
Building a Knowledge Base
of Rhythms

Charles Ames

info@charlesames.net
Orcid: 0000-0001-7263-3518

DOI: 10.46926/musmat.2022v6n2.72-94

Abstract: This article is about composing programs. It explores generating up-front a knowledge base
of rhythms as an alternative to generating rhythms on the fly. Since the knowledge base contains much
more information than any one composing program will ever actually use, it employs ISAM technology
to persist the information in one random-access file. The fundamental rhythmic entities are monophonic
patterns and polyphonic textures. Patterns are defined as successions of pulse events (rests, attacks,
ties). Textures present multiple patterns simultaneously. Various entity properties are calculated up
front and stored alongside content data. For textures, these properties include an attacks profile, which
is a vector. A persistent lookup map is realized to efficiently identify textures sharing attacks profiles in
common. A pattern-to-pattern comparison identifies relationships which are documented in an ISAM map;
these pattern-to-pattern relationships are then used to build a random-access map of texture-to-texture
relationships. The article closes with a series of applications demonstrating how rhythms may be selected
by combining knowledge-base queries with random shuffling and constraint filtering.

Keywords: Composing program. Rhythm knowledge base. ISAM.

I. Introduction

Rhythm is the foundation of my music-theoretical thinking. To give a visual analogy, rhythm
provides the shapes which pitch illuminates with color. Pretty much all of my composing
programs lay out the rhythm first and fill in the pitches later. That applies to programs which

emulate familiar styles and also to programs which explore pan-chromaticism and emancipated
dissonance.

Most of my programs have taken an on-the-fly approach to generating rhythms. For example,
my 1987 “Cybernetic Composer”1 generated rhythms for rock, 2 jazz styles, and ragtime using
context-sensitive grammars which divided long durations into shorter ones. Three of the four
styles alternated ‘composed’ tunes with ‘improvisatory’ material; the ‘composed’ sections followed
templates which generated ‘fresh’ rhythms for some segments and copied earlier rhythms for
other segments. One feature of the rock style was an improvisatory break during which the
accompaniment rested while the lead played through.

Received: October 21st, 2022
Approved: December 21st, 2022

1The “Cybernetic Composer” is described on my site at https://charlesames.net/cybernetic-composer/index.
html.

72

mailto:info@charlesames.net
https://doi.org/10.46926/musmat.2022v6n2.72-94
https://charlesames.net/cybernetic-composer/index.html
https://charlesames.net/cybernetic-composer/index.html

Journal MusMat • December 2022 • Vol. VI, No. 2

You can judge from the examples provided on my site whether these grammars were effective;
however, the site examples were selected to present my work in the best light. The two rock
examples happen to present fairly active material for their improvisatory breaks, but this didn’t
always happen. The rhythm generator basically worked its way down the decision tree by flipping
coins, and I was unable at the time to figure out how to incline those decisions toward more
active results. Later it occurred to me that however many different rhythms my grammars were
capable of producing, it would still be practical to run an enumeration algorithm that would list
all candidates up front. Having that, my program could assign an activity score (attacks per beat)
to each candidate. But by then the Age of Intelligent Machines exhibit was already on the road.

The idea of enumerating material up front stuck with me. I took a stab at it in the programs
for my 1988 solo-violin piece, “Concurrence” [1]. Here the rhythmic material comprised different
ways of dividing a quarter note into sixteenths, given that the instrument could do any of four
things in each sixteenth: Initiate a new note, tie from a previous note, slur from a previous note,
or rest. But this time around my concern wasn’t for the qualities of specific patterns but rather
for rather the degree of similarity between any two patterns. This was measured by calculating
the minimum number of primitive operations required to transform one pattern into the other.
The rhythm-selecting programs worked from a template which laid out the compositional form
as a sequence of nodes, one per quarter note. These nodes were connected with references that
indicated “this node is similar to that previous node” or “this node contrasts with that previous
node”.

The present effort generalizes what I did for “Concurrence” into a knowledge base of rhythms.
First off, the idea of dividing quarter notes into sixteenths generalizes into the idea of dividing
some unspecified longer duration into pulses of nominally-equal shorter durations. Beyond that,
the fixed-length, monophonic patterns of “Concurrence” are here extended to textures with two,
three, or four pulses, layering up to three patterns polyphonically. Hovering over this effort has
been the prospect of combinatorial explosion. Faced with this prospect, the distinction between
freshly attacked notes and slurred-to notes had to be dropped. I found it necessary to limit the
maximum pattern length to 4 and to fix the number of layered patterns at 3 (fewer layers are
accommodated by allowing some layers to rest). Even under these restrictions it required some 4
days to build the file; most of this time being taken up by the process of gleaning texture-to-texture
relationships.

