kγ|γ)
A1, A2 {0, A1, A2, B3} 2 {A1R, A1R + A3} (3, 1)
A3, I R 1 {R} (4)
Bi for i = 1, 2, 3 {0, Bi} 4 {{0, Bi}, {Ai, I}, {A1, A2, A3} \ {Ai}} (1, 1, 2, 0)

We have the following maximum values with the restriction c = I. In the case ρ = 2, the
unique [ev] inducing the identity rearrangement of (3, 1) is the identity modulo A1. In the case
d = B1, if [ev] induces an identity rearrangement of (1, 1, 2, 0), then necessarily [ev] leaves invariant
K{A2,A3}, which is equal to {A2, A3}. The possibilities are either v = 0 or v = B1, that is, ev is the
identity modulo B1. The cases d = B2 and d = B3 are similar.

d ρ maximum ∑
r∈R

|(K + v + dr) ∩ K| v

A1, A2 2 20 0, A1, A2, B3
A3, I 1 16 any
B1 4 24 0, B1
B2 4 24 0, B2
B3 4 24 0, B3

Now we must compute the cardinalities for d = 0, that is, those of the form 8|(K + v) ∩ K|
with v ̸= 0 by the table in Section 9.2. We already have the computation of K + I + k, which is
just D + k, for k ∈ K by the same table. Moreover, K + Ai = {0, Ai} ∪ ({B1, B2, B3} \ {Bi}). Thus,
8|(K + v) ∩ K| = 0 if v = I and 8|(K + v) ∩ K| = 16 if v /∈ {I, 0}, so the maximum cardinals
(subject to conditions 1 and 2) occur for the symmetries with maximum value 24 in the preceding
table. The following table shows the contrapuntal symmetries directly obtained.

k h
0 eBiϵ(I + Biϵ) for i = 1, 2, 3
Ai (with i = 1, 2, 3) eBiϵ(I + Biϵ)

9.4. Admitted successors

The direct use of Equation (7) for each contrapuntal symmetry h obtained in Section 9.3 produces
the following table. In this example, the maximization criterion is useful to determine all
contrapuntal symmetries.

k h admitted successors of kϵ

0 eBiϵ(I + Biϵ), 1 ≤ i ≤ 3 see k = Ai

Ai (with i = 1, 2, 3) eBiϵ(I + Biϵ)
{A3, I, B1, B2}+ Kϵ

{0, A1, A2, B3}+ ({A1, A2, A3} \ {Ai})ϵ
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Note that some parallelisms of the consonance Aiϵ are forbidden in this notion of counterpoint.
The counterpoint notion that results from multiplication on the right is very similar.20

10. Local characterization equivalences

In this section we compare our condition 2 in Definition 4.1 with Mazzola’s original condition [11,
Definition 95].

The following result inspires the latter. It is a local version of the uniqueness property
of a strong dichotomy. Observe that the conjugation in Proposition 4.5 restricts to bijections
H(K[x], D[x]) −→ Hz(K[x], D[x]) between respective sets of symmetries sending K[x] to D[x]
(check).

Theorem 10.1. Let (K, D, eab) be a strong dichotomy of R. For each z ∈ R, pz[x] is the unique z-invariant
symmetry such that (K[x], D[x], pz[x]) is a self-complementary dichotomy of R[x]. In particular, by
Lemma 10.3,

pz[x](z + K x) = z + D x .

Proof. Since self-complementary dichotomies (K[x], D[x], p′) with p′ z-invariant are in correspon-
dence (conjugation) with self-complementary dichotomies (K[x], D[x], p) where p is 0-invariant,
the proof of the theorem reduces to the case when z = 0 (Proposition 10.2). There, p0[x] = ea xb, so
pz[x] = ez ◦ ea xb ◦ e−z = e(1−b)z+a xb.

Proposition 10.2. Let (K, D, eab) be a strong dichotomy of R. The symmetry ea xb is the unique 0-invariant
symmetry such that (K[x], D[x], ea xb) is a self-complementary dichotomy of R[x].

Proof. Let h be a 0-invariant symmetry, where h = eu+v x(c + d x). By Proposition 4.4, u = 0.
Moreover, if h(K[x]) = D[x], from Lemma 10.3, we obtain that (c + dα)K + v = D, so the condition
that eab is a polarity implies that c + dα = b and v = a. Further, we claim that d = 0. In fact, by
the condition that h(K[x]) = D[x],

ev x(c + d x)(1 + K x) = c + ((c + dα)K + v + d) x = c + (D + d) x ⊆ D[x]

and
ev x(c + d x)(−1 + K x) = −c + ((c + dα)K + v − d) x = −c + (D − d) x ⊆ D[x],

so D + d ⊆ D and D − d ⊆ D, and hence D + d ⊆ D and D ⊆ D + d. Thus, D = D + d and, since
both K and D are rigid (Corollary 3.3), d = 0.

Up to now, we know that each 0-invariant symmetry h such that h(K[x]) = D[x] is necessarily
ea xb. It remains to show that (K[x], D[x], ea xb) is a self-complementary dichotomy. This was done
in Proposition 3.11.

Lemma 10.3. If h is a z-invariant symmetry of R[x] such that h(K[x]) = D[x], then h(z+K x) = z+ D x.

Proof. Under our assumptions,

h(z + K x) = h(K[x] ∩ (z + R x)) = h(K[x]) ∩ (z + R x) = D[x] ∩ (z + R x) = z + D x .

We have the following corollary of Theorem 10.1.

20To be more exact, this notion is obtained by applying the previous theory to the opposite ring Rop instead of R. In that
case, all right R-modules considered become left R-modules.
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Corollary 10.4. Let (K, D, eab) be a strong dichotomy of R. For each z ∈ R, K[x] is Hz-rigid, and
f (K[x]) = f ′(K[x]) implies f = f ′ whenever f , f ′ ∈ Hz.

Proof. As in the proof of Proposition 3.2, there is a bijection between Hz(K[x], D[x]) and the
stabilizer θ(K[x]) with respect to Hz. Thus, Theorem 10.1 implies that θ(K[x]) is trivial.

Now, suppose that f (K[x]) = f ′(K[x]) with f , f ′ in Hz. This implies that f ′−1 ◦ f (K[x]) = K[x],
so f ′−1 ◦ f = id, and f = f ′.

If we apply the condition of Theorem 10.1 to a dichotomy {K̃, D̃} of R[x], we obtain the
following one.

• The symmetry pz[x] is the unique p′ ∈ Hz such that (K̃, D̃, p′) is a self-complementary
dichotomy.

As explained in [10, Section 14.2], it is a sort of characteristic property of the partition {z + K x, z +
D x} in the case of the Renaissance dichotomy (K, D, p).

If we apply it to a deformed dichotomy {g(K[x]), g(D[x])}, for g ∈ Sym(R[x]), we get the
following condition.

• The symmetry pz[x] is the unique p′ ∈ Hz such that

(g(K[x]), g(D[x]), p′)

is a self-complementary dichotomy.

First, let us prove that the latter is just Mazzola’s condition 2.

Proposition 10.5. Let (K, D, p) be a strong dichotomy, z ∈ R, and g ∈ Sym(R[x]). The following
conditions are equivalent.

1. The symmetry pz[x] is the unique p′ ∈ Hz such that (g(K[x]), g(D[x]), p′) is a self-complementary
dichotomy.

2. The triple (g(K[x]), g(D[x]), pz[x]) is a self-complementary dichotomy.

3. The equation pz[x]gz = gz pz[x] holds, where gz is as in Propostion 5.2.

Proof. For each p′ ∈ Hz, by Proposition 5.2 and Corollary 10.4, we have the following equivalences.

p′(g(K[x])) = g(D[x]) ⇔
p′(gz(K[x])) = gz(D[x]) ⇔

p′gz(K[x]) = gz pz[x](K[x]) ⇔
p′gz = gz pz[x]

The last (and hence the first) equation has a unique solution for the unknown p′, so 1 is equivalent
to 3 and 2.

The condition of Proposition 10.5 is stronger than our characterizing condition in Definition 4.1.
In fact, if pz[x](g(K[x])) = g(D[x]), then

pz[x](g(K[x]) ∩ Iz) = pz[x](g(K[x])) ∩ pz[x](Iz) = g(D[x]) ∩ Iz.

Finally, we establish that under the commutativity of R, both conditions are equivalent.
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Theorem 10.6. Let (K, D, p), with p = eab, be a strong dichotomy of a commutative ring, z ∈ R, and
g ∈ Sym(R[x]). The following equations are equivalent.

1. pz[x](g(K[x])) = g(D[x])

2. pz[x](g(K[x]) ∩ Iz) = pz[x](g(D[x])) ∩ Iz

Proof. Suppose that g = eu+v x(c + d x) and write w = v + dc−1(z − u). By unraveling the
condition 3 in Proposition 10.5, which is just 1, it is equivalent to the following set of equations.

bw + a = (c + dα)a + w
bc = cb
bd = db

On the other hand, 2 is equivalent to the condition 3 in Theorem 4.9, that is, to the following
system. {

bw + a = (c + dα)a + w
b(c + dα) = (c + dα)b

Hence, 1 and 2 are equivalent when R is commutative.

11. Variations of the model

The validity of Definition 4.1 for the case α = 1 of the contrapuntal intervals ring, and the
motivations in Sections 4.1, 4.2, and 4.3, give rise to the following questions on the classical model.

• Are dual numbers (α = 0) the most appropriate structure to model contrapuntal intervals?
According to Mazzola, the discantus is a tangential alteration of the cantus firmus, so this
principle leads to dual numbers, which are the natural tangents in algebraic geometry.
However, we could ask why this kind of alteration is involved in counterpoint and not
another one.

• Why do we not require the local characterization condition on {g(K[x]), g(D[x])} for the
cantus firmus of a possible successor η?

• More radically, why do we not require the local characterization on {g(K[x]), g(D[x])} for
all fibers?

These questions lead to the following three variations of the model. We indicate how to compute
the contrapuntal symmetries for the Renaissance dichotomy in each case. The musicological
analysis of these results is in [6].

11.1. First variation

This variation corresponds to Definition 4.1 with α = 1.
First, let us note that we can relate the models for α = 1 and α = 0. Certainly, there is an

injection ϕ : ev x(c + d x) 7→ evϵ((c + d) + dϵ) from the set of symmetries in H satisfying21 1 and 2
in Theorem 5.4 for α = 1 to the set of symmetries in H satisfying 1 and 2 for α = 0. Moreover, ϕ
preserves the cardinality of successors sets. In fact, if h = ev x(c + d x), then

|h(K[x]) ∩ K[x]| = ∑
r∈R

|((c + d)K + v + dr) ∩ K| = |ϕ(h)(K[ϵ]) ∩ K[ϵ]|.

21See Sections 7.1 and 7.2 for explicit forms of these conditions.
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Thus, if M0 and M1 are the maximum cardinalities according to 3 in Theorem 5.4 for α = 0
and α = 1, respectively, then M0 ≥ M1.

Moreover, if there is a contrapuntal symmetry in the image of ϕ, like in Table 2, then M0 = M1.
In this case, we can compute the contrapuntal symmetries for α = 1 as all inverse images of
contrapuntal symmetries for α = 0.

Also, note that evϵ(c + dϵ) is in the image of ϕ if and only if c − d ∈ R∗, in which case its
inverse image is ev x((c − d) + d x).

11.2. Second variation

If we also require the local characterization on the fibers of the possible successors of a consonance,
then we change condition 3 in Definition 4.1 for the following one, where P(z) is the property 2 in
Definition 4.1.

• The cardinality of {z′ + k′ x ∈ g(K[x]) ∩ K[x] | P(z′)} is maximum among all g satisfying 1
and 2.

By following the same steps to prove Theorem 5.4, we obtain (check) the following simplification
of this definition.

Theorem 11.1. The admitted successors of k x ∈ K[x] are the elements of the sets T of the form

{z + k x ∈ h(K[x]) ∩ K[x]) | P(z)},

where h = ev x(c + d x) ∈ H and

(a2) k x ∈ h(D[x]),
(b2) p ◦ ev(c + dα) = ev(c + dα) ◦ p, and
(c2) the cardinality of T is maximum among all h ∈ H satisfying (a2) and (b2).

Suppose that h = ev x(c + d x) ∈ H. Note that once (b2), which is just P(0), holds, the proof
of Theorem 10.6 implies that P(z) is equivalent to bdc−1z = dc−1z. In turn, P(cr) is equivalent to
bdr = dr, and the latter is equivalent to P((c + d)r) whenever (c + d) ∈ R∗ and R is commutative.

Assume that R is commutative. We relate the cases α = 1 and α = 0 by means of the injection
ϕ (Section 11.1) again. In fact, it preserves (a2) and (b2) as it did for the first variation. Also, the
cardinalities of the successors sets T and T′ associated with h (subject to (a2) and (b2)) and ϕ(h),
respectively, are equal by the following equations, where V = {r ∈ R | bdr = dr}.

|T| =
∣∣∣∣∣ ⋃
r∈V

cr + (((c + d)K + v + dr) ∩ K)ϵ

∣∣∣∣∣
=

∣∣∣∣∣ ⋃
r∈V

(c + d)r + (((c + d)K + v + dr) ∩ K) x

∣∣∣∣∣ = |T′|

For the Renaissance dichotomy, in the following section we observe that the dual numbers
model has all contrapuntal symmetries in the image of ϕ, so, as in Section 11.1, the contrapuntal
symmetries for α = 1 are the inverse images of those for α = 0. But, by collecting these inverse
images, we obtain the same original set of symmetries up to indeterminate names x, ϵ (see Table 3),
so the contrapuntal symmetries coincide for α = 0 and α = 1 in the case of the Renaissance dichotomy.
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11.3. Third variation

If we require the local characterization property on the deformed dichotomy for all fibers, which
amounts to a global property, then we change condition 2 of Definition 4.1 for the following one.

• For all z ∈ R, P(z) holds.

The respective simplification is the following theorem.

Theorem 11.2. The admitted successors of k x ∈ K[x] are the elements of the sets S of the form

h(K[x]) ∩ K[x],

where h ∈ H and

(a3) k x ∈ h(D[x]),
(b3) for all z ∈ R, P(z) holds, and
(c3) the cardinality of S is maximum among all h ∈ H satisfying (a3) and (b3).

According to the proof of Theorem 10.6, if h = ev x(c + d x), the condition (b3) just says that (b2)
is true and that bdc−1z = dc−1z holds for all z ∈ R. Hence, (b3) is equivalent to (b2) and bd = d.

For the dual numbers case, we next prove that the second and third variations coincide if R = Zn
and each consonance has at least an admitted successor in the third variation, like in the case of the
Renaissance dichotomy; see Table 3. On the one hand, if h satisfies (a3) and (b3), then it satisfies
(a2) and (b2) and the successors sets (cardinalities) are the same for both definitions. In particular,
each consonance has at least an admitted successor in the second variation too. On the other hand,
if h ∈ H with h = evϵ(c + dϵ) is a contrapuntal symmetry in the second variation, then the set of
all z ∈ R such that P(z) holds, that is, such that

bdz = dz,

is a principal ideal22 ⟨o⟩ in R. We have two possibilities. If ⟨o⟩ = R, then h satisfies (a3) and (b3).
Otherwise, ⟨o⟩ ⊊ R and the set T (which is nonempty) from Theorem 11.1 satisfies

|T| =

∣∣∣∣∣∣ ⋃
z∈⟨o⟩

z + ((cK + v + dc−1z) ∩ K)ϵ

∣∣∣∣∣∣
= ∑

z∈⟨o⟩

∣∣∣(cK + v + dc−1z) ∩ K
∣∣∣

< ρ ∑
z∈⟨o⟩

∣∣∣(cK + v + dc−1z) ∩ K
∣∣∣

= ∑
r∈R

∣∣∣(cK + v + dc−1or) ∩ K
∣∣∣

=

∣∣∣∣∣⋃
r∈R

r + ((cK + v + dc−1or) ∩ K)ϵ

∣∣∣∣∣
= |evϵ(c + doϵ)(K[ϵ]) ∩ K[ϵ]|,

where ρ = |Ker(o · −)| = |R|/|⟨o⟩| > 1 and bdo = do. We deduce that h satisfies (a3) and (b3), or
there is h′ satisfying (a3) and (b3) such that its successor set has a strictly greater cardinality than

22In fact, the solution set of ax = 0 in Zn is ⟨o⟩, where o = n/ gcd(a, n).
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k |h(K[ϵ]) ∩ K[ϵ]| h

0 48
e6ϵ(1 + 6ϵ)
e6ϵ(7 + 6ϵ)

e11ϵ11
3 48 e8ϵ5

4 48
e6ϵ(1 + 6ϵ)
e6ϵ(7 + 6ϵ)

7 60 e07

8
48

e3ϵ7
e6ϵ(1 + 6ϵ)
e6ϵ(7 + 6ϵ)

9 48
e11ϵ11
e3ϵ7
e8ϵ5

Table 3: Contrapuntal symmetries for the Renaissance dichotomy in the third variation and the dual numbers case.
The computation, by hand, is akin to that of Table 2—now we just add the condition 5d = d for contrapuntal
symmetries, that is, d = 0, 3, 6, 9 or ρ = 3, 6, 12.

the successors set of h. Our observations imply that the contrapuntal symmetries coincide for the
second and third variations.

In the Renaissance dichotomy case, by the computation of those symmetries (Table 3), they
are in the image of ϕ. The latter preserves the conditions (a3) and (b3) and successors sets
cardinalities from α = 1 to α = 0, so the contrapuntal symmetries coincide for α = 1 and α = 0, as
in Section 11.2.

To summarize, the second and third variations coincide for the Renaissance dichotomy.

12. Conclusions and further research

We generalized Mazzola’s first-species counterpoint to arbitrary rings and refined some of
its theoretic aspects. The first author recommends a simplification of the model, preserving its
strengths. Some of these strong features are the following:

• Economy. Essentially, we deduce all mathematical results of the theory from just a fact: the
uniqueness property of the consonance/dissonance partition. In particular, we deduce the
parallel fifths prohibition in Renaissance counterpoint.

• Generality and universality. This generalization is just an expression of the original intention
of establishing a universal counterpoint by detecting the essential features of the Renaissance
incarnation. Thus, the model paves the way to many other forms of counterpoint, which
opens up a lot of fields of musical experimentation.

Further developments may include the following points.

Generalizations and structural approaches

Further generalizations to categories could be developed. The use of the product ring R × R (case
α = 1 in Section 3.5) to model contrapuntal intervals, as an alternative to the dual numbers, helps
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express the model in terms of universal constructions in the category of rings, so it could be
translated to other categories.

Also, there are several open questions like whether there is an entirely structural proof of the
Counterpoint theorem, which establishes all counterpoint symmetries and admitted successors of a
given consonance, beyond algorithmic computations. This is suggested by the counting formulas
for successors sets cardinalities (Theorem 6.4) and the maximization criterion (Theorem 6.5).

Study of new counterpoint worlds

The musical study of our generalizations is an open field of research. Composition processes
should generate new music in these counterpoint worlds. The counterpoint world induced by
Scriabin’s mystic chord has also been subject of study [5].

Musicology

An initial comparison of the model’s results with the Missa Papae Marcelli can be found in [13].
The analysis of other works of Renaissance polyphony is also a pending task.

Remaining species

Although there are some advances regarding the second-species [4], a mathematical theory of the
remaining species, and the cases of three or more voices, are not at hand.

13. Appendix

Theorem 13.1 (Rearrangement inequality, variation). Suppose given an ordered list of real numbers

a1 ≥ a2 ≥ · · · ≥ an.

The inequality
n

∑
i=1

a2
i ≥

n

∑
i=1

aiaσ(i)

holds for each permutation σ of {1, . . . , n}. Moreover, the equality holds if and only if (a1, . . . , an) =
(aσ(1), . . . , aσ(n)).

Proof. Induction on n. The case n = 1 is just the equality a2
1 = a2

1. Now suppose the result for
n − 1. We consider two cases.

First case: aσ(1) = a1. We can assume σ(1) = 1 (switch σ(1) and 1) since this do not alter the

sum
n
∑

i=1
aiaσ(i). In this case,

n

∑
i=1

aiaσ(i) = a2
1 +

n

∑
i=2

aiaσ(i) = a2
1 +

n−1

∑
i=1

a′ia
′
σ′(i),

where a′i = ai+1 and σ′(i) = σ(i + 1)− 1 for each i = 1, . . . , n − 1. Thus, by applying the induction
hypothesis,

n

∑
i=2

aiaσ(i) ≤
n

∑
i=2

a2
i
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and the equality holds if and only if (a2, . . . , an) = (aσ(2), . . . , aσ(n)). Hence, by adding a2
1 on both

sides,
n

∑
i=1

aiaσ(i) ≤
n

∑
i=1

a2
i

and the equality holds if and only if (a1, . . . , an) = (aσ(1), . . . , aσ(n)).
Second case: aσ(1) ̸= a1. Note that there is k with aσ(k) = a1 such that ak < a1; otherwise

{k | aσ(k) = a1} ⊆ {k | ak = a1} and, since these sets have the same finite cardinality, they are
equal, which is a contradiction since 1 is in the latter but not in the former. Thus,

n

∑
i=1

aiaσ(i) = a1aσ(1) + akaσ(k) + ∑
i∈{1,...,n}\{1,k}

aiaσ(i)

and, if σ′ is obtained from σ by switching σ(1) and σ(k), then

n

∑
i=1

aiaσ′(i) −
n

∑
i=1

aiaσ(i) = (a1 − ak)(aσ(k) − aσ(1)) = (a1 − ak)(a1 − aσ(1)) > 0.

This means that
n

∑
i=1

aiaσ(i) <
n

∑
i=1

aiaσ′(i) ≤
n

∑
i=1

a2
i ,

where the right-hand inequality corresponds to the first case. Finally, note that here the inequality
is always strict and (a1, . . . , an) ̸= (aσ(1), . . . , aσ(n)).
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Abstract: This paper introduces an original proposal intended to encode timelines as univocal integers,
by the use of arithmetic mapping, exploring inherent properties of prime numbers. A group of algorithms
were developed in order to encode drum-set timelines (as well as to retrieve the original rhythms from the
codes), either individually or taken together, forming grooves. Additional parameters (dynamic levels and
timbre) are also included in the encoding process. Geometrical representation of the grooves, adopting
terminology and methodology proposed by Gottfried Toussaint[19], is also provided. Some practical
application, addressing analysis and composition, are suggested at the last section of the study.

Keywords: Fundamental Theorem of Arithmetic. Prime encoding of rhythms. Drum-set timelines.
Geometrical representation of rhythms.

I. Introduction

The historical blood links that connect music and mathematics are of general knowledge,
dating back to about 500 BC, with Pythagoras’ formulations on acoustic proportions, basically
associating numbers and sounds. This represents the very foundation of what would be

known as the Musica Speculativa tradition, to be pursued along the subsequent 1000 years by great
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mathematicians/physicists like Euclid, Ptolemy, Galileo, Kepler, Descartes, Newton, and Euler,
involving a vast range of aspects, strongly concentrated on pitch relations.

This noble tradition was reborn in a way during the twentieth century, with Schoenberg’s
twelve-tone method, which can be considered as a starting point and source of inspiration for a
number of mathematical-musical formalizations that have changed and influenced profoundly the
thought about musical creation. Among these, we can mention three decisive landmarks: (1) the
Pitch-Set Class Theory, consolidated by the efforts of Milton Babbitt, Allen Forte, John Rahn, Jack
Boss, and Joseph Straus; (2) David Lewin’s Transformational Theory, which gave rise to the (3)
Neo-Riemannian Theory, consolidated through collaborative and complementary approaches by
Bryan Hyer, Richard Cohn, Jack Douthett and Peter Steinbach, Clifton Callender, Adrian Child,
Edward Gollin, David Clampitt, Henry Klumpenhouwer, Robert Peck, David Kopp, among others.
Since the advent of this true “cambrian explosion” in the realm of music theory, the interest on the
use of mathematical models for formalizing compositional and analytical studies, branching or
not from these three basic axes, has increased a lot among scholars around the world, evidenced
by the great number of published dissertations, articles, and books on correlated topics in the last
years.