At this writing I have only the vaguest idea what kind of pieces this knowledge base will be
used for, only that there will be more than one (health permitting) and that the first of these pieces
will employ additive rhythms. Since the knowledge base is intended for multiple use by myself
and possibly others (if there’s any interest), its design is neutral and generic.

II. ISAM Persistence

According to my production framework2 I should be implementing the overall compositional
process as a succession of stages, with earlier stages leaving XML-formatted files of data for
later stages to pick up. However here I am creating a knowledge base of building blocks, which
knowledge base is potentially usable by many projects. Therefore the data needs to be persistent
(stored in a file) and random-access. Although the knowledge base may hold a great deal of
material, only a limited subset will be brought in to any individual application. Also there will be
a need to query the knowledge base for sets of entities which meet certain criteria or for sets of
entities which bear a certain relationship to some entity already in hand.

2https://charlesames.net/glossary/production-framework.html.

73

http://www.musmat.org/
https://charlesames.net/glossary/production-framework.html.

Journal MusMat • December 2022 • Vol. VI, No. 2

As a retired database programmer my first instinct was to go the full SQL route, but SQL
databases impose considerable overhead. The requirements just listed can instead be satisfied
using Indexed Sequential Access Method (ISAM), a technology central to SQL databases which is
also available in stand-alone implementations. The ISAM implementation I found to do this in
Java was MapDB.3 MapDB is “free and open-source” and at this writing is into its 3.X production
release. Despite this history the documentation remains sketchy. The online Javadoc equivalent
simply lists methods without either method or parameter descriptions. Explanatory documents
are few and far between, and of those that I could find, the sample code that did what I wanted to
do wouldn’t even compile.

That’s the bad news. The good news is that MapDB implements a BTreeMap class, which
acts like Java’s SortedMap interface but which stores its data in a random-access file rather than
in memory. Like a SortedMap, a BTreeMap pairs keys with associated values. You can store Java
objects as BTreeMap values with the proviso that the stored objects cannot reference other objects.
So if object A relies on object B you have to implement object B with a unique identifier (MapDB
seems to like long integers). Then if you’ve pulled object A from its BTreeMap, and want to look at
a B contained within A, you can get object B’s identifier from object A and use the identifier to
pull object B from the BTreeMap where object B resides.

In the SQL world I would have stored each class of object in a database table with the unique
identifier as its primary key. To facilitate queries for objects I would have implemented table indices
enumerating the relevant properties and which objects have them.

MapDB has no tables and hence no table indices. However one can construct a BTreeMap
which serves a purpose similar to a table index. In my first attempt to do this I built the key from
one or more object properties and used the unique object identifier (a long) as the value. This
didn’t work because a Map (both SortedMap and BTreeMap implement this interface) associates
exactly one value with each valid key. My second attempt incorporated the unique object identifier
as the rightmost key element. This also didn’t work — the sample code provided for this situation
wouldn’t compile — however I did manage to find a successful kludge by packing key elements
into long integers.

III. Entities

The PulseEventType enumeration lists three things that one layer within a texture can do during
a pulse: REST , ATTACK , and TIE .

Instances of the PulsePattern class persist in the knowledge base. A PulsePattern describes
a succession of pulses and what happens in each pulse. This succession is implemented as an
array of PulseEventType elements. The elements of this array are accessed using a position
index, while the length of a PulsePattern instance is the array length (i.e. the number of pulses).
Each PulsePattern is identified by a serially-generated long integer. There is only one constraint
in forming a PulsePattern: a TIE can never follow a REST .

Instances of the PulseTexture class also persist in the knowledge base. A PulseTexture layers
multiple simultaneous PulsePattern instances, all of the same length. This is implemented as an
array of long integers, whose elements are PulsePattern identifiers. The elements of this array
are accessed using a layer index, while the depth of a PulseTexture instance is the array length
(i.e. the number of overlaid patterns). Each PulseTexture is identified by a serially-generated
long integer. The definition of a PulseTexture abstracts away the order of patterns within the
texture. Thus if a PulseTexture contains patterns A, B, and C, that would apply to pattern A on

3https://MapDB.org/.

74

http://www.musmat.org/
https://MapDB.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

top, pattern B in the middle, and pattern C on the bottom. However it would also apply to pattern
B on top, pattern C in the middle, and pattern A on the bottom.

A specific statement of a PulseTexture is obtained by combining the PulseTexture with a
mapping from musical parts to texture layers. For any given PulseTexture of depth 3, up to six
distinct statements are available, corresponding to the six permutations of the set {0, 1, 2}. Part-to-
layer mappings are represented in the knowledge base using the Permutation class. Permutation
instances combine an array of 3 ordinals with a long-integer identifier derived by packing the
number of array elements (3) in the leftmost nibble and the individual ordinals in successive
nibbles thereafter. The six Permutation instances persist in the knowledge base, though in practice
they are cached into an in-memory map.

Both simple and compound texture statements can be represented using the TextureStatement
class, whose components are pairings of PulseTexture instances with Permutation instances.
The TextureStatement class effectively presents a two-dimensional array of PulseEventType
elements, with a part index ranging from 0 to depth−1 and a position index ranging from 0 to
length−1. Instances of the TextureStatement class do not persist in the knowledge base; however
the end product of any session working with the knowledge base will typically be one or more
TextureStatement instances.

Instances of the Relation class persist in the knowledge base because in order to get MapDB
to work I needed to associate each Relation instance with a persistent long-integer identifier.
A Relation instance combines a RelationCategory with an integer offset. RelationCategory
is a software enumeration which among other things includes code to determine whether two
patterns are related in that way. The offset depends upon the RelationCategory. For examples
the offset for RelationCategory.ROTATE indicates how far to right shift, while the offset for
RelationCategory.MASK indicates which pulse position is affected. The full RelationCategory
enumeration is presented below.

The remaining class whose instances persist in the knowledge base is Profile. A Profile is
array of integers which count how often a certain PulseEventType (or combination thereof) occurs
simultaneously during the corresponding pulse in a PulseTexture instance. The elements of this
array are accessed using a position index, while the length of a Profile instance is the array
length (i.e. the number of pulses). Profile instances also include a long-integer identifier which
packs the number of array elements (the length) in the leftmost nibble and the individual counts
in successive nibbles thereafter.

IV. Scalar Properties

The most fundamental property of a PulseTexture is length. The most fundamental properties
of a PulseTexture are length and depth.

There is a family of scalar properties which have absolute versions, which are integer counts,
and relative versions. The relative version is a floating-point number calculated as the count di-
vided by its upper limit. Examples for the following definitions will be drawn from PulseTexture
#16520, which has the following content:

PulseTexture #16520

Layer PatternID Content
0 40 [▶ −▶]
1 54 [▶▶ −−]
2 78 [−− ▶]

75

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

The content is represented pictographically: “▶” means ATTACK , “−” means TIE , and “ ”
means REST .

i. Attacks

The attacksCount and attacksRatio are dual properties shared by PulsePattern and PulseTexture
instances. For PulsePattern the attacksCount is the number of pulses with the ATTACK event
type, for which the upper limit is the pattern length. For PulseTexture the attacksCount remains
the number of ATTACK pulses, however the upper limit expands to length × depth.

Referring back to PulseTexture #16520, PulsePattern #40 has 2 attacks, PulsePattern #54
has 2 attacks, and PulsePattern #78 has 1 attack. Therefore PulsePattern #16520 has an
attacksCount of 2 + 2 + 1 = 5 attacks. The attacksRatio is 5/12 = 42% of a possible 12.

ii. Coverage

The coverageCount and coverageRatio are also dual properties shared PulsePattern and
PulseTexture. For a PulsePattern instance the coverageCount is the number of ATTACK pulses
plus the number of TIE pulses, for which the upper limit is the pattern length. For PulseTexture
the upper limit expands to length × depth.

Referring back to PulseTexture #16520, PulsePattern #40 has 3 non-rest events, PulsePattern
#54 has 4 non-rest events, and PulsePattern #78 has 3 nonrests. Therefore PulsePattern #16520
has a coverageCount of 3 + 4 + 3 = 10. The coverageRatio is 10/12 = 83% of a possible 12.