In spite of the fact pitch subjects are certainly at the very center of gravity of such formulations
(ultimately reflecting the focus of the three landmarks), an increase interest in respect to rhythm
corresponds to a very recent and promising research trend. Such an avenue was opened especially
by the implications that arise from isomorphic relations between pitch and rhythm realms. This is
epitomized in a well-known article written by Justin London [15], who discusses the isomorphic
relations that connect pitch and temporal domains based on a graph-theory perspective. The
central element of London’s proposal is the concept of Zeitnetz (associated with Cohn’s idea of
ski-hill graphs), as an analogous metric counterpart of the neo-Riemannian Tonnetz.

Certainly, meter has been being the most explored aspect of time in music, aiming at
mathematical-like formalization. Richard Cohn [3] addresses Harald Kreb’s concept of met-
ric dissonance (extending it also to hypermetric levels) in an analysis of the Menuetto of Mozart’s
G-minor symphony. He uses some of his own reflections arisen in a previous study [2] as a base
for a formal approach, searching for a new theory constructed from properties shared by pitch and
time. Cohn [4] expands his metric theory by addressing the notion of complex hemiolas (i.e., involv-
ing the superimposition of two or more rhythmic layers conflicting by double and triple metric
organizations). Aiming at a formal analytical treatment for the issue, Cohn idealizes an algebraic
description of rhythms as products of powers of the two first prime numbers, 2 and 3, capturing
the very essence of hemiolas, a strategy which in a sense keeps some relation to that proposed in
this article. A graphic representation of conflicting layers in action in complex hemiolas (called
sky-hill graph) is also provided by Cohn, as a helpful analytical tool. In a PhD dissertation, Stephen
Guerra [10] adopts a theoretical framework mostly based on Cohn’s formulations on metrical
hierarchical levels to explore the music of Brazilian guitarist Baden Powell. In this work, Guerra
proposes a model destined to address the concept of extended hemiolas, which extrapolates the
conventional duple/triple rhythmic opposition. In a recent article, Guerra [11] uses his previous
study as basis for another theoretical investigation motivated by the analytical observation of
Powell’s music, considering the manners with which six distinct samba timelines can be related
by transformational classes of operations (labeled as augmentation and rotation). Meter is also
one of the parameters (aside phrase structure, contrapuntal structure, pitch spelling, harmony,
and key) selected by David Temperley [18] for the elaboration of a computational model focused
on the cognition of musical structures, based on a system of preference rules. Mark Gotham [7]
proposes to identify the principles that govern the notion of attractor tempos, responsible for the
optimization of the salience of certain metric structures. For this purpose, Gotham elaborates a
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mathematical model capable of quantifying pulse salience, extended then to establish metrical
salience values, according to hierarchical levels considered. The author provides an exhaustive
list of metric structures based on consecutive levels of 2 and 3 groupings (p. 32), including the
respective attractor indices.

Evidently, meter is not the only subject of scholarship interest with respect to musical time
studied in mathematical terms. There is considerable literature that addresses specifically rhythmic
issues. Catherine Guastavino and colleagues [9] propose an empirical-based investigation on
flamenco rhythms directed to measurement of rhythmic similarity. The authors compare two
mathematical methods for measuring similarity, namely chronotonic distance and the directed swap
distance, the latter considered as the most efficient in the conclusion of the article. A distinctive
trait of this approach is the use of phylogenetic analysis for depicting similarity relations between
the rhythmic varieties. Francisco Gómez-Martín, Perouz Taslakian, and Godfried Toussaint [8]
address two rhythmic categories, namely interlocking and Euclidean rhythms. While the latter
category corresponds to “rhythms where the onsets are distributed among the pulses as evenly as
possible” (p.18, italics in the original), the notion of interlocking rhythms refers to interaction of
two or more rhythmic lines resulting into complex textures (as in African-Cuban music or in a
heavy-metal groove), an aspect to be explored in the present study. In this sense, complementary
interlocking rhythms, that form one of the possible types listed, are here of special interest. A
recent empirical study by Florian Hoesl and Olivier Senn [14] is focused on the measurement of
syncopation in drum-set grooves. It consists of a listening experiment, in which pairs of drums
patterns, combined from a set of six popular grooves, were presented to 25 participants, who
ranked them according to the degree of syncopation. The findings allow the authors to elaborate
a formal model able to quantify syncopation in popular-music genres. Beyond the focus on the
same instrument, there are other interesting shared characteristics by Hoesl’s and Senn’s article
and the present study, especially associated with mathematical solutions for depicting rhythmic
information. This will be commented in due time. Jay Hardesty [12] investigates the issue of
similarity between rhythmic variants, generated from a collection of basic units. An original aspect
of his work is the mapping of rhythmic derivations on Pascal’s triangle, intended to provide a
precise measurement of similarity between variants. In a recent PhD dissertation, Julio Herrlein
[13] proposes the idea of a rhythmic set theory, in analogy to pitch-class sets, which includes
a modulo-12 classification. Cohn [5] introduces the concept of funky rhythms, referred to the
superimposition of triple-generated rhythmic patterns to duple-meter cycles formed by 8, 16, 32,
and 64 units. Cohn’s model is deeply associated with Plato’s ideas about acoustic relations. The
author elects for initiating his exposition the so-called tresillo,1 present in several musical contexts
around the world, and which represents perfectly the 3-over-2 duality in question. This model
is adopted as basis in a study by Scott Murphy [16], whose main focus lies on the presence of
funky rhythms in film music. As a theoretical framework for his analyses, Murphy proposes a
detailed typology and catalogue 104 successions of 2s an/or 3s (durations, taking the sixteenth
note as unit) with cardinalities from two to six elements, organizing them inside an Euler diagram,
according to five categories by him established: the binary oppositions “maximally/minimally
even” and “trochaic”/”iambic”, and the unary “platonic”.

The present article proposes a new and original manner to address rhythmic patterns, by
associating their respective configurations of onsets with particular codes. This is achieved

1Tresillo is how is mostly known a rhythmic cell formed by the asymmetric division <3, 3, 2> of an eight-pulse temporal
span. Normally associated with Cuban music (commonly as the “tresillo clave”), this pattern is also present in a wide
geographical spectrum, especially in Sub-Sahara musical cultures and Latin-America popular-music genres (baião, milonga,
habanera, rumba, cha-cha, tango, maxixe, guajira, etc.).
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through some principles and formulations of Number Theory, notably the Fundamental Theorem
of Arithmetic and a new function inspired by the function known as Gödel numbering. Aiming
at obtaining concrete practical results and immediate applications of what will be discussed
in theoretical terms along this study we direct our focus initially on the particular universe
of drum-set grooves. As it will be demonstrated, the strategy of encoding rhythms (either
individually or superimposed) as integers have multiple advantages, considering both analytical
as compositional perspectives, opening some possible new avenues for further exploration. Before
properly describing the mathematical framework that grounds this proposal, it is necessary to
present the main conceptual and terminological references with respect to musical constructs
adopted in our approach. These are derived from the studies of mathematical properties of rhythm
as discussed by Toussaint in his 2013 book, The Geometry of Musical Rhythm [19].

II. Toussaint’s geometrical approach of rhythm

In his book, Toussaint proposes a very original manner to address rhythmic and metrical orga-
nizations. Adopting essentially an approach which involves several mathematical domains, but
focusing especially on geometrical representation, Toussaint aims to systematically investigate
the reasons why some rhythms are more preferable (or “good”, on his terms) than others –
regardless of musical style, genre, epoch, or cultural context – simply by exploring some inherent
mathematical properties that these rhythms have.

Four concepts of paramount importance for the present study, namely the notions of pulse, onset,
inter-onset intervals, and timeline, are defined in separated passages of Toussaint’s introductory
notes:

The term "pulse" is used in this book to denote the location at which a sound or attack
may be realized [19, p. 5].

The starting and ending times of the notes are the onsets and offsets, respectively. In
the case of pure rhythms consisting of beats (attacks), it is assumed that there are
no sustained notes, and thus we dispense with the offsets altogether. In this setting,
the inter-onset-duration intervals are simply the durations between two consecutive
attacks [19, p. 10].

In much traditional, classical, and contemporary music around the world, one hears
a distinctive and characteristic rhythm that appears to be an essential feature of the
music, that stands out above the other rhythms, and that repeats throughout most if
not the entire piece. Sometimes this essential feature will be merely an isochronous
pulsation without any recognizable periodicity. At other times, the music will be
characterized by unique periodic patterns. These special rhythms are generally called
timelines. Timelines should be distinguished from the more general term rhythmic
ostinatos [19, p. 13].

Figure 1 tries to combine these concepts in a unique simple illustration, using musical notation.
Observe that the five onsets of the rhythm (or timeline) are distributed inside a time-span of eight
pulses, considering the eighth note – the shorter value in this context – as the unit of measurement.

Among 4,368 possible five-onset-in-sixteen-pulse timelines, Toussaint distinguishes six special
“good rhythms”, identified by him as Shiko, Son, Rumba, Soukous, Gahu, and Bossa-nova.2 A

2Toussaint informs that the names adopted “reflect the terminology perhaps most well known in the Western popular
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pulses

onsets

timeline

inter-onset intervals (IOIs)

Figure 1: Example of timeline, pulses, onsets, and inter-onset intervals.

number of mathematical properties of these rhythms are discussed along the chapters, allowing
for Toussaint to provide systematical comparisons. In order to properly studying these (and many
other) rhythms, Toussaint presents several notation types, adopting some of them as preferential.
Figure 2 illustrates the use of four of these types (binary, box, interval-vector, and polygonal) for
describing the rhythm of Figure 1.

The two first types are positional descriptions of rhythms, that is, they indicate presence (1s
in the former, dots in the latter) or absence (0s, empty spaces) of onsets in a given universe of
pulses. On the other hand, interval-vector notation informs durational distances (measured as
multiples of the considered unit) between onsets. Polygonal notation combines the two basic
categories–positional and intervallic–in a geometrical representation. It will be preferentially
employed in the present article, due to its special advantages and clarity, eventually complemented
by the information conveyed by IOI vectors.3 Pulses are represented as little gray-line circles that
divide the large circle. They are numbered from zero to n-1, where n is the number of pulses
the timeline is associated with. Onsets form vertices of a polygon (that ultimately represents the
rhythm in question). The sizes of the polygon’s edges are proportional to the IOIs, with their
magnitude corresponding to the number of segments in the circle that they cover (for example,
the edge connecting pulses 4 and 7 covers three segments, namely 4-5, 5-6, and 5-7, corresponding
therefore to a IOI of three unities). From now on, let us call this notation a necklace representation,
adopting Toussaint’s terminology. Given the adopted set of basic concepts, terms, and rhythmic
representations, we can go on with the mathematical framework which grounds the proposal.

III. Rhythmic encoding

In his article of 1931 entitled "On Formally Undecidable Propositions of Principia Mathematica
and Related Systems”, Austro-Hungarian mathematician Kurt Gödel (1906-1978) proved the First
Incompleteness Theorem. As presented in the Britannica Encyclopaedia homepage :4 “[The
theorem] states that any integer greater than 1 can be expressed as the product of prime numbers
in only one way.” It is of central importance to add that Gödel numberings are used for expressing
any sequence of symbols, as mathematical formulas and even formal proofs of theorems.

The proof of this theorem has three well-defined parts. In the first one, Gödel proposes an
innovative strategy, by associating each symbol/formula considered in the formal system F with

media, and I use them here purely for convenience rather than the establishment of any historical priority or cultural
entitlement” [19, p. 28].

3Polygonal representation is also preferential for Toussaint, which is especially associated with the possibility of
evidencing symmetrical relations of several types, an omnipresent and very important topic in his book.

4https://www.britannica.com/topic/Godels-first-incompleteness-theorem
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Figure 2: Four equivalent representations for the example of Figure 1.
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Figure 3: A simple rhythmic motive with three onsets.

an integer (called Gödel number), so that such symbol/formula is only retrievable from that
number.5 The strategy adopted by Gödel inspires similar intentions in this article, more specifically
with respect to the creation of a unique association between formal musical representations (more
specifically, rhythmic) and codes expressed as integers, in order to allow the recovery of the former
from the latter.6 In fact, more than just encoding numerically the rhythms, we are also interested
in relating mapping and overlapping of musical streams through arithmetic operations involving
their generating codes.

Keeping in the focus this central goal, it is paramount at this moment to recall the main
result of the integer arithmetic, the Fundamental Theorem of Arithmetic (FTA, for short). This result
was first proved by German mathematician Carl Friedrich Gauss (1777-1855) at the very end
of the eighteenth century and published in 1801 on his treatise Disquisitiones Arithmeticae. The
proposition 30, 31, and 32 of the book VII of Euclid´s Elements presents results that show how
close the Greeks were to the FTA, 2000 years before Gauss.

The Fundamental Theorem of Arithmetic: Let N be an integer other than 0, 1, and -1. Then
there exist positive prime numbers p1 < p2 < . . . < pk and positive integers n1, n2, . . . , nk such
that

N = ±pn1
1 × pn2

2 × ... × p
nk
k (1)

Disregarding permutations of the factors, this decomposition is unique. If we extend the
perception of such a result beyond the specificities involved, we will realize that, more than
a single decomposition of an integer as a product of prime-number powers, FTA explains the
possibility of encoding a vector containing k numeric information < n1, n2, . . . , nk > as a single
number, in a bijective way. For example, the decomposition presented by equality 360 = 23 × 32

× 51 can be understood as the encoding of the information conveyed by the vector <3, 2, 1>,
formed by the exponents of the prime product, in the number 360. In this sense, the involved
prime numbers address the number of coordinates/information conveyed by the vector, while
its exponents constitute the information itself. In the present article, musical representations will
adopt this same encoding process.

As a very simple example, consider the following rhythmic motive, corresponding to a possible
manifestation of the tresillo clave (Figure 3).

Considering the duration of an eighth note as a unit of informational space, this representation
configures Toussaint’s binary vector <10010010>. If we use FTA for encoding this vector, we have
this unique possible factoring:

21 × 30 × 50 × 71 × 110 × 130 × 171 × 190 = 238

5For a detailed presentation of this algorithm, which came to be known as Gödel numbering, as well as a comprehensive
explanation of Gödel’s achievements, see [17].

6As far goes our knowledge, the idea of expressing rhythmic formulas through the use of the Gödel-numbering
algorithm was not yet explored in academic studies. Considering other aspects of musical construction, see the strategy
proposed by [1] for codifying as univocal integers strings of genealogical descriptions of variations algorithmically
produced. In this case, the order number of a variant located in the context of a given sequence of previous generation
is represented as a series of exponents raising a sequence of prime bases, whose product corresponds to an integer that
stands for the precise and formal identification of the variation in question.
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Therefore, the number 238 uniquely identifies the rhythmic motive of Figure 3. In other terms,
238 is a numeric code univocally related to this specific musical representation.

A fundamental point to be observed is that the product of the codes referring to two distinct
musical representations (since both share the same durational unit) will be the code related to
the representation of the superimposition of those two representations, if they start at the same
instant and have the same time-span pattern. Consider, for example, the distribution of the onsets
of the tresillo of Figure 3 in two streams, as if played by two distinct instruments (Figure 4).

stream 1

stream 2

streams 1+2

Figure 4: Distribution of the onsets of the rhythm of Figure 3 in two separated streams.

Thus, we have:
21 × 30 × 50 × 71 × 110 × 130 × 170 × 190 = 14 (code of the stream 1)
20 × 30 × 50 × 70 × 110 × 130 × 171 × 190 = 17 (code of the stream 2)

In this case, the product of the two codes, 17 × 14 = 238, equals the representation code
referring to superimposed rhythms, as shown in Figure 3. Thus, we can affirm that the greatest
common divisor (gcd) of the codes related to N representations in a same informational context
will be the representation code referring to the commonly shared information. In the absence of
any shared information, gcd equals 1, which is the code for the representation associated with the
null vector.

For specific purposes, let us define an informational unit (IU, for short) as the smallest durational
value considered in a given rhythmic context, which is equivalent to Toussaint’s notion of pulse, as
presented in the previous section. The strategy of setting IUs as contextual-dependent instead of
adopting a fixed unit (say, the 16th note) is motivated by an intention of minimizing computational
cost. Figure 5 illustrates the contextual nature of IUs with different situations.7 In two distinct
depictions of the tresillo (labeled as a and b), the informational unit corresponds to the 8th note,
disregarding if it is explicitly or not present in the rhythm. In (c) the smallest value is clearly the
16th note. The last rhythm, however, combines groups of 8th notes (figure that divides the beat by
2) and of triplets (a ternary division). Since the least common multiple referred to these two values
(2 and 3) is 6, this means that the implicit sixteenth triplet must be assigned as IU in the case.

In addition, it is also possible to incorporate other types of information in a code as, dynamics,
for example. This is reflected in the algorithm by defining other possible values (beyond 0 and 1)
to be assumed by the exponents. We can, for example, establish three possible dynamic levels for

7Observe how in each rhythm the pulses are counted from 0 to n-1, where n is the number of IUs present in the rhythm.
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IUs/pulses

0     1    2     3    4    5    6     7

IUs/pulses

0     1    2     3    4    5    6     7

IUs/pulses

0     1    2     3    4    5    6     7    8    9    10   11

(     )

IU

IU

IU

(b)

(c)

(d)

IUs/pulses

0     1    2     3    4    5    6     7

IU

(a)

(     )

Figure 5: Four rhythms with different IUs.

any onset of a given rhythm: 1 (default or “flat”), 2 (“ghost” note) or 3 (accented).8 In this sense,
the intention of adding a phenomenal accent to the third onset of the tresillo of Figure 3 would
result in a new code: 21 × 30 × 50 × 71 × 110 × 130 × 173 × 190 = 68782. Therefore, with each
unit mapped by a prime number, it is possible to assign different sets of informational values,
depending on the level of detail that one intends. Evidently, the more information is included, the
bigger the integers that represent the codes. Anyway, and this is of paramount importance, there
will be always a one-to-one correspondence between a code and a rhythmic context which it is
intended to represent.

We propose the following formalization of the code, associated with a measurable rhythmic
representation by a determined unit (IU), retrievable with k information.

Definition: Let R be a rhythmic representation measurable by an informational unit U, with

8These numbers were arbitrarily chosen. As it will be discussed in due time, the same strategy can be applied to other
parameters, like timbral identification, for example.
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measure k.9 Let In ⊂ Z∗
+, 1 ≤ n ≤ k be the sets of informational values of the coordinates of the

vector (c1, c2, . . . , ck), associated with the representation R.
Let B = {p1, p2, . . . , pk} a set made up of ordered, distinct, and positive prime numbers (p1 =

2). The code M of the representation R, in relation to the set B, is given by:

M = pc1
1 × pc2

2 ...p
ck-1
k−1 × p

ck
k =

k

∏
n=1

pcn
n (2)

The M code is unique and retrieves all information contained in the information sets associated
with a given rhythmic representation.
As an illustration of the type of application that will be considered in this study, consider a simple
eight-pulse drums pattern composed by the superimposition of three rhythmic lines, played by
the hi-hat (stream 1), snare drum (stream 2), and bass drum (stream 3), as depicted in Figure 6.

hi-hat (1)

bass drum (3)

snare drum (2)

IU = 8th note

Figure 6: Example of a simple three-stream drums pattern.

The respective codes are calculated as following:
Mhi-hat = 21 × 31 × 51 × 71 × 111 × 131 × 171 × 191 = 9699690

Msnare = 20 × 30 × 50 × 70 × 110 × 130 × 171 × 190 = 17
Mbass = 21 × 30 × 50 × 71 × 110 × 130 × 171 × 190 = 238

It should be noted that gcd(17, 238, 9699690) = 17, which is precisely the prime number
associated with the seventh pulse, the unique point where onsets of the three drum pieces coincide.
In this sense, the concept of greater common divisor and the disposition of the rhythmic attacks in
the pattern are closely related.10

IV. Algorithmic implementation

The combination of the ideas of the Gödel-numbering algorithm with vector/necklace represen-
tation provides the necessary means for the elaboration of a robust theoretical-methodological
apparatus addressing rhythm, with both analytical and compositional applications. As suggested
in the previous section, this strategy allows for encoding any possible rhythmic configuration (or
even superimposed rhythmic lines, as happens in drum-set grooves) as a unique integer (or a
tuple of integers, as it will be discussed), which ultimately will constitute a precise identifier of
such rhythm. Put another way, given a rhythm R, expressed in one of the notational alternatives
proposed by Toussaint (we will adopt in this study vector and necklace types), there is a particular

9Depending on the musical context in question, any durational value can be considered as rhythmic unit. By default,
we propose the sixteenth note for this role.

10It is important to add that this model for drum-groove encoding is a simple, initial version that to be be replaced by a
more complex one, whose description is presented along the next section.
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integer M (standing for “M... code”)11 that will represent univocally R. Conversely, considering a
given integer as M, playing backwards the same process, we can obtain algebraic and geometric
representations of the related rhythm R. The present section describes the algorithms and processes
employed for the accomplishment of both tasks. In addition, practical illustration of their potential
application in analysis and composition will be provided.

i. Isolated rhythms

Aiming at a more clear and gradual explanation of the structure of the algorithms, let us start
with a simple rhythm played by a single drum-kit piece, say, the snare. As shown in Figure 7, the
timeline in question consists of four onsets in a groove of sixteenth pulses. In this context, the
eighth note is the lesser durational value and, therefore, it is the IU to be considered along the
process.

10 0 0 0 1 0 0 0 1 0 00 1 1 0
Figure 7: Example of an isolated rhythm written for snare drums, in musical and binary notation.

Firstly, the rhythm must be transcribed from musical to binary (positional) notation, with 1s
corresponding to onset points, as shown beneath the score. The conventions adopted with respect
to dynamic levels (introduced in the previous section) are incorporated into the positional vector,
according to the following instructions: (a) replace 1 by 2 in the case of a ghost-note onset; (b)
replace 1 by 3 in the case of an accented onset (and do nothing in normal onsets). Thus, there are
two substitutions in our example (Figure 8).

10 0 0 0 1 0 0 0 1 0 00 1 1 0

10 0 0 0 3 0 0 0 1 0 00 1 3 0w
Figure 8: Formation of vector w, using as example the rhythm of Figure 7.

Let us refer to this latter structure as the weighted vector w, which ultimately represents a
given rhythm R with respect to its onset points and micro-dynamic fluctuations. Vector w is
then inputted in the program PlotRhythm,12 which produces the necklace representation of R as

11This designation refers to Dr. Carlos Mathias, the researcher who idealized the code, and one of the co-authors of this
article.

12This and the all programs which will be mentioned in this article were implemented in Matlab language.
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exemplified in Figure 9 (thick-line nodes correspond to the accented onsets). Nodes of normal
width refer to normal onsets. Ghost-note onsets would be represented by dashed-line nodes.

phase:  p = 2
s

v = <35314>s

d = <13113>s

w = <0010030000100130>s

Figure 9: Necklace representation of the rhythm of Figure 7.

Before continuing with the encoding of R, there are some new concepts and conventions to
be introduced. Define the phase (denoted by p) of a rhythm as the distance (measured in IUs)
between the starting point of the cycle/timeline (always indicated by the zero “hour” in the
necklace) and the position of the first onset. In the case of our example, the rhythm has phase ps =
2. The intervallic vector v proposes a more compact representation through the depiction of the
sequence of differences (measured in IUs or pulses) between the onsets.13 In the present case, vs =
<35314>.14 Define also the dynamic vector d as the sequence of dynamic levels in a one-to-one
relation with the onsets of R (ds = <13113> in the exemplified case).