The compliment to coverageCount is the count of rests, which for PulsePattern #16520 is 2
or 17% of a possible 12.

iii. Dispersion

The dispersionCount and dispersionRatio are dual properties of PulseTexture instances. The
dispersionCount is the number of pulses with an ATTACK in at least one layer. The upper limit is
length.

PulseTexture #16520 has 1 attack in pulse-position 0 (PulsePattern #54), 2 attacks in pulse-
position 1 (PulsePattern #40 and #54), 1 attacks in pulse-position 2 (PulsePattern #78), and
1 attack in position 3 (PulsePattern #40). This gives a dispersionCount of 4 with a 100%
dispersionRatio out of a possible 4.

The compliment to dispersionCount is the count of pulses without an ATTACK in any layer.
For PulsePattern #16520 this is 0 or 0% of a possible 4.

iv. Imbalance

The imbalanceCount and imbalanceRatio are dual properties of PulseTexture instances. The
imbalanceCount is calculated by iterating through the layers, determining the maximum and
minimum number of attacks, then subtracting the minimum from the maximum. If this max-min
is zero, all layers will share the same number of attacks. Otherwise at least one layer will have
more than its fair share activity. The upper limit obtains when all attacks happen in the same layer.

For PulseTexture #16520 the maximum number of attacks is 2 (PulsePattern #40 and #54)
and the minimum number of attacks is 1 (PulsePattern #78). Thus the imbalanceCount is
2 − 1 = 1 and the imbalanceRatio is 25% of a possible 4. An imbalanceCount of 4 (100%) would
have resulted if one pattern had 4 attacks and another of the remaining 2 patterns had no attacks.

76

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

The compliment to imbalanceCount is length − imbalanceCount. For PulsePattern #16520
this is 4 − 0 = 4 or 100% of a possible 4.

V. Order of Patterns in Textures

The enumeration algorithm for PulseTexture instances iterates through all possible pattern IDs
for layer 0. Layer-1 pattern IDs range from the layer-0 pattern ID upwards, while layer-2 pattern
IDs range from the layer-1 pattern ID upwards. This allows the same pattern to appear twice or
three times in the same texture, but prevents any two textures from presenting the same set of
patterns in different permutations.

Anyone employing a PulseTexture instance as a building block for a musical passage will
quickly need to determine which musical part will play which layer. Accepting the default order
is generally not a desirable option. If the voices are co-equal then a better option would be to
permute layers randomly. If the context is metric and one voice has a lead role with the others
providing accompaniment, then it may be desirable to assign those layers which most coincide
with strong beats to the accompaniment and give the more syncopated layer to the lead voice.
This metric option requires strong-beat position data.

Yet another option is to find the permutation which orders the patterns from most to least
active. To quantify the level of activity within a pattern I implemented a beauty contest4 using the
formula:

pattern activity = 16 × attacks + ties + rand[0, 1]. (1)

For example consider PulseTexture #16520:

• [▶ −▶]contains 2 attacks and 1 tie. A random offset of 0.524 gives an activity score of
33.524.

• [▶▶ −−]contains 2 attacks and 2 ties. A random offset of 0.340 gives an activity score of
34.340.

• [−− ▶]contains 1 attacks and 2 ties. A random offset of 0.721 gives an activity score of
18.721.

The permutation which orders the patterns from most to least active is therefore (1, 0, 2). Notice
that the number of attacks always swamps the number of ties, while the random offset exerts
influence only when two patterns share the same counts of attacks and ties.

VI. Profiles

I adhere to the premise that musical meter is established through the convergence of polyphonic
attacks on strong beats and divergence of attacks on weak beats.5 The rhythmic knowledge base
described here does not itself favor ‘metric’ textures; however, it does provide a handle which can
be used to identify them. This handle is the attack profile.

4Beauty contests are simpler among the merit-based problem-solving strategies discussed in [2]. The specific heading is
“’Beauty Contest’ and ’Blackboard’ Models”, pp. 75–76.

5This premise underlies an article by Karl Kohn [3]. Kohn showed me a renotation example during an undergraduate
composition lesson; however the lesson slipped from memory until we met again a few years ago. Convergence of
polyphonic attacks is also the premise underlying my “Complementary Rhythm Generator”. The backstory given on my
site (https://charlesames.net/rhythm/index.html) says that I came to the premise while studying the collected motets
of Guillaume de Machaut. I now realize that Kohn’s lesson primed me for this realization.