The algorithm that encodes R, called TranslateRhythm, uses as input vectors w, v, d, and phase p.
It functions basically as follows: Firstly, it forms a sequence of prime bases P, whose length equals

13In other words, v denotes a sequence of IOIs of R.
14Observe that these differences are proportional to the lengths of the edges in the polygon of Figure 9. Notice also that

it is necessary to include in v the interval between the last and the initial onsets of the rhythm (4 pulses in the example),
closing the circuit, which is perfectly consistent with the cyclic nature of a timeline.
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the cardinality of the timeline. Considering that, in our example, the snare pattern has 16 pulses,
then P = <2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53>. After this, the members of P that
correspond to non-zero entries of w are copied into another vector, PR, as shown in Figure 10.

0 010 00 03 00 10 00 31

2 5353 117 1713 2319 3129 4137 4743

w

PR
Figure 10: Formation of vector PR, using as example the rhythm of Figure 7.

The integer resulting from the product of these prime numbers is the code referred to R. Let us
label this integer as GR. Considering the snare rhythm, we have GRS = 5 × 13 × 31 × 43 × 47 =
4072315.

Let now GD be the integer that encodes the dynamic pattern of R. With the goal of minimizing
the magnitude of this number, a different strategy is used in this case. Since there is a one-to-one
mapping between the dynamic indications of vector d and the respective onsets of vector v, it is
not necessary to locate their positions in the cycle (as it was done with the onsets). Therefore, it is
enough to associate the n elements of d (d1, d2, . . . , dn) as exponents of the first n prime numbers
(p1, p2, . . . , pn ). Thus, GD will be the product of these powered bases. For the snare timeline, we
have: GDS = 21 × 33× 51 × 71 × 113 = 2515590.

Finally, the code M of R, is represented by the triplet M = (c, GR, GD), where c is the length of
the timeline (measured in IUs), GR is the Gödel number related to R, and GD is the Gödel number
referred to the particular dynamic pattern of R. Thus, in our example, MS = (16, 4072315, 2515590).

The reversal process, that is, for obtaining the original rhythm from the code, is considerably
simple, through factoring both integers GR and GD, considering also the context (i.e., the cycle
length). The decoding is operated by another algorithm, called TranslateCode, whose input is M.
Taking the case of our example, the algorithm proceeds as depicted in Figure 11. However, as
suggested in the sixth step of the algorithm, it is not possible to recover exactly the original musical
notation, since the whole process deals with onsets (and IOIs), rather than properly durations.15

Put another way, the three possible interpretations depicted at the bottom of Figure 11, or any other
that obeys the positions of the onsets in the same 16-pulse context, will be considered perfectly
equivalent with the respect to onset/dynamic patterns. Actually, since we are working with drums,
the determination of the durations of the attacks is entirely immaterial. Given this, from now on,
we will adopt as the preferential the simplest and clearest (in the drummer’s perspective) possible
notation for representing both the original and recovered rhythm. The next section examines a
more complex situation, involving superimposition of rhythms, as it normally occurs in common
drum grooves.

15Evidently, there are some special situations in which drum-set durations matter, as in snare rolls or in the reverberation
of attacks on crash or splash cymbals. For simplicity, we will not consider such situations in the present model.
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Ms

c GD

= (16, 4072315, 2515590) 

GR

2. factor GR 4072315 = 5 x 13 x 31 x 43 x 47

1. c = 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 rd 11st

 
15 st14st6 st

3. enter positions in the zeroed vector (step 1) as 1s

0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0

4. factor GD 2515590 = 2 x 3 x 5 x 7 x 11
1       3       1        1         3  

5. take the exponents and enter them in the vector of positions (step 3).
    replacing non-zeroed entries in the same order, obtaining vector w

0 0 1 0 0 3 0 0 0 0 1 0 0 1 3 0

3 rd 11st 15 st14st6 st

1                3                           1                1    3 

6. write the resulting vector in musical notation (optional)

0 0 1 0 0 3 0 0 0 0 1 0 0 1 3 0

(a)

(b)

(c)

etc.

w

(positions on the prime sequence)

Figure 11: Basic algorithm of TranslateCode for recovering an isolated rhythm R from a M code.
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ii. Drum grooves

Speculating about what was suggested in the third section of this article, it is possible to consider
other additional “dimensions” for the onsets of a rhythm, besides dynamics. Information con-
cerning timbre, especially, is a very useful feature to be added with respect to drums. Provided
that clear conventions are previously established by the analyst, even complex drum patterns
can be encoded with this technology. Consider as an illustration of this possibility the following
conventions (Table 1). They can freely combine dynamic and timbral information (as in the
examples) in order to adapt to genre (heavy rock, blues, bossa, salsa, etc.) or other contextual
conditions.

Table 1: Two possible convention charts for drum-set encoding (shaded cells refer to timbral features).

streams 1 1 3 4

(case a)
1 bass drum accented onset – –
2 snare drum ghost note accented onset rim shot
3 closed hi-hat opened hi-hat – –

(case b)
1 bass drum accented onset – –
2 snare drum low tom mid tom high tom
3 closed hi-hat opened hi-hat ride cymbal attack cymbal

Let us adopt the simpler case (a) of Table 1 for addressing the superimposition of rhythms
in a three-stream groove. Figure 12 adds bass-drum and hi-hat lines to the snare pattern of the
previous section, forming a rock-like simple groove. The respective positional vectors can then be
accordingly written. For visual clarity, no accents were added to the bass-drum rhythm.

+ + +

11 1 2 1 1 2 1 1 1 2 11 1 1 1

01 0 0 1 0 0 1 1 0 0 10 0 0 0

hi-hat

bass drum

Figure 12: Drum groove obtained by superimposition of bass-drum and hi-hat rhythms to the snare pattern of Figure 7.

Since the three weight vectors (wb, ws, wh) share, evidently, the same cycle of 16 pulses, they
can be reunited in a unique three-row matrix (denoted as T), reproducing from top to the bottom
the order of the pieces in the score:16

16Hoesl and Senn [14, p. 7] also use a 3-row matrix to notate onset positions of the drum pieces. However, since they are
interested in syncopation, their matrix depicts rhythmic information related only by snare and bass drums (rows 1 and 2).
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T =

∣∣∣∣∣∣
1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1
0 0 1 0 0 3 0 0 0 0 1 0 0 1 3 0
1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0

∣∣∣∣∣∣
Matrix T is then input in the program PlotRhythm, which returns the graphic representation

depicted in Figure 13.
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accented

Figure 13: Necklace representation of the drum groove of Figure 12.

Due to the increase of complexity, colors are used for discriminating the pieces’ rhythms. As in
the simple mode, the number of edges in each polygon represents the number of onsets of the
rhythms. Concentric, superimposed circles indicate coincidence of onsets involving two pieces (in
the exemplified groove there are no triple coincidence). The dashed-line red nodes refer to attacks
on the opened hi-hat.

The next step proceeds as it was done with the snare line. The individual weight vectors of
bass drum and hi-hat are input, one at a time, in the TranslateRhythm algorithm. In the case of the
bass drum, there is nothing new: the algorithm returns Mb = (16, 394174, 1). Observe that GD
= 1, which is consistent with the fact that the bass-drum rhythm is completely flat with respect
to the dynamic level. On the other hand, the calculation of Mh gives rise to a problematic issue.
Because its rhythm articulates all the pulses of the cycle, this implies a very huge value for GR
(approximately 3.26 × 1019). Apart from the awkwardness of representing an integer of such
magnitude in the code, the real greatest difficult in dealing with it lies actually in the decoding
process, due to the computational limitations for factoring mammoth integers like this.17

In the following, this paper will share some strategies on how to reduce the potential size of
the integers involved within the structure of code M (for computational purposes), specifically for

The third row is reserved for what they call metric weight, associated with distinct values of syncopation, from 0 to -3 (it is
important to state, as it will be clear ahead, that this meaning for “weight” is completely different from which is here
adopted.

17Factoring becomes complicated with integers greater than 1015.
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the cases of rhythms that contain a lot of information. The presentation of those strategies could
suggest to the reader that the intent behind this encoding technique is to generate integers able to
uniquely represent a rhythm. If that were simply the case, the coordinates of the informational
vectors themselves would easily fulfill that wish. The hi-hat line of Figure 12, for instance, could
be naively encoded by <1112112111121111>. But that would only provide a source of representation
that is null in terms of providing arithmetical feedbacks useful to any sort of analysis. The
main concern of the encoding technique here presented is to uniquely link an arbitrary musical
representation to numerical informational vectors, in such a way that the analysis of rhythmic attributes
can be carried out within a robust arithmetical framework, in the sense previously described. Rhythmic
superimpositions/decompositions, displacements, dynamic changes and even modulations can be
easily achieved as results of the use of simple arithmetic operations such as multiplication and
division. Metaphorically, it can be said that Toussaint´s necklace notation is to geometry as the
encoding technique here presented is to arithmetic.

The first strategy considered was to “break” GR into three factors, such that GR = g1 ×
g2 × g3.18 Although this solves perfectly the problem, it is an unsatisfactory solution, since
it would force us to restructure code M, changing it from a triple to a quintuple, in order to
eventually accommodate two new entries. A quite more elegant alternative is to consider the idea
of complement of a rhythm R, denoted as RR. This corresponds to the set of onsets that are not
articulated by the rhythm, in the context of the cycle it is inserted in. In the case of our hi-hat
example, since all pulses are articulated, its complement RR corresponds to no articulation at all,
being arithmetically represented by the product of the sixteen primes, all of them powered by 0,
which equals 1. Evidently, the use of RR is destined not only to express, so to speak, all-pulse
rhythms. As a matter of fact, a rhythm with a number of onsets greater than half of the number of
pulses can be “negatively” represented by its complement.

As an illustration of this point, consider, for instance, a hypothetical hi-hat variation of the
groove, with an intermittent onset pattern denoted by the weight vector w = <1011101011101101>.
Then, its complementary weight vector wc will be expressed as wc = <0100010100010010>.
Figure 14 provides a necklace representation of both rhythms.

RRc

Figure 14: Necklace representation of a hypothetical rhythm R and its complement Rc.

18In the present case, the values are: g1 = 2310; g2 = 2800733; and g3 = 5037203051.
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Now, we calculate GR for both rhythms and compare the results. As done in ordinary cases,
GR is the product of prime numbers corresponding to non-zeroed entries of the weight vector. The
lowest integer calculated will then be chosen for encoding the rhythm. As shown in Table 2 the
comparison of both alternatives favors the choice of the complement as the representative of the
rhythm.

Table 2: Comparison between R and Rc referring to the case of Figure 14.

Pulses 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GR

Primes 2 3 6 7 11 13 17 19 23 29 31 37 41 43 47 53
w 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 2.53 × 1013

wc 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1288599

The indication in the code M that a rhythm is represented by its complement is accomplished
through a very simple artifice: the multiplication of the respective GR by -1.

On the other hand, if the complement is chosen for representing a given rhythm, its GD shall
be calculated in a different way from the ordinary case. Actually, the algorithm is very simple
and can be described in two steps: (a) subtract 1 from the entries of original vector w, an action
that we will represent by w -– 1; (b) power the primes with the resulting vector (as it was done
in the calculating of GR) and calculate their product. In the case of the hypothetical example of
Figure 14, we have then the subtraction wc – 1 = <0000000000000000>, implying then GD = 1
(a not surprising result, since wc is perfectly flat). We can then encode this rhythm as M = (16,
-1288599, 1).

We can now return to the original hi-hat pattern and encode it properly. Recall that its weight
vector (that includes some opened onsets) is expressed as w = <1112112111121111>. Since
the rhythm saturates the onset space, GR = -1. For calculating GD, we take w — 1, obtaining
the exponent sequence <0001001000010000>. As we know, to power this vector to the primes
sequence is the same as to pick the primes corresponding to the non-zero entries and multiply
them. Therefore, the integer referred to in the weight vector (in complementary mode) is GD = 7
× 19 × 41 = 5453. Given this, we can express the hi-hat code in the form Mh = (16, -1, 5453).

Finally, the codes of the individual pieces can be combined into a unique structure (denoted as
M) representing the complete groove. Ultimately, M will be expressed as the septuplet M = (c,
Mb, Ms, Mh) = (c, [GR, GD]b, [GR, GD]s, [[GR, GD]h). Considering our example, M = (16, 394174,
4072315, 2515590, -1, 5453).

The retrieval of a three-piece drum groove, given a code M, is achieved through the application
of the same algorithm TranslateCode, used for isolated rhythms (see Figure 11). However, due to
the compound structure of the groove-code, some new elements have to be incorporated in the
definitive implementation of the algorithm. Firstly, the algorithm shall be able to go through M in
a two-step window from the second entry on, in order to adequately process the three pairs of
information, respectively related to any of the groove’s streams. Furthermore, it is also necessary
to provide the algorithm with the necessary conditions for dealing with eventual complementary
rhythms, indicated by negative entries.

Before continuing, especially envisaging further improvement, let us assign variables to denote
the seven entries of M (we arbitrarily chose for this task the sequence of the alphabet between
letters i and o). Thus, from now on a generic compound code will be denoted as M = (i, j, k, l, m,
n, o). Figure 15 illustrates the functioning of the definitive version of TranslateCode taking the code
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M as input.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c
GR GD

M = (16, 394174, 1, 4072315, 2515590, -1, 5453) 

GR GD GR GD

bass drum              snare drum                  hi-hat

M(1) 1. Enter 16 form a zeroed vector with length = i

M(2:3) 2. Enter 394174 1
j        k    

j > 0    factorate (j) = 2 x 11 x 19 x 23 x 41     

(5 onsets)    

1       5        8       9       13  (order in the primes sequence) 

394174 1
j        k   

k = 1    dynamic level FLAT (no additions)     

M(4:5) 3. Enter 4072315 2515590
l               m    

l > 0    factorate (l) = 5 x 13 x 31 x 43 x 47    

(5 onsets)    

3       6       11     14      15  (order in the primes sequence) 

1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0w    b

m  = 1    factorate (m) = 2 x 3 x 5 x 7 x 11    
1       3       1       1          3  

0 0 1 0 0 3 0 0 0 0 1 0 0 1 3 0w    s

M(6:7) 4. Enter -1 5453
n      o   

n < 0    complement     

n = -1    all-onset rhythm (16 onsets)     

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o  = 1    factorate (o) = 7 x 19 x 43    

4072315 2515590
l               m    

-1 5453
n      o    

4       8       14   (order in the primes sequence) 

1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1w    h

i         j       k         l             m        n      o

1     2     3    4     5    6     7    8     9   10   11  12   13  14   15  16

1     2     3    4     5    6     7    8     9   10   11  12   13  14   15  16

1     2     3    4     5    6     7    8     9   10   11  12   13  14   15  16

1     2     3    4     5    6     7    8     9   10   11  12   13  14   15  16

1     2     3    4     5    6     7    8     9   10   11  12   13  14   15  16

i   

Figure 15: Basic algorithm of TranslateCode for recovering a three-stream groove rhythm R from a M code.
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V. Encoding rhythmic variations

Maybe the most attractive application of the encoding technology addresses the aspect of rhythmic
variations, both with analytical and compositional purposes. For this, instead of dealing with the
content of a given referential M expressed with actual numbers, we need only to use its algebraic
version (i.e., denoted by variables i-o).19

Firstly, let us consider the entries associated uniquely with onset configurations (variables j, l,
and n). There are three manners of transforming an onset pattern of a rhythm R:

1. By adding a new onset to R — this is equivalent to multiplying the variable in question by a
prime number of the sequence that is not a factor of R;

2. By deleting an existent onset — this is equivalent to dividing the variable in question by a
prime number of the sequence that is already a factor of R;

3. By replacing an existent onset by another one -– this is equivalent to multiplying the variable
in question by a fraction such that the numerator is a new prime and the denominator is an
already existing one, which is intended to be replaced.

+ + + + + + +

original groove variation

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

hi-hat
snare
bass

0
1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

Figure 16: A possible variation of Figure 13.

In the case of the additional information of a groove (dynamics or timbre, represented by
variables k, m, and o), transformations are referred to a unique category, namely the change of a
dynamic level or a timbre of a specific onset, which is achieved by multiplying or dividing the

19Notice that if we consider M algebraically, it is not necessary any more to replace an eventual very intense rhythm
by its complement. In this manner, considering our example, variable n (that denotes the hi-hat onset configuration)
represents the original (very huge) integer which corresponds to the product of the sixteen first prime numbers, rather
than its complement (-1).
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variable in question by a prime factor related to the original configuration (such procedure affects
the magnitude of the exponents, by adding or subtracting units). Finally, the cycle itself (variable
i) can also be transformed, by expansion or contraction, by multiplication and/or division.20

As an illustration of how these procedures can be applied in an analytical situation, consider
the variation of our original groove shown in Figure 16. As above stated, let the groove be
expressed as M = (i, j, k, l, m, n, o). Given this, it is possible analyze the variant, whose code we
will denote as MV, in terms of algebraic transformations of the content of M.

For clarity, Table 3 details the transformational process, considering the individual vector
differences between both compound rhythms. Bold-face numbers indicate affected onsets or
dynamic/timbral elements.

Table 3: Transformations involved in the variation of Figure 16

groove variation divide by multiply by

cycle i 16 (scalar) 16 (scalar) 1 1
bass j 1000100110001000 0000100010001001 19 53

drum k 11111 11113 1 112

snare l 0010010000100110 0010001000100100 13 × 47 17
drum m 13113 13130 113 72

hi-hat n 1111111111111111 1111111111111100 47 × 53 1
o 1112112111121111 1121112112111100 7 × 37 × 47 × 53 5 × 23

This allows us to propose the following algebraic representation of the variation:

MV = (i, 19
53 j, 1

112 k, 611
17 l, 113

72 m, 2491n, 645169
115 o)

Let us now examine another very useful application. Consider an archetypal samba drum
groove, which is characterized by a fixed bass-drum pattern (normally doubling rhythmically the
bass line) over which cross-stick attacks and ride accents are added in almost random sixteenth-
note onsets. In a sense, most of samba swing lies precisely in the low expectancy of these
accentuation patterns. Normally, the decisions about where and when an onset shall be stressed
depends on the drummer’s intuition and, of course, expertise in playing this genre of music, in
sum, of his/her improvisatory capacity in this kind of music. Now, suppose that we intend to
model a samba-drum performance, as in the excerpt shown in Figure 17. Instead of treating the
whole passage as a 40-pulse cycle, which would turn the underlying computation highly complex
and costly, an alternative, much simpler strategy is to see it as a set of nine variations of a very
small basic “theme”, at the first beat of the groove. According to this approach, it can be seen as
the generator of the nine subsequent transformed versions of itself. Notice that now generator
and variants are quite small cycles (four pulses), which implies few and small primes (2, 3, 5, and
7), and considerably simple codes. Observe also that five out seven structures are kept invariant
along the groove: cycle length (i), bass-drum onset and dynamic/timbral configurations (j-k),
snare dynamic/timbral pattern (m), and ride onset positions (n). As a matter of fact, cross-stick
positions (l) and ride accentuations (o) are the only parameters subject to variation.

Table 4 depicts the algebraic structure of the nine variations in relation to that of the generator
(invariant elements are let shaded). Observe that, although variation 4 incidentally replicates the

20For example, the transformation of a 16-pulse into a 12-pulse cycle is achieved through the multiplication of i by 3
4
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M = (i, j, k, l, m, n, o) = (4, 14, 1, 5, 1, 210, 1)

generator

conventions

ride
cross stick
bass drum

onset

1
1

2
accent.

1

Figure 17: Samba variations by transformations applied to a basic generator.

generator (which is perfectly normal in real-music situation), there is a considerable variety of
patterns among the remaining variants, due to combinatorial possibilities.

Table 4: Transformations involved in the variation of Figure 16

m. 1 generator i j k l m n o
variant 1 1 1 1 3

5 l 1 1 5
7 o

m. 2 variant 2 1 1 1 3
5 l 1 1 2

7 o
variant 3 1 1 1 1 1 1 3o

m. 3 variant 4 1 1 1 1 1 1 1
variant 5 1 1 1 3

5 l 1 1 5
7 o

m. 4 variant 6 1 1 1 3
5 l 1 1 3

7 o
variant 5 1 1 1 1

5 l 1 1 2o
m. 5 variant 7 1 1 1 1 1 1 3

7 o
variant 8 1 1 1 3

5 l 1 1 5
7 o

Lastly, we can express the whole passage as a 10 × 7 matrix, in which any row represents
a beat (the generator and the nine variants) and the columns correspond to the elements of the
respective M codes. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1
1 1 1 3/5 1 1 5/7
1 1 1 3/5 1 1 2/7
1 1 1 1 1 1 3
1 1 1 1 1 1 1
1 1 1 3/5 1 1 5/7
1 1 1 3/5 1 1 3/7
1 1 1 1/5 1 1 2
1 1 1 1 1 1 3/7
1 1 1 3/5 1 1 5/7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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VI. Conclusion

This article introduced an original theoretical-methodological proposal intended to address drum-
set rhythms in a formal manner. The adaptation and combination of concepts, formulations, and
conventions coined by Gauss, Gödel, and Toussaint that resulted in the technology which is here
described allows complex three-stream drum grooves to be represented both geometrically (as
superimposed polygons) and algebraically (as tuples of codes, vectors, and matrices). By exploring
the inherent property of prime numbers (expressed in the FTA), some simple algorithms are used
for plotting and encoding rhythms of the individual pieces of a groove, as well as for the reversal
process, retrieving the original timelines by factoring their codes. Our proposal includes also the
possibility of extending the methodology to encompass auxiliary parameters, as dynamics and
timbre, turning the model more flexible and comprehensive. Besides the primary advantages of
encoding relatively complex musical information as retrievable tuples (compactness, especially),
the practical applications that are here envisaged – both in analysis and composition – open
a potentially wide avenue to be explored in future work. In this sense, the idea of using this
technology for creating subtle variations of a groove-seed (expressed as an abstract generator), as
it was done in the samba example, seems to be the most promising.
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Abstract: In music, durations are quantized to subdivisions of time in the form of fractions of the inverse
powers of 2 (e.g., 1/20, 1/21, 1/22, etc.). All durations that are not involved in tuplets can be represented
by sums of these fractions. The gradual transition from one note duration to another through a specified
number of intermediate note values requires an accelerando/ritardando beam (i.e., feathered beam). This
notation, however, does not indicate exactly how the gradual transition through the intermediate note
values is to occur. The various details may be so contradictory that feathered beams may be impossible
to realize. Thus, the notation is inherently indeterminate, although it is not often regarded as such.
This paper examines these concepts and combines rhythmic nomenclature with a graphing system to
deconstruct feathered beams using examples from George Crumb’s Night Music I.
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1. Feathered Beams

Accelerando/ritardando beams notate the gradual transition from one note duration to
another. They are nicknamed feathered beams because in music notation the beams flare
out like feathers (see Figures 4, 5, and 16 below for examples from the standard repertoire).

This notation specifies note values at the beginning and ending of the beamed group, a gradual
transition between those note values through a certain number of intermediate values, and in some
cases, a precisely specified total duration. This notation, however, does not indicate exactly how
to execute the gradual transition through the intermediate note values. This lack of information
means that the notation is inherently indeterminate. However, the specificity of the notation
disguises this indeterminacy. Furthermore, in some cases, the various specific requirements of a
feathered beam group may be so contradictory that they are impossible to realize in practice. Al-
though this paper examines feathered beams precisely, some composers do not consider feathered
beams to be precise, but rather merely mean, for example, from something fast to something slow.

This paper combines rhythmic nomenclature (section II) with a graphing system (section III)
to deconstruct feathered beams, and to compare the information inherent in the notation, the
composer’s intention, and the practical aspects of execution. Examples from George Crumb’s
Night Music I are plotted to explain the feathered beam technique and the theory behind it. First,
this paper examines the more general case for when the total duration of the beamed group is not
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specified, and some questions are considered with respect to performance practice and cognition
(section IV). Next, a more constrained case is examined, one in which the total duration is specified
(section V). In this scenario, however, some problems arise, most notably the impossibility of
accurately realizing the notation. Finally, feathered beams are generalized to calculate the full
duration of any linear or quadratic feathered beam (section VI).

This paper’s focus is intentionally limited in order to demonstrate particular problems with
feathered beams, mostly in the abstract. Much work remains to be done to fully understand how
feathered beams are executed and perceived within a greater context of the music and phrase,
but some ramifications are considered with respect to research that has been done on traditional
rhythmic scenarios. Studying the examples in isolation reveals the limitations and complexities of
this notation.

2. Definitions

2.1. Duration

In Western musical notation, the unit of duration is the whole note (w) and durations are given as
subdivisions of it. The system is organized around note values based on the inverse powers of 2
where ( 1

2p ),p ∈ Z+:

¯ = ( 1
20 )w = w

˘ “ = ( 1
21 )w = w

2

ˇ “ = ( 1
22 )w = w

4

ˇ “( = ( 1
23 )w = w

8

ˇ “) = ( 1
24 )w = w

16

ˇ “* = ( 1
25 )w = w

32

etc.

Durations are subject to the normal operative rules of addition, subtraction, multiplication,
and division; the commutative and transitive properties hold true with duration operations.

2.2. Augmentation Dots

A single augmentation dot adds 50% to the duration of the note that it follows:

˘ “‰ = ˘ “⌣ ˇ “ = w
2 + w

4 = 3w
4

ˇ “‰ = ˇ “⌣ ˇ “( = w
4 + w

8 = 3w
8

66

http://www.musmat.org/


Journal MusMat • December 2021 • Vol. V, No. 2

ˇ “( ‰ = ˇ “( ⌣ ˇ “) = w
8 + w

16 = 3w
16

etc.

Consecutive augmentation dots are given by the summation:

d+p

∑
i=p

w
2i =

(2d+1 − 1)w
2d+p , (1)

where p is the exponent of the power of 2 of the corresponding note without the augmentation
dots with respect to w (e.g., whole note when p = 0, half note when p = 1, quarter note when
p = 2, eighth note when p = 3, etc.) and d equals the number of augmentation dots (p, d ∈ Z+).

ˇ “. = ˇ “⌣ ˇ “( = (21+1−1)w
21+2 = 3w

8

ˇ “.. = ˇ “⌣ ˇ “( ⌣ ˇ “) = (22+1−1)w
22+2 = 7w

16

ˇ “... = ˇ “⌣ ˇ “( ⌣ ˇ “) ⌣ ˇ “* = (23+1−1)w
23+2 = 15w

32

etc.

When continually applying augmentation dots, the duration limits to 2 times the duration of the
note they are on.

2.3. Tuplets

The note values presented so far in this paper can indicate any duration that is evenly divisible by
1

2p . In tuplets, however, note values are compressed according to ratios, such as in a traditional
triplet of eighth notes that has 3 eighth notes compressed into the duration of 2 eighth notes.
The 2 eighth notes in the example that follows are not compressed; their ratio is 2 ˇ “( : 2 ˇ “( = 1.
Below that, the 3 eighth notes are compressed into the duration of 2 eighth notes, yielding a ratio
of 3 ˇ “( : 2 ˇ “( = 3

2 . Each of these individual eighth notes have the duration ( 2
3 )(

w
8 ) =

w
12 , which is

one-third of a quarter note (i.e., (w/4)/3). (Traditional triplets are simply indicated by 3 in a
bracket or next to a beam, but this paper is more specific in that it uses the corresponding note
values along with their ratio (e.g., 3 ˇ “( : 2 ˇ “( ) which is especially applicable to more complicated
tuplets.)

w
8
+

w
8
=

w
4

2 ˇ “( : 2 ˇ “( = 1

(
2
3

)(
w
8
+

w
8
+

w
8

)
=

w
4

3 ˇ “( : 2 ˇ “( = 3
2

Some more examples follow:

(
4
5

)(
5w
16

)
=

w
4

5 ˇ “) : 4 ˇ “) or 5 ˇ “) : ˇ “ = 5
4

67

http://www.musmat.org/


Journal MusMat • December 2021 • Vol. V, No. 2

(
5
6

)(
6w
4

)
=

5w
4

6 ˇ “ : 5 ˇ “ = 6
5

In the above examples and throughout this paper, tuplets have ratios greater than 1 and less
than 2 indicating that the note durations have been compressed; however, some composers find
it acceptable to use tuplets with ratios of less than 1 augmenting the note durations, such as in
Debussy’s Suite bergamasque, 3. “Clair de Lune”, m. 3 (Figure 1).

Figure 1: Debussy, Suite bergamasque, 3. “Clair de Lune”, m. 3.

Here, the compound meter has dotted quarter-note beats, and the simple subdivisions of the beat
are notated with eighth-note duplets. The ratio is 2 ˇ “( :3 ˇ “( = 2

3 , which, according to common notation
practice described in many style manuals ([5]), is usually not preferred because 2

3 < 1. Preferably,
this example should use 2 quarter notes instead of 2 eighth notes in this duplet, because it makes
the ratio 2 ˇ “:3 ˇ “( = 4 ˇ “( :3 ˇ “( = 4

3 , which is 1 < 4
3 < 2.

Situations similar to this duplet can be visually misleading in some circumstances. Usually there
are simpler ways of notating tuplets and partial tuplets. For instance, the above duplet can be
notated more simply as 2 dotted-eighth notes.

2.4. Partial tuplets

The individual notes within tuplets can represent many rational durations. For example, the first

two notes in a traditional triplet of eighth notes equal the duration
(

2
3

)(
w
4

)
. Consider a musical

context where these two notes occur without the triplet’s remaining eighth note. According to
traditional musical notation, the remaining eighth note should be included in the score enclosed
in brackets as shown in the following rhythm.[8]

The note in the brackets is not played and its value does not occur in the time of the music. In
other words, if the quarter note gets the beat, then the last two quarter notes in the rhythm are
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shifted a third of a beat forward in time. Only the first two-thirds of the triplet are to be played
indicating a partial amount of the tuplet. In this paper, the following notation will be used instead,
where the number in the numerator specifies the partial amount of the tuplet.

The tuplet is given as z
x:y , which indicates z parts of x notes in the span of y notes where z, x, and

y are positive integers such that x > y ≥ z ≥ 1.1 Partial tuplets can usually be avoided by using
other notation that can express a similar or equivalent musical result. An equivalent rhythm to the
one above, but with compound beats and without the partial tuplet, is given below.

Any rational duration even if it is not evenly divisible by 1
2p can be notated with tuplets or partial

tuplets. For example, although musically impractical, the duration 37w
41 can be notated as follows:

=

(
37
41

)(
32w
32

)
=

37w
41

41 ˇ “) : 37 ˇ “) = 41
37

2.5. Irrational durations

All the durations presented in this paper to this point are rational, but sometimes it is necessary
to indicate irrational durations. Irrational durations cannot be represented as previously shown in
this paper. So, for the purpose of analysis, they will be given as solid stemless noteheads with the
durations in whole-note units written above them. Some examples are as follows:

3. Duration Graphs

A musical score is like a graph where time is given on the horizontal axis and pitch is given on
the vertical axis. Consider the first phrase of Brahms, Variations on a Theme by Haydn, Op. 56
(Figure 2).

1This notation may not be conducive to sight reading, but accurately describes the rhythmic phenomena and is useful
for the purposes of analysis.
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Figure 2: Brahms, Variations on a Theme by Haydn, Op. 56, mm. 1–5.

The notes are indexed beginning with zero. The horizontal bars below the staff are proportional to
the durations of the notes. In Figure 3, all those horizontal bars are arranged vertically. The notes
are given in temporal order on the horizontal axis according to their indices, and their durations
are given on the vertical axis. This way, changes in duration can be plotted.(N.b., the curve fitting
in the illustration merely shows that changes in duration can follow a curve.)

Figure 3: Duration graph of Figure 2.

In this paper, durations in feathered beams are given as a series of (i, r) coordinates, where i is
the index and r is the duration (r ∈ Q). For the Brahms example above, this is:〈(

0,
3w
16

)
,
(

1,
w
16

)
, · · · ,

(
15,

w
16

)〉
.

Changes in duration can be plotted as lines and curves on these graphs, and can be given with
standard algebra. Lines are given in the form

f (x) = ax + b

and quadratic curves are given in the form

f (x) = ax2 + bx + c,

where a, b, c, x ∈ R.

When a series of durations does not correspond to an easily determined equation, a curve
may be plotted through the coordinates using splines (piecewise polynomials that match their
values and derivatives between the pieces). The first derivative of the lines and curves give the
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rate of change, and the second derivative gives the acceleration.The integral of the lines and curves
approximates the sum of the durations of all the notes. These concepts will be explained more
fully in the following section.

4. George Crumb, Night Music I, “Notturno I”, rehearsal 5

In this section of the paper, the following excerpt from the 1976 revised version of George Crumb’s
Night Music I, “Notturno I” is exploited to demonstrate the details of the note-duration graphing
system. I chose this excerpt after searching extensively for examples of feathered beams. I found a
plethora of examples where the feathered beams do not even closely fit within their corresponding
spans of music and/or be approximately performed as notated. In light of these observations,
examples in George Crumb’s Night Music I best suit my needs to illustrate the points in this paper.
In “Notturno I” at rehearsal 5, ten notes under a feathered beam group gradually transition from
a thirty-second to eighth note [2] (Figure 4).

Figure 4: George Crumb, Night Music I, “Notturno I”, rehearsal 5.

The original 1967 version [1] of the score incorporated various improvisatory elements, most
of which are notated more precisely in the 1976 revision. Throughout the revised version, there
are ritardando or accelerando indications written above the feathered beams that are not in the
original version. Other examples, such as the one below from “Notturno III”,suggest that the
feathered beams should not be further exaggerated by tempo changes, but that the rit. and accel.
tempo indications merely reinforce the rhythmic gestures (Figure 5). Thus, the rit. indication in
the above example is taken as a redundant instruction.
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Figure 5: George Crumb, Night Music I, “Notturno III”.

The 10-note feathered beam from the “Notturno I” example is in an unmetered context and
there are no simultaneous figures to indicate that it spans a specific duration. The ten notes in
the feathered beam are identified in temporal order as n0, n1, · · · , n9. The difference between a
thirty-second and an eighth note is:

w
8
− w

32
=

3w
32

and the difference between the note numbers n0 and n9 is

9 − 0 = 9.

So, assuming that change in duration is linear, each note in succession is

3w
32
9

=
w
96

longer than the previous one, such that

ni = ni−1 +
w
96

.

Therefore:
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n0 = w
32 n5 = w

32 + 5
(

w
96

)
=

w
12

n1 = w
32 + w

96 = w
24 n6 = w

32 + 6
(

w
96

)
=

3w
32

n2 =
w
32

+ 2
(

w
96

)
=

5w
96

n7 = w
32 + 7

(
w
96

)
=

5w
48

n3 =
w
32

+ 3
(

w
96

)
=

w
16

n8 = w
32 + 8

(
w
96

)
=

11w
96

n4 =
w
32

+ 4
(

w
96

)
=

7w
96

n9 = w
32 + 9

(
w
96

)
=

w
8

The addition of a constant value to each note in succession gives the linear equation

f (x) =
w
96

x +
w
32

,

which corresponds to the following graph (Figure 6):

Figure 6: George Crumb, Linear duration graph of “Notturno I”, rehearsal 5.

The linear graph has a constant rate of change or slope, so the first derivative yields a horizontal
line. Since the rate of change is constant, there is no acceleration, so the second derivative is zero
(Figure 7).

f (x) =
w
96

x +
w
32

, f ′(x) =
w
96

x, f ′′(x) = 0.

73

http://www.musmat.org/


Journal MusMat • December 2021 • Vol. V, No. 2

Figure 7: f (x), f ′(x), and f ′′(x)of the linear duration graph of “Notturno I”, rehearsal 5.

The sum of the durations of all 10 notes is

f (n0) + · · ·+ f (n9) =
25w
32

.

The integral of f (x) is ∫
f (x)dx =

w
192

x2 +
w
32

x,

which gives the sum of the durations of the notes as they occur, and corresponds to the graph
(Figure 8)

Figure 8: Integral of the linear duration graph of “Notturno I”, rehearsal 5.

Solving the integral from 0 to 10 gives
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∫ 10

0
f (x)dx =

5w
6

,

which is approximately the duration of all 10 notes in the feathered beam. The value is an

approximation because
∫ 10

0
f (x)dx is equal to the entire area underneath f (x) while the actual

duration of all 10 notes is equal to the Riemann sums of f (x).∫ 10

0
f (x)dx =

5w
6

,

Figure 9: Entire area underneath f (x).

f (n0) + · · ·+ f (n9) =
25w
32

.

Figure 10: Riemann sums of f (x).

The linear interpretation, as shown above, is only one of several ways to realize feathered
beams. Also useful is the quadratic equation which can lead to multiple interpretations. Ulf
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Kronman and Johan Sundberg show that performers’ ritardandi at the ends of compositions tend
to follow quadratic curves, and Neil Todd uses parabolas to model gestures at the ends of phrases
[7], [21],[22]. Furthermore, Bruno Repp suggests that the parabolic curve might “indeed represent
a ‘natural’ way of changing tempo, including both accelerando and ritardando" [11]. For the
“Notturno I” feathered beam above, the two endpoints (0, w

32 ) and (9, w
8 ) in conjunction with a

third symmetrical coordinate (−9, w
8 ) can be used to solve the quadratic equation

g(x) =
w

864
x2 +

w
32

.

The third coordinate may be chosen differently, and depending on its value, a wide variety of
curves can be made for g(x).2 The graphs of g(x) and its first and second derivatives are

g(x) =
w

864
x2 +

w
32

, g(x) =
w

432
x, g′′(x) =

w
432

,

Figure 11: g(x), g′(x), and g′′(x) of the quadratic duration graph of “Notturno I”, rehearsal 5.

which give the note values, rate of change, and the acceleration respectively. The integral of g(x)
from 0 to 10 is approximately equal to the sum of all 10 notes.

∫ 10

0
g(x)dx =

905w
1296

.

2Honing ([6]) points out that “the mere fact that the overall shape (e.g. of a square root function) can be predicted by
the rules that come with human motion is not enough evidence for an underlying physical model of expressive timing in
music performance, however attractive such a model might be.” Thus, it is understood that this curve is taken arbitrarily.
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Figure 12: Entire area underneath g(x).

g(n0) + · · ·+ g(n9) =
185w
288

Figure 13: Riemann sums of g(x).

Just like before, the discrepancy in the durations is due to the difference between the continuous
area underneath the curve and the area quantized by the note values.

There are many ways that the notes in the feathered beam can be quadratically interpreted
other than the way g(x) shows. For example, consider the quadratic equation solved from the two

endpoints
(

0,
w
32

)
and

(
9,

w
8

)
in conjunction with a third coordinate

(
− 11,

w
8

)
.

h(x) =
w

1056
x2 +

w
528

x +
w
32
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Figure 14: Another possible quadratic duration graph of “Notturno I”, rehearsal 5.

One notable difference between the two quadratic curves is that g(x) begins with a slope of
g′(0) = 0, while h(x) begins with a greater slope h′(0) = w

528 .

All of the examples so far have dealt with purely abstract concepts to conceptualize feathered
beams. These concepts will now be applied to a real performance. Time points from a sound wave
of the Night Music I, “Notturno I” excerpt as performed by Speculum Musicae are given below
[3]. (N.b., the time points are measured from the highest relative amplitude for each note to 3
significant digits.) The time index begins at 0 seconds, and the times of the grace note and 10
notes in the feathered beam are

g.n. = 0.510s n3 = 1.020s n7 = 1.785s
n0 = 0.544s n4 = 1.195s n8 = 2.071s
n1 = 0.677s n5 = 1.374s n9 = 2.398s
n2 = 0.837s n6 = 1.552s.

Since the feathered beam begins with a thirty-second note, the duration of a thirty-second note
in seconds can be calculated from the recording by subtracting n0 from n1 (0.677s− 0.544s = 0.133s).
Furthermore, the tempo is senza misura, quasi improvisando ( ˇ “ = ca.40, but very free). At ˇ “ = 40, a
thirty-second note is 0.1875s, which differs significantly from the n1 − n0 calculation. Admittedly
problematic, discrepancies such as this one will be discussed later in this paper. For now we
will consider a thirty-second note to be 0.133s, in order to purely demonstrate the application of
splines to feathered beams. With a thirty-second note corresponding to 0.133s, the notes under the
feathered beam have the following durations (in whole-note units to 5 significant digits):

〈 (
n0,

w
32

)
, (n1, 0.03759w), (n2, 0.043w), (n3, 0.04112w), (n4, 0.04206w),

(n5, 0.04182w), (n6, 0.05475w), (n7, 0.0672w), (n8, 0.07683w))

〉
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The duration of the final note n9 is not shown in the series of durations because there is no
immediate onset after it for which to calculate its duration. Furthermore, n9 has resonance slurs
indicating that it is to be sustained. With the 9 coordinates, the spline j(x) is solved as 3

j(x) =



0.03125w + 0.00599wx + 0.00035wx3 x < 1
0.03054w + 0.00705wx + 0.00106w(x − 1)2 − 0.00269w(x − 1)3 1 < x < 2
0.04084w + 0.00108wx − 0.00702w(x − 2)2 + 0.00406w(x − 2)3 2 < x < 3
0.04346w − 0.00078wx + 0.00516w(x − 3)2 − 0.00344w(x − 3)3 3 < x < 4
0.04516w − 0.00078wx − 0.00515w(x − 4)2 + 0.00569w(x − 4)3 4 < x < 5
0.01189w + 0.00599wx + 0.01192w(x − 5)2 − 0.00497w(x − 5)3 5 < x < 6
−0.03467w + 0.0149wx − 0.003w(x − 6)2 + 0.00054w(x − 6)3 6 < x < 7
−0.00658w + 0.01054wx − 0.00137w(x − 7)2 + 0.00046w(x − 7)3 7 < x

and corresponds to the graph (Figure 15):

Figure 15: Duration graph of Night Music I, “Notturno I”,rehearsal 5 as performed by Speculum Musicae.

The notes n3 and n5 are shorter than the notes that immediately precede them. Furthermore,
with the duration of a thirty-second note being calculated by the time difference between n0 and
n1(i.e., n1 − n0 = 0.133s = w/32),the corresponding eighth note at n9 would be significantly longer
than n8 according to the graph, contradicting what the feathered beam suggests.

The linear f (x), quadratic g(x), and spline j(x) are three of many possible representations
of the example from Night Music I, “Notturno I”. The purpose of these three equations given in
this paper is to demonstrate some technical aspects behind the feathered-beam technique. In the
linear and quadratic representations, the note n9 was assigned the duration of an eighth note
even though its resonance slurs indicate that it is to be sustained. In the recording, n9 was not
measured because there is no event immediately following for which to calculate its duration.
These seemingly arbitrary decisions were made to best compare different representations of the
feathered beam excerpt. As one scours the repertoire for examples well suited to the analysis

3I would like to thank Michael Wester for his assistance in calculating the splines. It is not necessary to have full
understanding of splines in order to grasp their relevance to this paper, but the reader may find further details about them
in [4].
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techniques demonstrated above, it is difficult to find feathered beams that do not require some
arbitrary adjustment. The feathered beam from “Notturno I” is taken out of context to demonstrate
technical aspects of feathered beams (as discussed in the previous few paragraphs) because the
greater musical context introduces many more variables. Several questions remain to be pursued,
especially about the complex ramifications for perception and performance.

The deviation from an exact representation of a feathered beam to a real performance, such as
the one by Speculum Musicae, are known as “expressive microstructure.” Deviations may not even
be perceptible if they are not very severe. Under controlled circumstances with regularly repeating
rhythms, deviations need to be at least 10 msec before they are perceptible, but deviations this
small may not even be perceptible in a feathered beam because of the irregularity of the rhythm.
It is difficult (or impossible) to generalize these deviations because, according to Bruno Repp, “the
expressive microstructure of a musical performance reflects general, composer-specific, performer-
specific, and piece-specific factors.” In addition, “actual performances are likely to contain ‘noise’
in the form of random and planned deviations. . . , as one should expect from a human performer.”
“Musicians are usually only dimly aware of these variations, which they control intuitively rather
than deliberately. Similarly, listeners perceive the structure and expression conveyed by these
variations without being aware of the microstructure as such.”[11, p. 222]

A feathered beam would likely be heard as a single expressive unit. The performance timing
pattern of a feathered beam gesture probably needs to be compatible with the larger temporal
organization [11, p. 225], which further complicates the interpretive restrictions placed upon it.
According to Repp, the interpretation of expressive timing in general is due to cognitive analysis
and mental representation of musical structure, and to feeling and expressive characterization,
so to fully understand a feathered beam would require it to be considered within its context and
not just as an isolated rhythm. In the greater context, tempo significantly affects the execution
and perception of timing of rhythms [15, p. 389], especially when they comprise more than two
interval durations [14, p. 590], such as with feathered beams. Much of the work that has gone into
understanding how we execute and perceive rhythms has been done on interval durations based
on simple ratios,[17, p. 63] but not much is known about how this happens with rhythms that rely
on gradual changes of duration. Generalizations are hard to make even with simple traditional
rhythms because, according to Bruno Repp, Justin London, and Peter Keller, “simple interval
structure of rhythms seems to have an influence on the nature and degree of ratio distortion, and
there are considerable individual differences as well.” [17, p. 74] In regards to research on rhythm
that has already been performed, the same authors point out that “It remains to be seen whether
this result will hold up for sequences that have more complex (nonmetrical) interval ratios.” The
way in which we hear feathered beams is intrinsically complicated, and little research has been
done to understand it. There cannot be a universal way to hear them because, according to Bruno
Repp, John Iversen, and Aniruddh Patel, there is no universal way to hear rhythm in general:

Although it is not uncommon to find that different listeners (or even the same listeners
at different times) arrive at different metrical interpretations of the same rhythm, for
any given listener at any given time his or her interpretation is considered to constitute
a single, momentarily optimal solution to the informational jigsaw puzzle, with other
possible solutions being discarded along the way or never even being considered. [19]

The anomalies in the splines example above may be perceptually insignificant, and the human
element must certainly factor in, but there must be a point at which discrepancies in general
can be considered errors. Another recording of this same passage or an investigation of other
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feathered beams in the same recording would likely produce drastically different results, and
further study of more passages might reveal further conclusions. In general, much more work
remains to be done to fully understand these implications. Feathered beams are notation given
by a composer, which are to be interpreted by a performer, and then heard by a listener and
interpreted based on that hearing. In light of this observation, several questions come to mind.
When a composer writes a feathered beam, how exact are they being with respect to the sound
that they are hearing or wants to occur? When a performer reads a feathered beam, how exact
are they being according to what the composer wants, and what the performer is trying to do?
How consistent is the performer across performances? And when listeners hear feathered beams
performed, how sensitive are they to variations in them?4 For some composers, the preciseness of a
feathered beam is irrelevant because they may merely mean from something fast to something slow.

The most notable discrepancy between the above linear, quadratic, and spline representations
is their total durations. Although there are complications with exact comparison (e.g., how to
handle n9), the durations of f (x), g(x), and j(x) from n0 to n8 as given in this paper are

f (0) + f (1) + · · ·+ f (8) =
21w
32

= 0.65625w

g(0) + g(1) + · · ·+ g(8) =
191w
352

= 0.5426136w

j(0) + j(1) + · · ·+ j(8) =
27, 781w
50, 000

= 0.43562w

The differences between the full durations show that problems arise when fitting a feathered
beam group within a specific duration of metered music. This dilemma will be tackled in the next
section of this paper.

5. The Full Duration of Feathered Beams

There exist feathered beams that exactly fit within a specific number of beats in commonly used
meters. For example, consider a feathered beam group with 16 notes that linearly transitions from
an eighth to a thirty-second note.

f (x) =
w

160
+

w
8

f (0) + f (1) + · · ·+ f (15) =
5w
4

The sum of all 16 notes from n0 to n15 is equal to 5 quarter notes. Feathered beams that work out
this nicely are uncommon. When clarification for the full duration of a feather beam is needed,
particularly in a metered context, Kurt Stone recommends placing a horizontal bracket over the
feathered beam with a notehead indicating the full duration ([20, p. 124]). This section of the paper
primarily focuses on the discrepancy between the sum of the note durations and the specified

4I would like to thank David Bashwiner for helping me arrive at these questions.
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metered duration they span. Linear representations of the feathered beams are given in all cases,
although the results can be duplicated for quadratic, spline, or some other representation of
them. The conclusions drawn rely on the general concepts of feathered beams rather than exact
calculations, so similar results can be duplicated with representations other than the linear case.

The following excerpt from the 1963 version of Night Music I, "Notturno V" has two feathered
beams; each has 5 notes that gradually transition from a thirty-second to eighth note in the
duration of 1 metered quarter note (Figure 16).

Figure 16: Night Music I, “Notturno V”, mm.13–15

The 5 notes are indexed n0 to n4. Subtracting the first (0,
w
32

) and last (4,
w
82

) notes from the total
duration equals

w
4
− (

w
8
+

w
32

) =
3w
32

The feathered beam suggests that the remaining 3 notes between n0 and n4 are longer than a

thirty-second note and shorter than an eighth note (
w
32

< n1, n2, n3 <
w
8
); however, the allotted

space they have is not long enough f (n1) + f (n2) + f (n3) >
3w
32

). Given the slope

3w
32
4

=
3w
128

,

the linear equation that corresponds to the feathered beam is

f (x) =
3w
128

x +
w
32

and fits in the duration of

f (0) + f (1) + · · ·+ f (4) =
25w
64
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The total duration
25w
64

is
9w
64

longer than the
w
4

space allotted. Therefore, the notes must be
shortened, and there are many ways this can be done. Three ways are given below that act
uniformly on the linearity.

g(x): n0 remains w
32 in duration, and the following 4 notes are shortened proportionally to decrease the

slope.

h(x): n4 remains w
8 in duration, and the preceding 4 notes are shortened proportionally to increase the

slope.

j(x): All 5 notes are shortened by the same amount, and the slope remains unchanged.

The linear equations for g(x), h(x), and j(x) are

g(x) =
3w
320

x +
w
32

h(x) =
3w
80

x − w
40

j(x) =
3w
128

x +
w

320
.

If desired, the reader may verify these equations by substituting any known values for n0, n4, or a
into the sum of the linear equation (ax + b) from x = 0 · · · 4.

w
4
= (0a + b) + (1a + b) + · · ·+ (4a + b)

n0 = 0a + b = b
n4 = 4a + b

a =
n4 − n0

4

The total durations of all three linear representations equals w
4 (this does not take into account

that a performer may make the feathered beam longer than a quarter note).

g(0) + g(1) + · · ·+ g(4) =
w
4

h(0) + h(1) + · · ·+ h(4) =
w
4

j(0) + j(1) + · · ·+ j(4) =
w
4

f (x), g(x), h(x), and j(x) are plotted on the graph in Figure 17:
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Figure 17: Fitting the feathered beam into w/4 by leaving the first note unchanged (g(x)), the last note unchanged
(h(x)), and the slope unchanged (j(x)).

When n0 remains unchanged as in g(x), n4 is nearly a sixteenth note, which contradicts the
eighth note in the score. When n4 remains unchanged as in h(x), w

4 is not long enough for
the remaining notes to fit linearly, thus n0 has a negative duration. Each note in a traditional
tuplet is compressed by the same amount, so shortening each note in the feathered beam by
the same amount seems like the intuitive choice, as in j(x) but, with this choice, n0 is nearly
a two-hundred-fifty-sixth note, which is extremely fast at the tempo. Of the three lines whose
durations sum to w

4 , only g(x) is performable, but it does not represent the final note duration in
the feathered beam. A performance of this feathered beam would require something different
than what is notated, indicating the subjectivity necessary to execute the rhythm. In the method
that follows, this subjectivity is examined more definitively in several feathered-beam examples.

All of the feathered beams that follow are encapsulated within 4
1

measures. For the first
scenario, consider a feathered beam with only two notes.

[H] n0 + n1 =
3w
16

<
w
4

There are no intervening notes to make the change in duration from the first to last notes gradual,
thus it does not suffice for a feathered beam. If it is taken as a feathered beam, however, its
duration needs to be increased to fill out the measure. Lengthening only the first note gives the
rhythm:

−œ œ œ œ œ ιœ Œ3 ∑ ∑

Lengthening only the last notes gives the rhythm:

84

http://www.musmat.org/


Journal MusMat • December 2021 • Vol. V, No. 2

−œ œ œ œ œ ιœ Œ3 ∑ ∑

And lengthening both notes by the same amount gives the rhythm:

−œ œ œ œ œ ιœ Œ3 ∑ ∑
Thus, the feathered beam notation is superfluous in this case. The following table shows 8 more
feathered-beam scenarios labeled a–h that in their literal linear interpretations most approximate
the duration w

4 .

a) n0 + ... + n2 = 9w
32 >

w
4

e) n0 + ... + n3 = 3w
16 <

w
4

b) n0 + ... + n2 = 15w
64 <

w
4

f) n0 + ... + n4 = 15w
64 <

w
4

c) n0 + ... + n3 = 5w
16 >

w
4

g) n0 + ... + n5 = 9w
32 >

w
4

d) n0 + ... + n4 = 25w
64 >

w
4

h) n0 + ... + n6 = 21w
64 >

w
4

With 1 intervening note between the eighth and sixteenth notes, such as in scenario a, the
total duration of the measure is exceeded by w

32 and the notes must be shortened to fit within
the measure. Similarly in the other scenarios, the durations of the feathered beams are shorter
or longer than the w

4 duration allotted. Scenarios b, c, and d transition from the durations of an
eighth to a thirty-second over 3, 4, and 5 notes respectively. Scenario b is shorter than w

4 by w
64 , and

scenarios c and d are longer than w
4 by w

16 and 9w
16 respectively. Scenarios e, f, g, and h transition from

the durations of a sixteenth to a thirty-second over 3, 4, 5, and 6 notes respectively. Scenarios e and
f are shorter than w

4 by 3w
16 and 15w

64 respectively, and scenarios g and h are longer than w
4 by 9w

32 and
21w
64 respectively.

For the eighth/thirty-second note feathered beams, scenarios b and c straddle the w
4 duration,

and for the sixteenth/thirty-second note feathered beams, scenarios f and g straddle the w
4 duration.

The other scenarios differ from w
4 by a greater amount. Scenarios b and c are as close to w

4 as the
eighth/thirty-second note feathered beams can be, while scenarios f and g are as close to w

4 the
sixteenth/thirty-second note feathered beams can be. Figures 18, 19, 20, and 21 shows, respectively,
the graphs of scenarios e, f, g, and h for f (x). The other lines modify the note durations in f (x) so

that the feathered beams precisely fit within the 4
1

measures: g(x) leaves the first note unchanged,
h(x) leaves the last note unchanged, and j(x) leaves the slope unchanged. (In each graph, f (x) is
bolder than the other lines.)
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Scenario e Scenario f Scenario g Scenario h

f (x) = − w
96

x +
w
16

f (x) = − w
128

x +
w
16

f (x) = − w
160

x +
w
16

f (x) = − w
192

x +
w
16

g(x) = 0x +
w
16

g(x) = − w
160

x +
w
16

g(x) = − w
120

x +
w
16

g(x) = − w
112

x +
w
16

h(x) = − w
48

x +
3w
32

h(x) = − 3w
320

x +
11w
160

h(x) = − w
240

x +
5w
96

h(x) = − w
672

x +
9w
224

j(x) = − w
96

x +
5w
64

j(x) = − w
128

x +
21w
320

j(x) = − w
160

x +
11w
192

j(x) = − w
192

x +
23w
448

Figure 18: Duration graph of scenario e.

Figure 19: Duration graph of scenario f.
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Figure 20: Duration graph of scenario g

Figure 21: Duration graph of scenario h.

In scenarios e and f, the feathered beams are shorter than w
4 , so g(x), h(x), and j(x) are above

f (x). In scenarios g and h, the feathered beams are longer than w
4 , so g(x), h(x), and j(x) are below

f (x). Of these 4 situations, scenario f is the closest in duration to w
4 , so its notes need to be altered

less than the other scenarios to fit within the measure. As the difference between the total duration
of the feathered beam and w

4 grows, the notes need more alteration to fit within the measure. This
can visually be seen in the graphs: g(x), h(x), and j(x) move further from f (x) as the difference
increases. It is obvious that a greater discrepancy requires a greater modification. However, the
graphs clearly provide specific information about—as well as a general visual representation
of—the amount of compression or expansion involved in the performance modification.

6. Feathered Beams Generalized

Although the notation is imprecise, the full duration of a feathered beam can give a general idea
about its precision. Of the numerous ways they can be interpreted, the general linear case is
examined in this section of the paper because it is the simplest and most straight forward case.
Although similar results can be duplicated with other representations of feathered beams, the
linear case is taken here as mathematically representative.
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Given the number of notes in the feathered beam group and the durations of the first and last
notes, the equation for the full duration of all linear feathered beams is derived as follows.With
the linear equation f (x) = ax + b, the full duration of the feathered beam is the sum of all the
individual note durations

f (n0) + f (n1) + · · ·+ f (ni),

which expands to

(0a + b) + (1a + b) + · · ·+ (ia + b),

and corresponds to the summation

i

∑
x=0

ax + b =
i(i + 1)a

2
+ (i + 1)b. (2)

The number of notes in the feathered beam is (i + 1). So that they are eighth notes or shorter, the
first and last notes are in the form 1

2p for p > 2, and they are

f (n0) = 0a + b = b

f (ni) = ia + b

f (n0) ̸= f (ni).

Let the last note equal c so that the slope a is

a =
c − b

i
.

Substituting a into the summation gives

[H]
i(i + 1)(c − b)

2i
+ (i + 1)b.

Given the durations of the first and last notes (b and c respectively) and the number of notes in
the feathered beam (i + 1), the equation can be expressed as a function of b, c, and i:

[h] f (b, c, i) =
i(i + 1)(c − b)

2i
+ (i + 1)b,

which gives the full duration of linear feathered beams for all cases. In the above function,
substituting values for the first note duration, last note duration, and number of notes in the
feathered beam (b, c, and i respectively) simply gives the full linear duration. In application, for
example, the full duration of the “Notturno V” excerpt earlier in this paper is

[H] f
(

w
32

,
w
8

, 4
)
=

4(4 + 1)
(

w
8
− w

32

)
2 · 4

+ (4 + 1)
w
32

=
25w
64

The reader may choose to derive the full length of the quadratic feathered beam. It is given as
follows, assuming a third symmetrical coordinate.
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[H] f (b, c, i) = − b(i + 1)3

3i2
+

b(i + 1)2

2i2
− b(i + 1)

6i2
+ b(i + 1)

The citations earlier in this paper suggest that the quadratic representation may be most
useful because it most naturally reflects the human ritardando or accelerando. The general
case is useful because it calculates the full duration, which can be compared to the allotted
space in the score. Furthermore, the Java executable jar that can be accessed in the link https:
//musmat.org/wp-content/uploads/2021/12/FeatheredBeamCalculator.zip also quickly pro-
vides the full duration, in addition to providing other valuable information. When the difference
between the full duration and the allotted space in the score is relatively small, the rhythm can be
executed similarly to what the feathered beam suggests. The greater the difference, the less the
notation reflects what can actually be played. Composers may find this information useful when
implementing feathered beams.

7. Conclusion

As musicians, we are trained to precisely execute traditional triplets. Tuplets with more com-
plicated ratios are usually more difficult to execute. Although the one in the measure below
may be harder to negotiate than a traditional triplet, its rhythm exactly corresponds to the notation.

In tuplets, the usual circumstance is to compress all the notes according to exact ratios rather
than augmenting them. To make the execution of feathered beams possible, there seems to be no
preference for compressing the notes over augmenting them, and that individual circumstances
dictate the choice. Bruno Repp found that in expressive microstructure variability in traditional
rhythms, “lengthening is a common strategy, but accelerations beyond a maximal local tempo
serve no expressive purpose and suggest poor timing control,”[12, p. 288] which implies that
whether a feathered beam is compressed or augmented may have profound implications on how
it is executed and perceived. The scenarios a through h earlier in this paper show a few ways the
notes within feathered beams can be compressed or augmented to fit them within a prescribed
duration of music. Furthermore, the examples show that some methods will not work in all
circumstances, such as g(x) in scenario e where there is no change in duration at all and h(x) in the
“Notturno V” exaLmple where there is a negative duration. Feathered beams in nearly all cases
require some modification. The circumstances vary, and there is usually no single way in which
they can be executed.The possibilities are bountiful, which is perhaps why Kurt Stone writes,
“Besides, the gradual increase or decrease in the number of beams makes exact indications of beat
units impossible.”[20, p. 124] Even though the notation gives precise durations for the first and
last notes in feathered beams, their execution is imprecise.
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Abstract: In audio signal processing there are several tools employed to perform time-frequency analysis,
being the spectrogram one of the most widely used. In a nutshell, it can be understood as a visual
representation of the frequency content of an audio signal as it varies with time. Here we propose a
probabilistic alternative to the spectrogram, which can be roughly interpreted as the most likely frequency
to be present within an audio signal, also along time. This will be achieved by computing a specific
posterior distribution in a Bayesian context. Preliminary experiments indicating the suitability of this
object are presented, and potential applications to audio signal processing are outlined.

Keywords: Audio Signal Processing. Statistical Signal Processing. Bayesian Inference. Fourier Analysis.
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I. Introduction

The main goal of this short note is to provide an answer to the following question: "how
likely is some particular frequency to be present in some audio signal, regardless of its
amplitude and phase, and the variance of any existing superimposed noise?". In fact, the

answer here is not new, being firstly proposed in [2] for more general discrete-time signals. The
novelty in this paper is the application of this general framework to audio signals, allowing
then for probabilistic counterparts of well-known objects in audio signal processing, such as the
spectrogram and the chromagram, and opening new possibilities to time-frequency related tasks,
such as fundamental frequency estimation [6]. The paper is organized as follows: Section II
introduces some basic notation to be used throughout the exposition, recalls the theory proposed
in [2, Chap. 2] with more explained details in the analytical computations, and also extends the
discussion on interpretations and suitability of the obtained quantities; in Section III, based on
the previous discussions, we propose the probabilistic spectrogram and qualitatevely compares it
with its classical counterpart; and finally, in Section IV we draw some conclusions and point out
future works in this direction.
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II. Bayesian spectrum estimation

Recall the formerly presented question: "how likely is some particular frequency to be present
in the signal x(t), regardless of its amplitude and phase, and the variance of any existing
superimposed noise?". In this Section, we follow the discussion proposed on [2, Chap. 2], with
more detail on some analytical computations and interpretations. It is important to remark
that the exposed answer is not at its greatest generality, which can be found on [2, Chap. 3];
but we choose to maintain a simpler discussion for the sake of clarity. Moreover, preliminary
computational experiments demonstrated only a negligible improvement by applying the more
general framework.

i. The model

Let x[n], for n = 1, . . . , N, be a digital audio signal, derived from an analogical audio signal,
denoted by x(t), via uniform sampling with known frequency fs, usually 44,100 Hz for an audio
signal with the typical CD quality. More specifically, x[n] is the n-th time sample of x(t) and is
given by x(n/ fs). For answering the question in the beginning of Section II, we will assume the
following model for x(t):

x(t) = f (t) + ε(t), (1)

where f (t) = B1 cos(2πωt) + B2 sin(2πωt), ε(t) ∼ N (0, σ2) are observations of independent
white noise, and ω > 0 is measured in Hz.

Notice that f (t), the systematic part of the signal x(t), is equivalent to the more intuitive
function B cos(2π(ωt + ϕ)), for adequate choices of B and ϕ. However, we will keep the former
choice, since the latter will imply in more complicated computations. Still, two points are still
unclear: 1) why only to use a single frequency to model the signal, since a musical signal will
be much more complex than a simple sinusoid? and 2) why is the hypothesis of Gaussian white
noise reasonable?

Essentially, we are looking for a compromise between simplicity and accuracy of our modeling.
If we try to superimpose more and more frequencies in function f (t), we will be approaching
a perfect representation of the musical signal x(t) by means of the Fourier Transform; and if
we try to perfectly model how the observed signal x(t) deviates from a single frequency and
then incorporate it in the noise ε(t), it will become extremely complex and thus intractable. The
gaussianity of ε(t) still could be questioned, but we justify it intuitively via the Maximum Entropy
Principle [5]: the additive noise comprises several distinct deviations of the observed signal x(t)
from the model f (t), therefore, the "most non-informative" probability distribution with finite
mean and variance and supported in R is the Gaussian distribution. Moreover, it is still possible to
argue that our goal is not to achieve a perfect substitute for the observed signal x(t) by means of
the model f (t), but to answer probabilistic questions about the presence of a particular frequency
on the observed signal x(t).

ii. Formulating the problem

Given the remarks at the end of the last section, we may proceed with a few steps of the inference
procedure. After the time sampling procedure, we have a sequence of observations given by

x[n] = f [n] + ε[n], for 1 ≤ n ≤ N, (2)
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where f [n] = f (n/ fs), and the ε[n] ∼ N (0, σ2) are independent. This hypothesis of white
Gaussian noise implies the following distribution for the random vector ε = [ε[1], . . . , ε[N]]T :

p(ε|σ) =
N

∏
n=1

1√
2πσ2

exp
{
− ε[n]2

2σ2

}
∝ σ−N exp

{
− 1

2σ2

N

∑
n=1

ε[n]2
}

. (3)

Note that ε[n] = x[n] − f [n], for n = 1, . . . , N, is a change of variables from vector ε to
x = [x[1], . . . , x[n]]T with unitary Jacobian, that leads to the following distribution for x:

p(x|B1, B2, ω, σ) ∝ σ−N exp

{
− 1

2σ2

N

∑
n=1

(x[n]− f [n])2

}

= σ−N exp

{
− 1

2σ2

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2

}
.

(4)

When considered as a function of {B1, B2, ω, σ}, the expression in Equation 4 is called the likelihood
and it quantifies the probability of observing the signal x if the parameters are given by some
particular value of {B1, B2, ω, σ}. Maximizing this function in variables {B1, B2, ω, σ} leads to the
maximum likelihood estimator (MLE), interpreted as as the values of {B1, B2, ω, σ} for which the
observed data x is the most probable.

But notice that this estimate has a severe problem: it does not answer our question! In order to
convince ourselves, let us compare the question with the interpretation given above:

• QUESTION: "How likely is some particular frequency (ω) to be present in the signal x(t),
regardless of its amplitude and phase (both encoded in B1 and B2), and the variance of any
existing superimposed noise (σ2)?"

• INTERPRETATION OF THE MLE: "The values of B1, B2 (encoding amplitude and phase),
ω (frequency), σ (standard deviation – square root of the variance – of the superimposed
noise) for which the observed data x is the most probable."

Notice that in the interpretation of the MLE the probability is with respect to x, where in the
question it should be considered over the frequency ω. Moreover, the question is only about the
frequency disregarding all the other parameters, but the interpretation considers all of them in the
optimization process. The key to address these issues is Bayesian inference, which will be briefly
discussed in the next subsection, in a more general context.

iii. Interlude – A glimpse of Bayesian inference

Essentially, Bayesian inference is a method of statistical inference where the information contained
in observed data can be used to update the knowledge about parameters of interest. More precisely,
let Z be a random variable which probability function of probability density function is denoted
by p(z|θ), where θ ∈ Rk is a vector of parameters. We observe z = [z1, . . . , zN ]

T independent
samples from Z and we want to estimate vector θ from this data. The likelihood function is given
by

L(θ) = p(z|θ) =
N

∏
n=1

p(zn|θ), (5)

and quantify the probability of observing data z if the parameter vector is θ. Maximizing this
function with respect to θ will lead to its maximum likelihood estimation, which can be interpreted
as the value of θ for which the observed data is the most probable.
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If we have prior information about θ, encoded in the so-called prior distribution p(θ), we can
use Bayes theorem and obtain the posterior distribution for the parameters:

p(θ|z) = L(θ)p(θ)
p(z)

∝ L(θ)p(θ), (6)

since p(z) is a normalization term which in our application can be ignored. Therefore, maximizing
the posterior distribution will lead to the maximum a posteriori (MAP) estimate for θ, representing
the most probable parameters for the corresponding set of observation, a much easily interpretable
quantity.

For more details on statistical and Bayesian inference, we refer the reader to [3, 4], respectively.

iv. The (Bayesian) inference procedure

By employing the Bayes’ theorem, we are able to invert the conditional probability p(x|B1, B2, ω, σ)
and obtain

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ). (7)

The new term p(B1, B2, ω, σ) can encode previous knowledge about these variables, but we will
adopt a conservative approach and use non-informative priors, that is, prior distributions that
describe the most vague knowledge about them. For the parameters that can assume any real
value (in this case B1, B2, ω)1, we consider an improper prior distribution p(B1, B2, ω) ∝ 1, and
for the scale parameter σ, which must be strictly positive, we impose the Jeffreys prior, given by
p(σ) ∝ 1/σ. By assuming prior independence between B1, B2, ω, σ, we have that

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ)

∝ σ−(N+1) exp

{
− 1

2σ2

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2

}
.

(8)

Firstly, let us expand the summation of squares inside the exponential to obtain:

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2 =

=
N

∑
n=1

x[n]2 − 2B1

N

∑
n=1

x[n] cos(2πωn/ fs)− 2B2

N

∑
n=1

x[n] sin(2πωn/ fs)

+ B2
1

N

∑
n=1

cos2(2πωn/ fs) + B2
2

N

∑
n=1

sin2(2πωn/ fs)

+ 2B1B2

N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs).

(9)

Equation 9 can be simplified (exactly, without approximations) by using trigonometric identities,
but this leads to tedious computations to prove such identities, or to evocations of some aspects
from Linear Algebra ([2, Chap. 3] presents a discussion on this direction). We will not follow
this path here and opt to employ some approximations, since we want to keep this discussion
simple and easy to follow. Moreover, preliminary computational tests indicate that the gain in the

1In the beginning of Section II we constrained ω to be strictly positive for obvious physical reasons, but regarding the
periodicity of trigonometric functions negative values of ω will also be allowed, from the mathematical viewpoint, to
simplify the computations.
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accuracy of the frequency estimation with the exact procedure is mostly negligible. In the light of
these aspects we choose to approximate some of the terms in Equation 9 as follows:

• The term
N

∑
n=1

x[n]2 is constant (as a function of {B1, B2, ω, σ}), and it will be denoted as Nx2,

where x2 =
1
N

N

∑
n=1

x[n]2.

• Both terms
N

∑
n=1

x[n] cos(2πωn/ fs) and
N

∑
n=1

x[n] sin(2πωn/ fs) are related to the real and

imaginary parts of the Discrete Fourier Transform, and will be denoted, respectively, by
R(ω) and I(ω).

• Both expressions
N

∑
n=1

cos2(2πωn/ fs) and
N

∑
n=1

sin2(2πωn/ fs) can be rewritten by using the

simple trigonometric identities2 sin2(α) =
1− cos(2α)

2
and cos2(α) =

1 + cos(2α)

2
to obtain:

N

∑
n=1

cos2(2πωn/ fs) =
N
2
+

1
2

N

∑
n=1

cos(4πωn/ fs), (10)

N

∑
n=1

sin2(2πωn/ fs) =
N
2
− 1

2

N

∑
n=1

cos(4πωn/ fs). (11)

Analogously, the term
N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs) can be rewritten, using the formula

for the sine of a sum of angles, to obtain:

N

∑
n=1

cos(2πωn/ fs) sin(2πωn/ fs) =
1
2

N

∑
n=1

sin(4πωn/ fs). (12)

In [2, p. 17] it is claimed that these three trigonometric sums can be neglected, when
compared to N/2, the dominant term appearing in the last two lines of Equation 9, assuming
that the rather vague conditions N � 1 and ωN/ fs � 1 are valid. Indeed, computational
tests verified that for the human hearing frequency range (about 20 Hz to 20,000 Hz), the
usual sampling rate of a CD-quality audio signal ( fs = 44,100 Hz) and the window length
here employed (N = 4,096 – see Sec. III for more details), these neglected terms are two to
three orders of magnitude smaller than N/2, validating the claims above in our context.

Given the discussion above, we can rewrite Equation 9 as3:

N

∑
n=1
{x[n]− [B1 cos(2πωn/ fs) + B2 sin(2πωn/ fs)]}2 =

= Nx2 − 2B1R(ω)− 2B2 I(ω) + B2
1

N
2
+ B2

2
N
2

= N
[

x2 − 2
N
[B1R(ω) + B2 I(ω)] +

1
2
(B2

1 + B2
2)

]
.

(13)

2Both these identities follow from the formulas for the sine and cosine of a sum of angles and from the fundamental
trigonometric relation sin2(α) + cos2(α) = 1.

3The first symbol "=" is not accurate in Equation 13, being the "≈" preferable. However, we will go ahead with the
slight abuse of notation, in order to simplify the notation.
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By substituting Equation 13 in Equation 8, we have that:

p(B1, B2, ω, σ|x) ∝ p(x|B1, B2, ω, σ)p(B1, B2, ω, σ)

∝ σ−(N+1) exp
{
− N

2σ2

[
x2 − 2

N
[B1R(ω) + B2 I(ω)] +

1
2
(B2

1 + B2
2)

]}
.

(14)

v. Marginalization of nuisance parameters

Now, with the simplified expression for the posterior distribution, given in Equation 14, we are
able to marginalize the undesired parameters and obtain only p(ω|x), given by

p(ω|x) ∝
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
p(B1, B2, ω, σ|x) dB1dB2dσ. (15)

To perform the integrals in B1 and B2 (and then obtaining p(ω, σ|x)) we must resort to the
following Lemma:

Lemma 1. Let a ∈ R, b ∈ Rm, and C ∈ Rm×m be numerical, vectorial, and matricial constants,
respectively. Assume also that matrix C is invertible. Then, the following equality holds:∫

Rm
exp

{
−1

2
(a + bTy + yTCy)

}
dy =

(2π)m/2

|det(C)|1/2 exp
{
−1

2

[
a− bTC−1b

4

]}
. (16)

The proof of this lemma, although simple, is quite tedious, since it involves completing the
squares in the argument of the left exponential, identifying the kernel of a multivariate normal
distribution, and rearranging the terms to obtain the desired result. Here we simply employ it
and refer the interested reader to [1] for the proof.

As can be verified by a simple computation, by defining a =
Nx2

σ2 , b = − 2
σ2

[
R(ω)
I(ω)

]
and

C =

[
N/2σ2 0

0 N/2σ2

]
, and substituting these values in the left-hand side of Equation 16 we

recover exactly Equation 14. Therefore, by the direct application of Lemma 1, we have that

p(ω, σ|x) ∝ σ−(N−1) exp
{
− N

2σ2

[
x2 − 2

N
C(ω)

]}
, (17)

where C(ω) is defined as [R(ω)2 + I(ω)2]/N. This quantity is called the periodogram in [2, p. 7],
and is a natural appearance in this probabilistic context of the squared-magnitude of the Discrete
Fourier Transform.

Finally, in order to integrate Equation 17 with respect to σ, we can make a change of variables
and use the kernel of an Inverse-Gamma distribution, a more classical approach – perhaps the
one employed by Bretthorst in the computations omitted in [2, pp. 18–20]. To avoid extensive
computations, we refer to the more recent work [7], where the Inverse-Nakagami distribution is
proposed, which probability density function, in the variable σ > 0, is given by

2
Γ(λ)

(
λ

ξ

)λ

σ−2λ−1 exp
(
− λ

ξσ2

)
, (18)

being λ and ξ strictly positive real parameters. By using the fact that every probability density
function must integrate 1 over its support, we can use the normalizing constant of this distribution
to obtain the result ∫ +∞

0
σ−2λ−1 exp

(
− λ

ξσ2

)
dσ =

Γ(λ)
2

(
ξ

λ

)λ

. (19)
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By comparing the term being integrated in Equation 19 with the joint density of {ω, σ} in Equation
17, we obtain that the suitable values of λ and ξ are given by

λ =
N − 2

2
, (20)

ξ =
N − 2

2

[
x2 − 2

N
C(ω)

]−1
. (21)

Therefore, by using the result of Equation 19 and discarding the multiplicative terms that does not
depend on ω, we have that that

p(ω|x) ∝
[

1− 2C(ω)

Nx2

] 2−N
2

, (22)

an expression for the distribution we are looking for.
Preliminary computational experiments indicated that trying to compute directly this quantity

may cause a numerical overflow. Therefore, we opt to compute its logarithm4, given by

log10 p(ω|x) = 2− N
2

log10

[
1− 2C(ω)

Nx2

]
+ constant terms, (23)

where the constant terms are the logarithm of the multiplicative constants unconsidered along the
computations. Recall that considering a strictly positive function or its logarithm is equivalent for
finding its local maxima, because the logarithm is a strictly crescent function.

We now present an application of this distribution to audio signal processing.

III. The probabilistic spectrogram

The spectrogram is a fundamental tool in time-frequency analysis of audio signals, and it can be
interpreted as the frequency content of an audio signal along time. In order to understand it more
precisely, recall that [8, Sec. 2.5] defines the Short-Time Fourier Transform as

Y [m, k] =
N−1

∑
n=0

y[n + mH]w[n]e−2πikn/N , (24)

for m ∈ Z5 and k = 0, . . . , bN/2c. The quantity H is the hop size, and it is related to the overlap
between two consecutive windows; a common value to adopt is H = bN/2c, indicating 50% of
overlap.

Essentially, Equation 24 computes the Discrete Fourier Transform of the signal

xm[n] = y[n + mH]w[n], for n = 0, . . . , N − 1, (25)

that is, an excerpt of length N from an audio signal y, properly smoothed on the edges by some
window function w, with support of size N. The spectrogram is then defined as the squared-
magnitude of each value of the Short-Time Fourier Transform, that is, |Y [m, k]|2. For more details
on the spectrogram and on the choice of windowing functions, see [8, Sec. 2.5].

4The base of the logarithm is of minor importance here, but we will adopt 10, since it is the standard base used to
transform magnitude to dB, an usual unit in Signal Processing.

5Note that m is in practice restricted to a finite set {0, . . . , M} such that these successive hops of size H cover the entire
signal y. Since this specific range will not be directly used here, we avoided its explicit introduction, for the sake of clarity.
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Since the probability density function on Equation 22 is related to the presence of frequencies
ω in signal x, instead of computing the Discrete Fourier Transform of the windowed signal xm,
we can compute the probability distribution p(ω|xm), for each m ∈ Z. The collection of all these
probability distributions for m ∈ Z is called the probabilistic spectrogram of the signal y. This
representation is expected to be more sparse than the spectrogram, since it computes the most
likely frequencies at each time-frame and may disregard high-order harmonics of the instrument.
Moreover, for each m ∈ Z, we can compute the maximum a posteriori estimate for ω, that is,
argmax p(ω|xm). This sequence of values may provide an interesting low-dimensional feature
useful in Music Information Retrieval6.

In order to illustrate this concept, we consider the subject of Ricercar a 6, the six-voice fugue that
is commonly regarded as the high point of The Musical Offering (BWV 1079), by Johann Sebastian
Bach, interpreted in two instruments: the fortepiano and the harpsichord7. Both audio signals
were downloaded from YouTube in MP3 format with 320 Kbps, manually trimmed to contain
only the subject, exported in WAV format and reduced to a monophonic signal. The sampling
frequency is 44,100 Hz, the length of the analysis window was taken to be N = 4,096 time-samples
with hop size of H = 2,048, implying in 50% of overlap between adjacent windows.

Figures 1 and 2 display the spectrogram of the subject of Ricercar a 6 played on the fortepiano
and the harpsichord, respectively. Note that the harpsichord signal contains much more harmonics
than the fortepiano one, as it is naturally expected for both instruments.

In Figures 3 and 4 are displayed the logarithm of the probabilistic spectrogram of the subject of
Ricercar a 6, played on the pianoforte and harpsichord, respectively. Blue color indicates negligible
probability, and colors close to yellow indicate more likely ones. The y axis is restricted from 0 Hz
to 2,500 Hz, since there are no likely frequencies above this value. Notice that these representations
also capture higher harmonics of the harpsichord, but are cleaner than the spectrogram.

Indeed, Figures 5 and 6 display both the probabilistic spectrograms as in Figures 3 and 4, but
the red dots indicate the most likely frequencies at each time frame. Notice that, although visually
distinct, they look more similar than the spectrograms in Figures 1 and 2. This fact indicates that
these sequences of frequencies can be regarded as an interesting audio feature, and a refinement
of this quantity may lead to advances in algorithms of fundamental frequency detection.

IV. Conclusion and future works

In this paper we recalled and detailed the computations done in [2, Cap. 2], in order to study the
posterior distribution of frequencies present within an audio signal, disregarding its amplitude
and phase, and also the variance of any existing superimposed noise. This probability distribution
was used to propose a new concept in time-frequency analysis of audio signals, the probabilistic
spectrogram, illustrated by two musical examples.

Althoguh not quantitatively analyzed, the proposed quantity seems promising to be further
investigated, specially its usage in Music Information Retrieval tasks, mainly because of its
sparseness and high interpretability. This is addressed as a future work, together with the
development of the probabilistic chroma features, corresponding to the probability allocated in the
frequencies bands related to the twelve pitch classes8.

6In [8, Sec. 7.1.2] it is described that peaks of the spectrogram provides an useful fingerprint for the taks of content-based
audio retrieval.

7Both interpretations are available on YouTube. The fortepiano version is played by Leo van Doeselaar (https://www.
youtube.com/watch?v=fjxKy3pP41w) and the harpsichord one is interpreted by Iain Simcock (https://www.youtube.
com/watch?v=AYw2E5F930M).

8Assuming an equal emperament tuning with fundamental frequency of A4 defined as 440 Hz.
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Figure 1: Spectrogram of the subject of Ricercar a 6, played on the fortepiano.
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Figure 2: Spectrogram of the subject of Ricercar a 6, played on the harpsichord.
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Figure 3: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the fortepiano.

Figure 4: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the harpsichord.
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Figure 5: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the fortepiano. The red dots indicate most likely frequency at each time-frame.

Figure 6: Probabilistic spectrogram (logarithm; y axis restricted from 0 Hz to 2,500 Hz) of the subject of Ricercar a 6,
played on the harpsichord. The red dots indicate most likely frequency at each time-frame.
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Abstract: We study gestural presheaves in the language of abstract gestures and, in particular, a general
gestural version of the Yoneda embedding, based on a Mazzola’s idea, and gestural sheaves. We apply the
latter to Mozart and Beethoven.
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I. Introduction

Mathematical gestures are present in mathematical music theory in several forms. First, they
intend to model the configuration and movement of the performer’s body when playing
an instrument (topological gestures). Second, melodic contours are also topological

gestures on the score. Third, all diagrams of transformational theory, as any diagram, are abstract
gestures in categories. Introductions to gesture theory are [5, 3, 15]. More general advances
include Mazzola’s [16], Mannone’s [13, 12], and Arias’ [2].

This article explores the gestural presheaf construction (Section II.i) in the general language of
abstract gestures (Sections II and III), especially the relation thereof to two main developments of
presheaves in category theory: the Yoneda embedding and sheaves.

Regarding the first, which represents any category as a subcategory of its associated category
of presheaves, it is also relevant for gesture theory since we would like to have a gestural Yoneda
embedding [14, p. 33] that now represents the given category in a suitable category related to
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gestures and enables the recovery of a certain gestural intuition behind a morphism. For example,
this embedding should help recover the gesture of a linear transformation associated with a
rotation matrix, which only takes into account an argument and its image but not the intuitive
movement between them. Similarly, following Lewin [9, p. 159], it should help to find the gestures
behind musical transformations. We locate conceptually and generalize (Section V) Mazzola’s
gestural version of Yoneda lemma, which was originally formulated in the category of topological
categories, to more arbitrary categories. In particular, we refine these results to obtain an embedding
of a category into a category of gestural presheaves, under certain conditions. A previous version of the
gestural Yoneda embedding was given in [14, 3.4], however it was not full.

With respect to sheaves, in this article we motivate from a musical perspective their introduction
in gesture theory. The motivation is essentially based on the melodic contour gestures and the
fact that in some musical works these gestures glue together to form new ones. These procedures
could explain some passages obtained by variation in Mozart and Beethoven (Section VIII). The
gestural sheaf notion (especially the global section one) is related to that of global gesture in [16,
Section 66.5], which was formulated in the category of topological categories and resembles the
global composition concept. However, sheaves are simpler and still useful. We provide the gestural
sheaf notion for more general categories in Section VII.

By the way, the following results emerged in the present research. 1. Determination of left
adjoints to gestural presheaves (Section II.i), which helps to characterize the (generalized) elements
of objects of gestures. 2. Determination of left adjoints to the covariant gesture functors (Section VI,
based on Section IV). 3. Characterization of sheaves in terms of cotensor products, suggesting a
close relation between gestures and sheaves (Section VII).

We include a Glossary of specialized terms that the reader can access by clicking on a red term
like sheaf. Also, these hyperlinks direct to some term in boldface if it was defined in the article.
However, it is desirable that the reader has a minimum acquaintance with category theory [11,
pp. 10-23]. On the other hand, we end each example with the symbol ♣ for organization.

II. Abstract gestures

Throughout this paper all examples are focused on topological gestures whose skeleta are digraphs,
for simplicity. However, we will use the general language of abstract gestures, which includes
topological gestures as a particular case, because it include other instances1 of gesture theory and
allows the relation with several valuable categorical concepts, like cotensor products, presheaves,
and sheaves.

Consider the following data:

• A small category D. In gesture theory, we often explore the case when D is the category
pictured in the following diagram.

[0]id
(( ϵ1 //

ϵ0
// [1] id
vv

.

We use this instance for all examples, although all theoretical results in this paper are valid for
an arbitrary D.

• A category E with small hom-sets and all small limits. Usually, we work with the case when
E is a category of (generalized) spaces like2 Top (topological spaces), Loc (locales), Cat(Top)
(topological categories), and Cat (small categories).

1See [5, 4] for discussions on these variations.
2A discussion of gestures in these categories, for the case of digraphs, is [1].
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• A functor3 S : Dop −→ E .

Let D̂ be the category of presheaves on D. Given a presheaf P of D̂, the object of P-gestures
with respect to S is the cotensor product P ⋔ S, defined as the limit of the composite functor(∫

P
)op

πop
−−→ Dop S−→ E , (1)

where
∫

P denotes the category of elements of P.

Example II.1 (Topological gestures for digraphs). Let us suppose that E = Top. A functor
S : Dop −→ Top can be identified with a cuadruple (S1, S0, d0, d1), where S1 and S0 are topological
spaces and d0 and d1 are continuous maps, by defining S1 = S([1]), S0 = S([0]), d0 = S(ϵ0), and
d1 = S(ϵ1). We say that (S1, S0, d0, d1) is a topological digraph. Similarly, a presheaf Γ on D is
just a digraph (A, V, t, h).

The cotensor product Γ ⋔ S is the limit in Top of the diagram consisting of for each a ∈ A a
copy of S1, for each z ∈ V a copy of S0, a copy of d0 whenever z = t(a), and a copy of d1 whenever
z = h(a). We compute this limit explicitly as the subspace of the product (with the Tychonoff
topology) (

∏
a∈A

S1

)
×
(

∏
z∈V

S0

)
of all sequences ((ca)a∈A, (xz)z∈V) satisfying d0(ca) = xt(a) and d1(ca) = xh(a) for each a ∈ A.
We call these sequences gestures. We discuss the particular case of Mazzola’s gestures and more
examples in Section III. ♣

II.i. The cotensor adjunction and gestural presheaves

By dualizing4 [11, Theorem I.5.2], the cotensor construction gives rise to an adjunction (left adjoint
on the left)

E(−, S) : E //
(
D̂
)op

: − ⋔ Soo ,

with associated bijection
E(E, P ⋔ S) ∼= D̂(P, E(E, S(−))), (2)

natural in P and E. This bijection sends a natural transformation on the right-hand term, which
can be identified with a cone on the functor in Equation (1) with vertex E, to the morphism
E −→ P ⋔ S given by the universal property of the limit P ⋔ S of this functor.

We call a functor of the form − ⋔ S :
(
D̂
)op

−→ E gestural presheaf.

Example II.2. Let us compute the action of a gestural presheaf on a morphism in the case of Exam-
ple II.1. Consider two digraphs (presheaves) Γ and Γ′ with Γ = (A, V, t, h) and Γ′ = (A′, V′, t′, h′).
A morphism of presheaves τ : Γ −→ Γ′ can be identified with the digraph morphism (u, v), where
u = τ[1] and v = τ[0]. In particular, note that the category D̂ is just the category of digraphs.
Following the explicit presentation of the space of gestures in Example II.1, the continuous map
τ ⋔ S : Γ′ ⋔ S −→ Γ ⋔ S sends the sequence ((ca)a∈A′ , (xz)z∈V′) to ((cu(a))a∈A, (xv(z))z∈V). ♣

3We can also call it presheaf on D with values in E .
4See [2, Section 3.4.1] and [2, Section 3.4.4] for more details.
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Example II.3 (Individual gestures). The adjunction is useful to compute the elements of the object
of gestures. Suppose we are in the situation of Example II.1. If we take E to be the point space {∗}
and P as a digraph Γ, then the bijection in Equation (2) just says that there is a correspondence
between the set Γ ⋔ S and the set of digraph morphisms from Γ to S regarded as a digraph (forget
the topological structure). By definition, such a morphism (c, x) sends a ∈ A to ca ∈ S1 and z ∈ V
to xz ∈ S0, and satisfies d0(ca) = xt(a) and d1(ca) = xh(a). This means that it is just a gesture
sequence as in Example II.1. ♣

II.ii. Kan extension characterization

Let y : D −→ D̂ be the Yoneda embedding. The restriction functor between functor categories

− ◦ yop : E(D̂)
op

−→ EDop

has a right adjoint R, with R(S) = − ⋔ S, since the limit in Equation (1) exists for each S and P
[10, Corollary X.3.2]. This means, by definition, that − ⋔ S is the right Kan extension of S along yop.
Consequently, we have a bijection

E(D̂)
op

(F,− ⋔ S) ∼= EDop
(F ◦ yop, S) (3)

natural in F and S. The functor yop
(−)

⋔ S can be assumed to be S, so the counit component

ϵ : yop
(−)

⋔ S −→ S is the identity [10, Corollary X.3.3]. In this way, the bijection (3) sends a natural

transformation σ : F −→ − ⋔ S to σyop : Fyop −→ yop
(−)

⋔ S = S. Conversely, given α : F ◦ yop −→
S, for each presheaf P in D̂ it induces a cone5 {αDF(p) : F(P) −→ S(D) | (D, p) ∈

∫
P} on the

functor in Equation (1) and hence the component σP : F(P) −→ P ⋔ S of a natural transformation
σ : F −→ − ⋔ S.

We show in Example V.1 that Equation (3) generalizes Mazzola’s gestural Yoneda lemma [16,
Theorem 39, p. 962]. Before, we need to define Mazzola’s gestures on topological categories.

III. Generalized Mazzola’s gestures

III.i. The functor of an object

Given an object C of E and a functor T : D −→ E with all its images exponentiable in E , we can
construct the functor

CT : Dop −→ E : D
g−→ D′ 7→ CT(D′) CT(g)

−−−→ CT(D),

which we denote by SC. This construction generalizes Mazzola’s topological digraph of a topo-
logical space and the categorical digraph of a topological category, as shown in the following
examples.

Example III.1. Take E = Top. Consider the continuous endpoint inclusions i0, i1 : {∗} −→ I of
the unit interval I in R. They correspond to the functor T : D −→ Top defined by T([0]) = {∗},
T([1]) = I, T(ϵ0) = i0, and T(ϵ1) = i1. The images of T are (locally) compact Hausdorff and
hence exponentiable in Top. Given a topological space X, SX : Dop −→ Top corresponds to the
topological digraph (X I , X, e0, e1) of X, where the exponential X I is the function space Top(I, X) of
continuous paths in X, equipped with the compact-open topology [7, p. 558], X is isomorphic to
the exponential X{∗}, and e0 and e1 are the continuous evaluations at 0 and 1. ♣

5Here we identify p ∈ P(D) with its natural transformation p : yD = D(−, D) −→ P given by the Yoneda lemma.
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Example III.2. Take E as the category of topological categories Cat(Top). There are topological
functors i, j : 1 −→ I from the final category to the topological category I of I, defined by i0(∗) = 0,
j0(∗) = 1, i1(∗) = (0, 0), and j1(∗) = (1, 1). Once again, they amount to the functor T : D −→ Top
defined by T([0]) = 1, T([1]) = I, T(ϵ0) = i, and T(ϵ1) = j. In this case, I is exponentiable in
Cat(Top) because its spaces of objects I, morphisms ∇, and composable morphisms are locally
compact Hausdorff, that is, exponentiable in Top; see [2, Theorem 5.3.2].

If K is a topological category with spaces of objects and morphisms C1 and C0 respectively,
then SK : Dop −→ Cat(Top) corresponds to the categorical digraph (KI, K, e0, e1) of K, where KI is
the category of all topological functors from I to K with its set of objects P0 (that is, of topological
functors) topologized as a subspace of C∇

1 × CI
0 and its set of morphisms P1 (that is, of natural

transformations) topologized as a subspace of P0 × P0 × CI
1, and

ei : KI −→ K : F τ−→ G 7→ F(i)
τi−→ G(i)

for i = 0, 1. ♣

Example III.3 (General addresses). Take E as the category of contravariant functors from Cat(Top)
to itself. Given a functor S : Dop −→ Cat(Top) and a topological category A, called address,
we have a functor Cat(Top)(A, S(−)) : Dop −→ Cat(Top). In fact, each image, which is of the
form Cat(Top)(A, D), can be enriched with a topological category structure similar to that of the
exponential KI in Example III.2, although it need not be an exponential in Cat(Top). By ranging
A over all topological categories we obtain a functor

Cat(Top)(−, S(−)) : Cat(Top)op ×Dop −→ Cat(Top)

or equivalently Cat(Top)(−, S(−)) : Dop −→ E . In the case when S is a categorical digraph SK

we denote this functor by @SK and call A@SK the A-addressed categorical digraph of K, according to
[16, p. 961]. ♣

III.ii. Gestures

Under the hypotheses of Section III.i, given an object C of E and a presheaf P on D, we define
the object of P-gestures with body in C as the cotensor product P ⋔ SC in Section II. Though this
limit can be hard to compute, Equation (2) gives us a simple characterization of its generalized
elements, and in particular its points. In fact, for each object E of E we have the natural bijections
(the second one given by the exponential adjunction)

E(E, P ⋔ SC) ∼= D̂(P, E(E, CT(−))) ∼= D̂(P, E(E × T(−), C)),

which mean that E-addressed elements of P ⋔ SC correspond to natural transformations from
P to E(E × T(−), C). In particular, if E is the final object of E , then we obtain that the points of
P ⋔ SC correspond to natural transformations from P to E(T(−), C), the latter being the underlying
presheaf of SC. This leads us to define a P-gesture with body in C as a natural transformation
P −→ E(T(−), C).

Example III.4. Let X be a topological space, T as in Example III.1, and Γ a digraph (A, V, t, h).
The topological space of Γ-gestures with body in X coincides with the original definition Γ@X in
[15]. In fact, the limit defining the cotensor Γ ⋔ SX in Example II.1 for the case of the topological
digraph SX, which is identified with the tuple (X I , X, e0, e1) in Example III.1, is just that in [15,
p. 31].
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Figure 1: The first phrase in Mozart’s K. 331 as a gesture.

On the other hand, the definition of an individual gesture as a natural transformation from
Γ to Top(T(−), X) coincides with a digraph morphism from Γ to the underlying digraph of
(X I , X, e0, e1) in Example II.3 and [15, p. 29], and a sequence ((ca)a∈A, (xz)z∈V) satisfying ca(0) =
xt(a) and ca(1) = xh(a), as in Example II.1, where ca : I −→ X is a continuous map and xz ∈ X. ♣

Example III.5 (The score space). We can define gestures on musically meaningful spaces. Let us
interpret the Euclidean space R2 as the score space, where a pair (t, p) denotes a sound event with
pitch p that occurs at the time t. We choose the unities according to the situation. Here we use the
quarter duration as time unity and identify the subset Z of R with the diatonic scale indicated
by the key involved. For instance, the pair (1/2, 0) denotes the pitch A4 occurring after an eight
duration.

Consider the first phrase of Mozart’s Piano Sonata6 K. 331. The melodic contour can be
regarded as a gesture in R2, see Figure 1. As we explain in Section 3, the melodic contour plays
an important role in Mozart’s variations of this phrase since they can be regarded as the result of
transforming the original gesture with homotopies and a sheaf. ♣

Example III.6. Akin to Example III.4, the topological category of Γ-gestures with body in a
topological category K, based on the categorical digraph from Example III.2, coincides with Γ@K,
as defined in [14, Section 2.2].

In this case, an individual gesture is a digraph morphism from Γ to the underlying digraph of
(KI, K, e0, e1), which only takes into account the objects7 of KI (functors) and K. They can be
identified with sequences

((Fa)a∈A, (Cz)z∈V)

satisfying Fa(0) = Ct(a) and Fa(1) = Ch(a), where Fa : I −→ K is a topological functor and Cz is an
object of K. ♣

Example III.7. However, there are more abstract gestural notions for topological spaces with
musical meaning, other than Mazzola’s one. Consider the functor S : Dop −→ Top corresponding
to the topological digraph of intervals of the score space R2. The space of vertices is the score space R2,
see Example III.5. The space of arrows is the subspace of R2 × R2 × R2 consisting of triples of the
form (x, y, y − x), where y − x is the vector difference, that is, the interval between x and y. The tail
and head are just the first and second product projections. In this case, a gesture is a sequence(

(xt(a), xh(a), xh(a) − xt(a))a∈A, (xz)z∈V

)
,

where xz is a sound event. A gesture of intervals between the sound events of the first phrase in
Mozart’s K. 331 corresponds to Figure 2. ♣

6The authors prepared the excerpts from [17] (theme) and the original manuscript (variation 4) at https://mozart.
oszk.hu/.

7Note that, in this case, points are functors with domain the final category 1 and correspond to objects of the codomains.
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Figure 2: The first phrase in Mozart’s K. 331 as a gesture of intervals. We only consider the third component (interval)
of some arrows for simplicity.

IV. The functor of functors of an object and its left adjoint

The construction in Section III.i induces a functor

S(−) : E −→ EDop
: C

f−→ C′ 7→
(

f T(D) : CT(D) −→ C′T(D)
)

D∈D
. (4)

We claim that this functor has a left adjoint. To prove this, first consider a natural transformation
τ : S −→ SC, where S, SC : Dop −→ E are functors. This natural transformation τ is a family

of morphisms
(

τD : S(D) −→ CT(D)
)

D∈D
making the following diagram commute for each

morphism g : D −→ D′ of D.

S(D)
τD // CT(D)

S(D′)

S(g)

OO

τD′
// CT(D′)

CT(g)

OO

By transposing both composites across the exponential adjunction, the previous commutative
diagram is equivalent to the following one, where τ̃D denotes the transpose of τD.

S(D)× T(D)
τ̃D // C

S(D′)× T(D)

S(g)×T(D)

OO

S(D′)×T(g)
// S(D′)× T(D′)

τ̃D′

OO

But this is just a wedge from S × T to C. Thus, we have a bijection

EDop
(S, SC) ∼= Wedge(S × T, C). (5)

In the case when E is small-cocomplete all coends exist [10, p. 224] and the definition of coend
establishes a bijection

Wedge(S × T, C) ∼= E

 D∫
S(D)× T(D), C

 . (6)

To sum up, the bijections in Equations (5) and (6) amount to

EDop
(S, SC) ∼= E

 D∫
S(D)× T(D), C

 ,

which can be shown to be natural in C and hence it determines an adjunction [10, Corollary IV.1.2].
We thus have the following theorem.
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Theorem IV.1. If E is small-cocomplete, then S(−) has as left adjoint the functor

D∫
(−)(D)× T(D) : EDop −→ E ,

sending S to the coend
D∫

S(D)× T(D).

We apply this theorem to gestures on the score space in Example VI.1.

V. A gestural embedding

The Kan adjunction − ◦ yop ⊣ R from Section II.ii restricts to an equivalence between EDop
and the

full subcategory of E D̂op
of all functors F :

(
D̂
)op

−→ E that are naturally isomorphic to − ⋔ S
for some S. This follows from [11, II.6.4], since the counit ϵ : R(−) ◦ yop −→ id is the identity
(Section II.ii), and for each S, η−⋔S : − ⋔ S −→ − ⋔ (yop

(−)
⋔ S) is the identity (check).

In particular, the functor R is an embedding. This means that for each pair S, S′ : EDop −→ E , R
restricts to a bijection

EDop
(S′, S) ∼= E D̂op

(− ⋔ S′,− ⋔ S). (7)

Example V.1 (Gestural Yoneda for topological categories). Let E , K, and @SK be as in Example III.3,
where SK is as in Example III.2. Let us denote by @K the gestural presheaf − ⋔ @SK. By taking F
as a functor naturally isomorphic to − ⋔ S in Equation (7), we obtain

E D̂op
(@K, F) ∼= E D̂op

(@K,− ⋔ S) ∼= EDop
(@SK, S).

Following Mazzola’s terminology, @SK =
−→
K , F is a limiting functor, and S =

−→
F . This is just the

Yoneda lemma for gestures on topological categories [16, Theorem 39, p. 962]. ♣

Example V.2. Suppose that E = Top. Given a natural transformation τ : S′ −→ S of topological
digraphs, let us compute the associated natural transformation R(τ) : − ⋔ S′ −→ − ⋔ S. If Γ is a
digraph (A, V, t, h), then the continuous map R(τ)Γ : Γ ⋔ S′ −→ Γ ⋔ S sends a gesture sequence
(Example II.1)

((ca)a∈A, (xz)z∈V)

to
((τ[1](ca))a∈A, (τ[0](xz))z∈V).

♣

Example V.3 (Interplay between intervals (Lewin) and gestures (Mazzola) in the score). Let us
assume the situation of Example V.2. Take S′ as the topological digraph of intervals of the score
(Example III.7) and S as the topological digraph of R2 (Examples III.4 and III.5).

First, we define a natural transformation τ from S′ to S. The correspondence on arrows
S′([1]) −→ (R2)I is the exponential transpose of the continuous map

S′([1])× I −→ R2 : ((x, y, y − x), s) 7→ x + s(y − x)

and the correspondence on vertices is the identity. Hence the correspondence on arrows sends
(x, y, y − x) to the linear path with parametrization α(s) = x + s(y − x). This defines a natural
transformation since α(0) = x = π1(x, y, y − x) and α(1) = y = π2(x, y, y − x). This ensures the
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existence (Example V.2) of a natural transformation R(τ) : − ⋔ S′ −→ − ⋔ S that incarnates every
gesture of intervals as a gesture of line segments.

Conversely, we can define a natural transformation µ from S to S′. The correspondence on
arrows sends a path c in (R2)I to (c(0), c(1), c(1)− c(0)). This is just the pointwise definition
of the continuous map (e0, e1, e1 − e0) : (R2)I −→ S′([1]), where e0 and e1 are the continuous
evaluation maps (Example III.1). The correspondence on vertices is the identity again. We thus
have R(µ), which transforms gestures into abstract intervals.

Note that µτ = id and hence R(µ)R(τ) = id, that is, Γ ⋔ S′ is a retract of Γ ⋔ R2 for each
digraph Γ. ♣

Now, assume the hypotheses of Section III.i. By composing R with the functor S(−) from
Equation (4), we obtain the functor

E
S(−)−−→ EDop R−→ E D̂op

.

In the case when T([0]) is the final object,8 S(−) is faithful because if S f = Sg, where f , g : C −→ C′

are continuous maps, then in particular f = S f ([0]) = Sg([0]) = g. However, the functor S(−)

need not be full as shown in the following example.

Example V.4. Let us assume the situation of Example III.4 and that X = R2. The functor SR2 is
just the topological digraph ((R2)I , R2, e0, e1). We have an endomorphism (u, v) of this topological
digraph where v is the constant map with value (0, 0) and u is the constant map with value the
circular loop with parametrization (cos(2πt)− 1, sin(2πt)) for t ∈ I. This endomorphism is not
of the form S f , otherwise v = f and u = f I , that is, u is the constant map with value the constant
path on (0, 0); a contradiction. ♣

In the case when T([0]) is the final object, we can correct this drawback by just restricting the
morphisms of EDop

to the image of S(−) and then those of E D̂op
to the image of R ◦ S(−). This

implies that if T([0]) = 1, then R ◦ S(−) is an embedding of E into a subcategory of the category of

gestural presheaves E D̂op
. This result applies to topological and categorical gestures (Examples III.4

and III.6).

VI. The covariant gesture functor and its left adjoint

Let us suppose that E is small-cocomplete. The covariant gesture functor P ⋔ − is the composite

EDop EπP−−→ E (
∫

P)op Lim−−→ E .

We claim that both functors in this composite have a left adjoint, so the composite of these adjoints
is the desired one. Certainly, the diagonal functor from [11, p. 21] is the left adjoint to Lim and,
on the other hand, by [10, Corollary X.3.2], EπP has a left adjoint since E is cocomplete and both
D and

∫
P are small categories.

In turn, Mazzola’s gesture functor P ⋔ S(−) is the composite

E
S(−)−−→ EDop P⋔−−−→ E

and has a (composite) left adjoint since both functors have left adjoints.
In particular, P ⋔ S(−) preserves limits. Next, we provide an example illustrating the situation.

8In a more general language, this means that T preserves the final object.
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Example VI.1. Let us assume the situation of Example III.4. By preservation of the product R×R,
the topological space of gestures Γ ⋔ SR2 with skeleton Γ and body in R2 is homeomorphic to the
product (Γ ⋔ SR)× (Γ ⋔ SR). In Mazzola’s notation: Γ@R2 ∼= (Γ@R)× (Γ@R).

In terms of the interpretation of R2 as the score space (Example III.5), the homeomorphism
corresponds to the decomposition of gestures on the score as pairs of gestures where the first
component is a time gesture and the second one a pitch gesture. ♣

VII. Gestural sheaves

Now we discuss the relation between gestures and sheaves in Grothendieck’s sense. This section

intends to show that given a functor S : Dop −→ E , the gestural presheaf − ⋔ S :
(
D̂
)op

−→ E is

a sheaf with values in E with respect to the canonical Grothendieck topology on D̂.
First, we rewrite the characterization of sheaves in terms of equalizers within our language of

cotensor products and gestures. Let (C, J) be a site. We say that a presheaf F : Cop −→ E with values
in E is a sheaf if and only if for each object C of C and each covering sieve R in J(C) we have the
identity

R ⋔ F = F(C),

where the cotensor product R ⋔ F is defined as

Lim

((∫
R
)op

π
op
R−−→ Cop F−→ E

)
.

By using the presentation of this limit as an equalizer [10, p. 113], the identity R ⋔ F = F(D)
means that the following diagram, with appropriate arrows, is an equalizer, namely that defining a
sheaf with values in E ; compare with [11, p. 122].

F(C) // ∏
( f :D→C)∈R

F(D) //
// ∏
( f :D→C)∈R

m:D′→D

F(D′)

Note also that the condition R ⋔ F = F(C) (for C ranging over C) above just says that, for each
object A of E , the presheaf E(A, F(−)) : Cop −→ Set is a sheaf. In other words, every matching
family

{x f : A −→ F(D)| ( f : D → C) ∈ R}

for R of generalized elements of F has a unique amalgamation x : A −→ F(C); compare with [11,
p. 121-122].

Second, we are interested in the case when C is the category of presheaves D̂, so we need
an appropriate Grothendieck topology on it.9 The topology that we will use is the canonical
one. Recall that [11, p. 126] a Grothendieck topology on C is subcanonical if all representable
presheaves on C are sheaves, and that [6, II.2.5] the canonical topology on a category C is the greatest
subcanonical topology. We can rewrite this definition by using the category of elements as follows.
A topology J on C is subcanonical if and only if for each object C of C and each covering sieve R
in J(C) the identity

Colim
(∫

R
πR−→ C

)
= C

9There is a subtlety here: the category D̂ is not small, so the definition of topology and site given in [11, p. 110] cannot
be used. But this is easily corrected by changing the universe, as suggested in [6].
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holds. In fact, this equality just says that, for each object C of C, every matching family for
R of elements of C(−, C) has a unique amalgamation. In the case when C is a category of
presheaves, the canonical topology on C is that having as covering sieves all epimorphic ones.
To prove this, note that epimorphic sieves define a topology in every category of presheaves
(check), that every sieve of the canonical topology is epimorphic, and recall that, conversely, in a
category of presheaves every epimorphic sieve is a sieve of the canonical topology by part 2) of [6,
Proposition II.4.3]. In this way, in the case when C = D̂, the canonical topology is given by all
sieves that are epimorphic; concretely, a sieve R on a presheaf P is an epimorphic family if and
only if for each D ∈ D and each a ∈ P(D) there is a natural transformation τ : P′ −→ P in R and
an element x ∈ P′(D) such that τD(x) = a.

Now we can prove the main result of this section.

Theorem VII.1. Each gestural presheaf − ⋔ S :
(
D̂
)op

−→ E is a sheaf with values in E for any

subcanonical topology on D̂, in particular for the canonical one consisting of all epimorphic sieves.

Proof. Consider a subcanonical topology J on D̂. According to the characterization of subcanonical
topologies above, for each object P of D̂ and each sieve R in J(P) we have the identity

Colim
(∫

R
πR−→ D̂

)
= P.

Moreover, since the gestural presheaf, as a right adjoint (Section II.i), transforms colimits in D̂ into
limits in E , by applying − ⋔ S to the identity above, we obtain that

Lim

((∫
R
)op

π
op
R−−→
(
D̂
)op −⋔S−−→ E

)
= P ⋔ S.

According to the characterization of sheaves above, this means that − ⋔ S is a sheaf.

VIII. The sheaf of topological gestures in Mozart and Beethoven

In particular, Theorem VII.1 says that the gestural presheaf

− ⋔ SX = −@X : Dop −→ Top

that results from the situation in Example III.4 is a sheaf.
Recall that (Example II.2) given a digraph morphism

τ = (u, v) : Γ = (A, V, t, h) −→ Γ′ = (A′, V′, t′, h′)

the sheaf τ@X sends a gesture sequence ((ca)a∈A′ , (xz)z∈V′) to ((cu(a))a∈A, (xv(z))z∈V). In partic-
ular, if τ is a digraph inclusion (both u and v inclusions), then τ@X sends a Γ′-gesture to its
restriction to Γ.

Let us consider the canonical topology on digraphs. An important example of epimorphic
sieve on a digraph Γ, with Γ = (A, V, t, h), is that generated by a cover {(Ai, Vi, ti, hi) | i ∈ I} of Γ
by subdigraphs, which means that the inclusion pair is a digraph morphism from (Ai, Vi, t, h) to Γ
for each i ∈ I ,

⋃
i∈I

Ai = A, and
⋃

i∈I
Vi = V. A coherent family of topological gestures for this sieve

consists of a Σ-gesture gΣ in X for each member Σ of the sieve. The coherence condition can be
reduced to saying that gΓi and gΓj coincide on (Ai ∩ Aj, Vi ∩ Vj, t, h), whenever Γi = (Ai, Vi, t, h)
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Figure 3: A global gesture in the fourth variation in Mozart’s K. 331 (middle) from local melodic gestures (top and
bottom). The harmonic tones are the black dots. We omit the digraphs, which are of the form • → • · · · • → •,
for simplicity.

Figure 4: Harmonic tones in the theme of Mozart’s K. 331.

and Γj = (Aj, Vj, t, h). The sheaf property ensures that there is a unique global Γ-gesture g whose
restriction to Γi is just the local gesture gΓi .

In the following two musical examples we consider the case when Γ is a path digraph of the
form • → • · · · • → • and each member of the cover is a path subdigraph of the same form. This
kind of cover helps to reconstruct melodic contours from smaller fragments. Also, we assume that
X is the score space R2 (Example III.5).

VIII.i. The fourth variation in Mozart’s Piano Sonata K. 331

The construction of a global gesture from local ones can be observed in the fourth variation in
Mozart’s K. 331; see Figure 3. The melody can be reconstructed by following several steps. First,
consider the original theme (Example III.5 and Figure 1) and take the harmonic tones as shown in
Figure 4. Second, construct melodic fragments in each measure by joining the tones stepwise if
necessary, following the contour gestures between harmonic tones, as shown in the top of Figure 3.
Finally we coherently paste these fragments (transposed by an octave) by adding new melodic
stepwise gestures and following a uniform rhythm (successive eights), as shown in the bottom of
Figure 3. We thus obtain a global gesture (middle of Figure 3) that accompanies the melody by
continuation of the original fragments.

This kind of gestural analysis could be useful to understand underlying topological processes
in the theme with variations form, beyond transformational approaches. In this way, we highlight
the plasticity of musical thinking, which we access mathematically thanks to the continuity of
melodic contours obtained by continuation in the sheaf of gestures in the score. For instance,
there is no symmetry (translation or reflection) between the melody in the first bar of the original
theme (Figure 1) and the corresponding variation in Figure 3. However, homotopies10 between
paths, preserving the harmonic tones, seem to provide a valid explanation for the transit from the
original fragment to its variation; see Figure 5. The preservation of some musical attribute, such
as harmonic tones, seems to be essential for using this kind of explanation since in the score space
R2 any two paths α, β can be transformed into each other by means of the homotopy defined by
(1 − t)α + tβ for t ∈ [0, 1].

10A homotopy between two paths α, β in X is a path h in X[0,1] such that h(0) = α and h(1) = β. Similarly we can define
homotopies between Γ-gestures in X as paths in the space Γ ⋔ SX .
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Figure 5: Transformation of the theme (first bar) in Mozart’s K. 331 into the fourth variation (first bar) by means of
homotopies between paths that preserve the harmonic tones. The black dots are the harmonic tones.

Figure 6: The third Diabelli variation in Beethoven’s Op. 120; taken from [18]. The ramification, fusion, and connection
of voices can be explained within the sheaf of topological gestures, contradicting the variety principle in
counterpoint. We omit the digraphs again, which are of the form • → • · · · • → •, for simplicity.

VIII.ii. The third Diabelli variation in Beethoven’s Op. 120

The third variation in Beethoven’s Op. 120, edition [18], is a very explicit example where the
structure of a sheaf seems to be used intuitively. The following discussion refers to Figure 6. We
analyze melodic contours by using topological gestures on the score space from Example III.5.

The two upper voices in measures 1-5 are intertwined by means of an intermediate voice,
corresponding to the pointed line in measures 3-4. We thus have a global section connecting the
two voices, which consists of the contour gesture ranging the middle voice in measure 2, the
pointed line in measures 3-4, and the upper voice in measure 5. A similar phenomenon occurs in
measures 7-9 and 16-17. In measures 10-11 the alto seems to split into two for a few quarters to
fuse again.

The conceptual value of the sheaf involved seems to rely on the fact that it offers an explanation
of a phenomenon that does not follow counterpoint rules: the fusion and connection of voices,
which directly defies the variety principle in counterpoint [8, p. 21].

These contrapuntal ramification and fusion processes are considerably combined with symme-
tries in this case. The soprano theme in bars 1-5 reappears transposed in the alto in bars 5-9 with
some intervallic variations. This imitation can also be regarded as homotopy equivalent to a literal
transposition of the soprano theme. Then, in bars 6-9 the soprano forms an octave canon with the
melody of the alto, which implies translation symmetries. In this context the voice fusion occurs
(bars 7-9).

The topological tools considered (sheaves and homotopies) in the previous examples could be
used to compose new music.
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Glossary

In what follows C and E denote arbitrary categories.

Digraph A digraph Γ is a quadruple (A, V, t, h) such that A (arrows) and V (vertices) are sets and
t, h : A −→ V are functions called tail and head, respectively. A digraph morphism from (A, v, t, h)
to (A′, V′, t′, h′) is a pair (u, v) of functions u : A −→ A′ and v : V −→ V′ such that t′u = vt and
h′u = vh.

Presheaf A presheaf on a category C is a contravariant functor from C to a suitable11 category of sets.
All presheaves on C form a category Ĉ whose morphisms are natural transformations between
presheaves. Examples: 1. The representable functors, which are of the form C(−, C) for C object
of C, are presheaves on C.

Category of elements Let P be a presheaf on C. We denote by
∫

P the category of elements of P. Its
objects are of the form (C, p) where p ∈ P(C) and C is an object of C. A morphism from (C, p) to
(C′, p′) is a morphism f of C, from C to C′, such that P( f )(p′) = p. We denote by π :

∫
P −→ C

the natural projection functor. This category is isomorphic to the comma category y ↓ P. Also, its
opposite (

∫
P)op is isomorphic to P ↓ yop.

Generalized element Given two objects C and D in a category C, a C-addressed element of
D is, by definition, a morphism C −→ D of C. This definition expresses a certain relativity of
mathematical objects by means of the introduction of observers C for an object D.

Locally compact space A topological space X is locally compact if for each point x ∈ X and each
open neighborhood U ∋ x, there is a compact neighborhood of x contained in U. In the case when
X is a Hausdorff space, this definition is equivalent to saying that each point in X has a compact
neighborhood. In this way, every compact Hausdorff space is locally compact.

Compact-open topology Let X and Y be topological spaces. The subbasic opens of the compact-open
topology on the function space XY are those of the form {c : Y −→ X continuous | c(K) ⊆ U},
where K is compact in Y and U is open in X. If Y is locally compact Hausdorff, then this makes
XY an exponential in the category of topological spaces [7, p. 558].

Topological category A small category such that its sets of morphisms C1 and objects C0 are
topological spaces and the identity e : C0 −→ C1, domain d : C1 −→ C0, codomain c : C1 −→ C0,
and composition m : E2 = E1 ×E0 E1 −→ E1 are continuous maps. It is usually written as the tuple
(C1, C0, e, d, c, m). A topological functor F : K −→ D between topological categories is a functor
between the underlying categories such that the correspondences on objects and morphisms,
namely F0 and F1, are continuous. It is usually written as the pair (F1, F0).

Topological category of the real unit interval12 We define it by I = (∇, I, e′, d′, c′, m′), where

• ∇ = {(x, y) ∈ I × I | x ≤ y in I};
• e′ : I −→ ∇ is the diagonal, that is, e′(x) = (x, x);
• d′, c′ : ∇ −→ I are the first and second projections respectively;

11That is, the sets are the members of a Grothendieck universe [6, Exposé I].
12This category was introduced in [14].
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• E2 = ∇×I ∇ = {((z, w), (x, y)) ∈ I2 × I2 | x ≤ y = z ≤ w}, and m′ : E2 −→ ∇ is defined by
m′((z, w), (x, y)) = (x, w); and

• we place the usual topology on I, ∇ is a subspace of I × I (product topology), and E2 is a
subspace of I4, so e′ (diagonal), d′, c′, and m′ (projections) are continuous.

Yoneda lemma Given a presheaf P on C and an object of C, it establishes a natural bijection
between the sets of natural transformations from C(−, C) to P and P(C). Explicitly, the bijection
sends such a natural transformation τ to τC(idC).

Yoneda embedding The functor y : C −→ Ĉ sending an object C to the representable functor
C(−, C) and a morphism f : C −→ D to the natural transformation defined by composition with
f in each component. This functor is full and faithful by the Yoneda lemma.

Wedge Let F : Cop × C −→ E be a functor and E an object of E . A wedge from F to E consists of a
family of morphisms (αC) indexed by the objects of C such that the following diagram commutes
for each morphism f : C −→ C′ of C.

F(C, C)
αC // E

F(C′, C)

F( f ,id)

OO

F(id, f )
// F(C′, C′)

αC′

OO

Coend Let F : Cop × C −→ E be a functor and E an object of E . A coend of F is a pair (E, α), where
E is an object of E and α is a wedge from F to E such that for every wedge β from F to E′ there

is a unique morphism h : E −→ E′ with hαC = βC for each object C of C. We denote E by
C∫

F(C, C).

Sieve Let C be an object of a category C. A sieve on C is a set of morphisms with codomain C that is
closed under right composition. Examples: 1. The maximal sieve t(C) consisting of all morphisms
with codomain C. 2. The sieve generated by a set X of morphisms with codomain C, defined as
the closure of X under right composition. 3. The restriction sieve h∗(S) of a sieve S on C along a
morphism h : D −→ C, defined as the set of all morphisms f with codomain D such that h f is in S.

Grothendieck topology A Grothendieck topology J on a category C consists of for each object
C a set of covering sieves J(C) such that i) the maximal sieve t(C) is in J(C), ii) if S is in J(C),
then all possible restriction sieves of S are covering sieves, and iii) if all possible restriction
sieves of a given one S are covering sieves, then S is a covering sieve. Examples: 1. Let T be
a topology (of a topological space) regarded as a category (category of a poset). The sieves
generated by open coverings of opens in T are the covering sieves of a Grothendieck topology
on T. 2. Consider the category Ĉ of presheaves on C. The epimorphic sieves of a presheaf P
are the sieves S on P such that for each object C of C the set of images {Im(τC) | τ ∈ S} covers P(C).

Site Category with a Grothendieck topology (C, J).

Sheaf A presheaf F on a site (C, J) is a sheaf if for each object C of C and each covering sieve S in
J(C), given a family of local sections {x f | f in S and x f ∈ F(dom( f ))} such that F(h)(x f ) = x f h
whenever the composite f h exists, there is a unique x ∈ F(C) such that F( f )(x) = x f for each f in S.
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In such a case we say that x is a global section. In words, we also express the sheaf condition above
by saying that every matching family (x f ) of elements of F has a unique amalgamation x. Examples:
given the site of the usual topology of R (respectively C), the presheaf with P(U) defined as the
set of all (continuous or differentiable) functions defined on U with values in R (respectively C) is
a sheaf.
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Interview with Severine Neff
MusMat Research Group

28th June, 2021, Goleta, California, USA

I. Can you tell us about your research and its impact on your

academic/theoretical work?

My musical–scholarly life has been devoted to a comprehensive study of
the works of Arnold Schoenberg, that Janus-faced Modernist with deep
roots in the past and open to a postmodernism to come. When I began
my study in the late 1960s, North American music-theoretical thought
about Schoenberg’s music had become bifurcated into two traditions: an
“historical” tradition grounded in the writings of Schoenberg’s students
and personal supporters, and a “compositional” tradition established by
the then-cutting-edge theories of Milton Babbitt’s “Princeton School" (see
Figures 1–2). The “historical” tradition acknowledged Schoenberg as a
music theorist, the “compositional” did not. I experienced both firsthand.
As an undergraduate student at Columbia University in New York, I
studied with Schoenberg’s student, Patricia Carpenter. Several years
later, after earning a master’s degree in music theory at Yale University,
I received a doctorate in music theory from Princeton University, having

worked with Babbitt, Claudio Spies, and Peter Westergaard.
The Princeton School had produced their music–theoretical vision of Schoenberg’s twelve–tone

music by elucidating the taxonomy and properties of sets and the systematic consideration of
surface groupings, invariance, and symmetry. Although Babbitt and his students—above all, David
Lewin—extolled Schoenberg’s music as an apogee of western musical thought, they dismissed
his then-available body of theoretical writings as untenable. They held that unlike, for example,
Schenker’s theory of tonal music, Schoenberg’s own theoretical teachings—writings based largely
on tonal music—could not be formalized through mathematical models as shown most directly
by Babbitt’s student Michael Kassler. Equally important, Schoenberg’s theories could not be
explicated from the logic of analytic philosophy as conceived by Rudolf Carnap and others.

Schoenberg would have agreed with Babbitt and his circle. He had consistently stated, “I am
more a composer than a theorist.” However, he also held that composition was not in any deep
sense related to science—it was an art. In Schoenberg’s words, “While science has to demonstrate
its problems perfectly and completely without omission and from every point of view, and
therefore has to proceed systematically, logically ... art only presents a number of interesting cases
and strives for perfection by the manner of their presentation.”

In contrast to the Princeton School, the North American “historical” tradition did recognize
Schoenberg as a theorist as early as the 1930s with articles by Schoenberg’s students and colleagues.
For example, the composer Henry Cowell integrated Schoenberg’s theoretical views of the overtone
series into his own concept of dissonance in New Music Resources; the bassoonist Adolph Weiss
wrote about Schoenberg’s teaching of traditional craft; translations of analytic essays on the earliest
serial works by Erwin Stein appeared in Modern Music. In the 1940s Ernst Krenek penned his
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text on 12-tone counterpoint. In the 1950s the composer Roger Sessions included aspects of
Schoenberg’s transformation chords in his Harmonic Practice, while Schoenberg’s student Dika
Newlin offered translations and an edition of Schoenberg’s writings in Style and Idea. However,
it was not until the 1980s, that Walter Frisch would refer to the theoretical work of Schoenberg
in his Brahms and the Principle of Developing Variation. Martha Hyde would analyze Schoenberg’s
twelve-tone works through his working materials in Schoenberg’s Twelve–Tone Harmony: The Suite
Op. 29 and the Compositional Sketches.

Only Schoenberg’s student and personal assistant, Patricia Carpenter, was willing to address if
Schoenberg’s thought could be regarded as a theory. She utilized not scientific criteria but those
of aesthetics. She believed that Schoenberg’s thought about music is characterized by a coherence
and consistency claiming attention as a theory. His was primarily a theory of art and the work of
art, and in that sense, an aesthetic theory. On that basis, she understood his specifically technical
theory for the musical work.

As a young scholar, having published in 1981, in Perspectives of New Music on symmetrical
relations in Schoenberg’s Second String Quartet, Op. 10, and in 1984, in Theory and Practice on
the implications of Schoenberg’s notion of Grundgestalt in the First String Quartet, I began to
be convinced that the “historical” and “compositional” camps of Schoenberg study could both
require a complete collection of Schoenberg’s music–theoretical writings in their German original
and in English translation. I believed that certain passages in these writings might be suggestive
both to those seeking to formalize structural aspects of Schoenberg’s music or to those studying
his work in an historical/philosophical context.

With this plan in mind, I ordered xerox copies of his theoretical teachings and writings from the
Arnold Schoenberg Institute (then in Los Angeles) and studied his two main theoretical treatises,
one written in Vienna, Austria, entitled Coherence, Counterpoint, Instrumentation, Instruction in Form,
the other written in New York City, Chautauqua, New York, and Los Angeles, entitled The Musical
Idea and the Logic, Technique, and Art of Its Presentation.

The earlier manuscript consisted of outlines, reworkings of preliminary definitions, brief
discursive commentaries, and several series of questions left largely unanswered. Yet despite
its fragmentary nature, I discovered that it was a treasure trove of information: it included
Schoenberg’s first extended discussion of his technique of developing variation and his first
explanation of his principle of orchestration based on a composition’s structure, which he called
“inventing for the orchestra.” His brief statements for Counterpoint, turned Fuxian rules on their
head: after first writing a traditionally conceived cantus in whole notes and adding another line
in half notes, he goes on to reverse the process—an original line in half notes with added whole
notes. There was no doubt in my mind these texts had to appear in print.

II. Can you tell us about your work with Patricia Carpenter?

As I worked on the text of Coherence, Counterpoint, Instrumentation, Instruction in Form, I unex-
pectedly met a friend from my undergraduate years at Columbia University, William Germano,
then Editor–in–Chief of Columbia University Press. We were on a New York City bus, and we
began a lively conversation. He had only recently heard about the existence of Schoenberg’s large
manuscript The Musical Idea and the Logic, Technique, and Art of Its Presentation. As Bill got off the
bus in front of the Ansonia Hotel at West 72nd Street, he shouted in a rather loud voice, “I want
to give you a contract to do an edition of Schoenberg’s manuscript! I’ll be in touch.” When I
told Professor Carpenter about this meeting, she was curious where Schoenberg had written the
manuscript. Years later we learned that Schoenberg had penned three-quarters of it at the Ansonia
Hotel on West 72nd Street!
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Given her profound knowledge of Schoenberg’s compositional work, I immediately invited
Professor Carpenter to join me on the project. She had studied with Schoenberg from 1942 to
1944 as an undergraduate at UCLA and then privately from 1945 to 1949. From 1947 to the spring
of 1949, she acted as a personal assistant helping him edit the English text of his counterpoint
book, typing out certain of its texts from dictations he had made on his Webster wire-recorder.1

After moving from California via Boston to New York in 1949, Carpenter was accepted into a
master’s program in music composition at Columbia University. However, she turned to studying
philosophy with the aesthetician Albert Hofstader and musicology with Paul Henry Lang. In
1971 she received a doctorate from the Faculty of Philosophy at Columbia with a thesis entitled
“The Janus–Aspect of Fugue: An Essay in the Phenomenology of Music Form.” Her major works
dealt with aesthetic topics such as the philosophical nature and history of the “musical work” and
with music-theoretical subjects such as Schoenberg’s study of tonal music (see Figure 3 for her
bibliography).

The Musical Idea and the Logic, Technique and Art of Its Presentation was a more philosophi-
cally oriented work than the earlier Coherence, Counterpoint, Instrumentation, Instruction in Form.
Schoenberg’s “musical idea,” was a theoretical concept encompassing multiple aspects of the
musical composition: first it designated the “first thought” of a musical work: in Schoenberg’s
words, “an indefinable space, resounding and in motion; a form shaped by its own characteristic
relationships; a sense of masses in motion, their design as ineffable as it is incomparable.”2 In this
sense the “idea” concerned something intuitively perceived but not rationally comprehended, not
yet expressed to the outside world as a phenomenon, but rather known to the composer alone.

As soon as clear rhythms and articulations could be identified, Schoenberg understood the
composition as consciously perceived in time, containing both stable and contradictory, unstable
elements creating unrest, setting the work into temporal motion. For example, the first cello C♯ in
Beethoven’s “Eroica” contradicts the opening E♭ triad. Unlike most theorists, Schoenberg would
consider such a single note to be a motive. He believed that the motion generated by such a
“problem” could result in a work analogous to a “living being,” a tradition of thought deriving
from Aristotle and Plotinus and re-interpreted by Goethe. In my 1993 article, “Schoenberg and
Goethe: Organicism and Analysis,” I explore this idea, leading to an understanding of the of the
tonal work as a field of contradictory forces, eventually fusing at a work’s conclusion.

In a post-tonal work, the field of such forces are often vaguer—the wholeness must be
discovered by the listener who both consciously and unconsciously comprehends the related
sounds as they unfold in time. Schoenberg sees this mental synthesis as one related to a common
experience: “Music is only understood when one goes away singing it and only loved when one
falls asleep with it in one’s head and finds it still there on waking up the next morning.”3

Schoenberg’s texts Coherence, Counterpoint, Instrumentation, Instruction in Form and The Music
Idea and the Logic, Technique, and Art of Its Presentation have clearly impacted American music
theory. Recently, in 2014, Jack Boss has reinterpreted “problems” of tonal works in a twelve-
tone context in his now–classic text, Schoenberg’s Twelve-tone Music: Symmetry and the Musical
Idea. Matthew Arndt’s 2019 article “Form-Function-Content” in Music Theory Spectrum critiqued
William Caplin’s work on musical form in light of Schoenberg’s concept of tonal functions. Zachary
Bernstein has just published a book entitled Thinking In and About Music: Analytical Reflections
on Milton Babbitt’s Music and Thought, showing the influence of Schoenberg’s Goethean sense of
organicism on the music of Milton Babbitt. For me, both Boss’s and in Bernstein’s books bring

1For a demonstration of the 1940s Webster wire-recorder, see https://www.youtube.com/watch?v=7Y6XLETWbqM.
2See Willi Reich, Arnold Schönberg, Der konservative Revolutionär (Vienna: Fritz Molden Verlag, 1968), p. 302.
3Style and Idea: The Selected Writings of Arnold Schoenberg, Leonard Stein, ed., Leo Black, trans.(New York: St. Martin’s

Press, 1975), p. 180.
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my work full–circle—the tenets of the “historical” tradition of Schoenberg research have now
connected with those of the “compositional.”

After completing these books, my research has been devoted to an ongoing effort to understand
the bridge between the extended tonal language of Schoenberg’s youth and his atonal paradigms of
sound. In 2006 I published a book entitled Arnold Schoenberg’s Second String Quartet in F-sharp Minor,
Opus 10: A Norton Critical Score, engaging the work through the paradox of reading its movement
as fluctuating between the tonic key, F–sharp minor and the key of the flat–one, F major, a tonic
that is not a tonic. Schoenberg was the first to mention such a problem but never wrote extensively
about it.4 Similarly, I engaged the paradoxical issue of how a quotation of popular music can be a
structural focal point of a complex, chromatic work, and how a final movement freed from any
tonal constraints, can end on an emphatic triad. In addition to substantial theoretical material,
this book also contains biographical and cultural information surrounding the Second Quartet,
which recently had significant influence on a documentary film on the Second Quartet, “Through
the Darkness,” produced and written by Hélan Warshaw, will appearing on public television in
Austria, Sweden, and Finland during September 2021.

In addition, my published book chapters and articles have dealt with the impact of Schoenberg’s
theories on the work of his American Experimentalist students—as in John Cage’s study’s use
of fugue in Second Construction in Metal and the relation of Lou Harrison’s Schoenbergiana to
Schoenberg’s Ode to Napoleon. I have scrutinized Schoenberg’s later handling of tonality in Second
Chamber Symphony, Op. 38, a piece begun in 1906 and finished in 1939. In Schenker Traditions:
A Viennese School of Music Theory and its International Dissemination, I have addressed differences
between Schoenberg and Schenker’s approach to the organic artwork. Another essay discusses
Schoenberg’s theories in relation to René Leibowitz’s recorded performance of The Rite of Spring;
it appeared in The Rite of Spring at 100, a book I co-edited with Professors Maureen Carr and
Gretchen Horlacher, which was given the Ruth Solie Award of the American Musicological Society.

While working in the archive at the Arnold Schönberg Center in Vienna, Austria, I further
found two previously unknown pieces written by Schoenberg: one an untitled, incomplete fugue
expressing his emotions about the horrors of Kristallnacht. The work was played in New York
at YIVO, The Center for Jewish Historical and Cultural Studies, by the Grammy-award honoree,
pianist David Holzman. The other, “My Horses Ain’t Hungry,” was an incomplete arrangement of
an Appalachian folksong, completed by the composer Allen Anderson and performed by Professor
Susan Klebanow and the Chamber Singers at the University of North Carolina at Chapel Hill.

III. What is Schoenberg’s role in your current work?

At the present time I am General Editor of the Oxford University Press, nine- volume series,
“Schoenberg in Words” with the Schoenberg scholar Professor Sabine Feisst. So far, we have
published Schoenberg’s Program Notes and Analyses edited by J. Daniel Jenkins; a new edition of
Models for Beginners in Composition by Gordon Root; Schoenberg’s Early Correspondence edited by
Ethan Haimo and Sabine Feisst; Correspondence with American Composers, edited by Sabine Feisst;
and Schoenberg’s Correspondence with Alma Mahler edited by Elizabeth Keathley and Marilyn McCoy.

My contribution to the series, entitled Schoenberg on Counterpoint, will offer a revealing ex-
plication of Schoenberg’s understanding of techniques and forms associated with contrapuntal
craft. The manuscripts in the text are formally and topically diverse, ranging from aphorisms to
a 130–page book draft; disparate in subject matter, reaching from definitions of counterpoint to

4See Schoenberg’s chart in Arnold Schoenberg, Structural Functions of Harmony, rev. ed. (New York: W. W. Norton &
Co., 1969), p. 38.
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philosophical musings on beauty; and distinct in presentation, from student-copied class handouts
to Schoenberg’s hand-copied scores of school compositions.

Part I of this edition presents a lengthy introduction positioning these teachings and writings
within the framework of Austro-German contrapuntal study in the late-eighteenth, nineteenth- and
early twentieth centuries and contrasting their content with Schoenberg’s self-proclaimed “new
method” of teaching, founded practically on his belief in the intrinsic unity of the subdisciplines
of compositional craft and theoretically on the premise that even the tiniest example of species
counterpoint or a complex school fugue must be regarded as a “little composition” emerging
organically from the materials of a basic configuration, whether a cantus firmus without motives,
an original, motivic “independent voice,” a chorale melody, or the opening contrapuntal combina-
tion/Grundgestalt of complex canons or fugues. Schoenberg maintained that his recommended
methods of study opened a gateway for the individual expression of ideas in music for composers,
performers, theorists, or musicologists.

Part II chronologically presents the musical examples destined for inclusion in Schoenberg’s
eight attempted book projects. the contents of the first one, Composing with Independent Voices,
spilled over into the second project, simply entitled Counterpoint. Three more projects led to his
final, most extended, work on counterpoint, entitled Preliminary Exercises (1942–50). Here it is
offered for the first time in its previously unpublished, second draft (1943–50)—the last version on
which Schoenberg personally worked. Preliminary Exercises (1943–50) was to be the first of a three-
volume set called Counterpoint: Preliminary Exercises, Contrapuntal Composition, and Counterpoint in
Homophonic Music. Ca. 1947 Schoenberg proposed a final Book Project entitled Bach’s Counterpoint
in outline form, but it is filled with a multitude of musical examples, summarizing Schoenberg’s
hearing of Bach.

Part III of this volume offers additional commentaries not specifically slated for inclusion
in a book project. Here they are divided into six topical areas: definitions and descriptions of
“counterpoint;” the “musical idea” as understood in contrapuntal contexts; canon; traditional
versus contemporary counterpoint; commentary on counterpoint in the work of other composers,
scholars, and journalists; and observations on techniques in the works of Johann Sebastian Bach.

The book is accompanied by a website containing scores and midi files of several school
compositions by Schoenberg and ca. 500 musical examples of various forms of counterpoint. I
expect it to be done by the 150th birthday celebration for Arnold Schoenberg in 2024.

IV. What did you think of the MusMat conference on Schoenberg and

mathematics held this year?

Your conference, attractively advertised with a logo having multi-colored squares forming hexa-
chords and twelve-tone sets, was a valuable one. In general, I found it fascinating that Schoenberg’s
working out of a motive in developing variation could be translated into mathematics in so many
ways (i.e., see the presentations of Carlos Almada, Edgardo Rodriguez and Alejandro Martinez,
and Cecilia Saraiva). I also was pleased to learn more history and theory concerning Josef Hauer’s
music and thought (i.e., in = the lectures of Julio Herrlein and Dominik Sedivy). The concerts
featuring Brazilian compositions were engaging for we rarely hear this music in the United
States—–thus, I appreciated the works of Carlos Amada, Vinicius Ramos Braga, Rodrigo Marconi,
and Liduino Pitombeira.

Currently, much American music theory focuses on the cognitive or pedagogical aspects of
tonal (or modal) music. I believe that the post-tonal sounds need more mathematical attention; for
example, the study of algorithmic composition is important for the field of theory. As editor–in-
chief of Music Theory Spectrum, I published Robert Wannamaker’s “Rhythmicon Relationships,
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Farey Sequences, and James Tenney’s Spectral CANON for CONLON Nancarrow (1974).” The
article was well received. In Schoenberg studies, I also would like to see more work on young
composers like the New Yorker Christopher Cerrone, who sees Schoenberg’s music as closely
related to aspects of his own twenty–first-century compositions.

V. In your opinion, which is Schoenberg’s most important contribution

to music theory?

Schoenberg’s signature theoretical concepts are intimately related around his personal conception
of the organic artwork. Monotonality and Grundgestalt are central, but they are inseparable from
his understanding of the motive and its atomization into elements and features, sentence forms,
liquidation, neutralization, the compositional problem, and developing variation in homophonic
music versus unfolding or unraveling [Abwicklung] in forms of complex canon and fugue.5

Interestingly, Schoenberg believed that re-invented forms of these concepts were especially valu-
able “in reading the future from the past.”6 Thus, his general description of term Grundgestalt—“that
to which all is traced back”—easily morphs the description of a tonal theme into one of a twelve-
tone set; analogously “developing variation and “unraveling,” sentence forms, liquidation, and
“compositional problems” used in interpreting the tonal works of Bach, Beethoven, and Brahms,
can also be employed in novel ways to understand aspects of atonal or twelve-tone music. This
transference of a single vocabulary from one music to another is virtually unique, and at the crux
of Schoenberg’s contributions.

VI. Which is your favorite piece among his compositions?

It is a tossup between the String Quartet No. 2 in F–Sharp Minor, Op. 10 (1907–08), and the
unfinished oratorio Die Jakobsleiter [Jacob’s Ladder] (1917–22, 1944). At the Quartet’s close, a triad
literally frees itself from tonality as it ascends into the atmosphere of “other planets.” At the end
of Part I of Die Jakobsleiter, two souls freed from life sing higher and higher until they reach the
stratosphere, thus completing their journey to the heavenly sphere of God and the angels.

In this age of Covid confinement, it is especially wonderful to experience the freedom of
finding new realms.

5For references to all these concepts in Schoenberg’s writings, see the “Concordance of Terms” in Arnold Schoenberg,
The Musical Idea and the Logic, Technique, and Art of Its Presentation, Patricia Carpenter and Severine Neff, eds. With a New
Foreword by Walter Frisch.

6See Arnold Schoenberg, Theory of Harmony, Roy E. Carter (Berkeley, California: University of California Press, 1978),
29.
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Figure 2: Two traditions of studying Schoenberg in the United States (cont.).
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Figure 3: The publications of Patricia Carpenter (1923–2000).
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