77

http://www.musmat.org/
https://charlesames.net/rhythm/index.html

Journal MusMat • December 2022 • Vol. VI, No. 2

The attacks profile is a vector property of the PulseTexture class. It is an array of small integers
(actually bytes) giving the number of simultaneous ATTACK events, by pulse position. When two
textures have the same attack profile, they will be heard to have the same aggregate rhythm. If the
profile divides into regular groups initiated by larger ATTACK counts, then this aggregate rhythm
will be heard as meter.

Two textures having the same attacks profile is a binary relationship which establishes equiv-
alence classes among PulseTexture entities. Since PulseTexture entities have short lengths it is
possible to pack their profiles into the 16 nibbles of a long integer, then create a lookup map of
PulseTexture instances using this packed profile as the most significant key element.

For example, PulseTexture #16520 has attack profile [1, 2, 1, 1]. A query of the lookup
map returns 756 PulseTexture instances sharing the same attack profile. These results include
PulseTexture #16520. Here is a random sampling of other textures returned by the same query:

PulseTexture #16520

Layer PatternID Content
0 40 [▶−▶]
1 54 [▶▶−−]
2 78 [−−▶]

PulseTexture #11757

Layer PatternID Content
0 36 [▶▶]
1 40 [▶−▶]
2 60 [▶−−]

PulseTexture #15097

Layer PatternID Content
0 39 [▶−]
1 42 [▶]
2 71 [−▶▶▶]

PulseTexture #15176

Layer PatternID Content
0 39 [▶−]
1 44 [▶ ▶]
2 69 [−▶ ▶]

PulseTexture #17033

Layer PatternID Content
0 41 [▶−−]
1 42 [▶]
2 71 [−▶▶▶]

PulseTexture #17112

Layer PatternID Content
0 41 [▶−−]
1 42 [▶ ▶]
2 71 [−▶ ▶]

Yet to be implemented as of this writing are the rest profile, the coverage profile, and the non-
attacks profile. The rest profile gives the number of simultaneous REST events by pulse. The coverage
profile gives the number of simultaneous non-REST events (ATTACK or TIE) by pulse; it is the
compliment of the rest profile. The non-attacks profile gives the number of simultaneous non-ATTACK
events (REST or TIE) by pulse; it is the compliment of the attacks profile. Among these the coverage
profile is most clearly useful.

VII. Relations

My original plan was to enumerate all possible PulseTexture instances of depth 3 and lengths
of 3, 4, and 5, then evaluate all PulseTexture pairs to discover whether some close relationship
existed between the pair and, if so, to document that relationship. This plan was wrecked by
combinatorial explosion. Testing for depth 3 produced 120 PulseTexture instances of length 2
and 1,771 PulseTexture instances of length 3. This meant evaluating (120 + 1,771)2 = 18,912 =
3,575,881 PulseTexture pairs. The test ran through to completion, but it took my laptop 3 days

78

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

to run it. As things turned out I was able to speed things up substantially by caching pattern
maps into in-memory collections. This allowed me to include textures of length 4, of which
there were 29,260 instances. The number of required pairwise evaluations thus increased to
(120 + 1,771 + 29,260)2 = 311,512 = 970,384,801; however in-memory caching allowed my laptop
to crunch these through in 2 days rather than 3. However, there were bugs. Once those were
(mostly) remedied it required over 4 days to build the file.

Relations are defined between PulsePattern instances. A Relation instance assigns a unique
long-integer ID, to the combination of a RelationCategory (defined through an Enum) and an offset.
Thus IDENTITY (0) indicates the identity relation while REVERSE (0) indicates the retrograde relation.
0 is the only offset permitted for these two categories. Here is a summary of RelationCategory
items:

• IDENTITY — Target same as source. This relation only happens when the compared
PulsePattern instances have the same ID.

• REVERSE — Target retrograde of source. This relation preserves durations, for examples,
REVERSE (0) for[▶−−] gives[▶−−]while REVERSE (0) for[▶−▶] gives[▶−▶].

• EXTEND — Target same as source except for pulse inserted in N-th position. If an inserted
REST would precede a TIE , then the TIE converts to an ATTACK . For example, EXTEND (1) for
[▶−▶]gives[▶▶−▶],[▶−−▶], and[▶ ▶▶].

• TRUNCATE — Target same as source except for pulse removed from N-th position. For
example TRUNCATE (1) for [▶ −−▶] gives [▶ −▶]. If the ATTACK is truncated from the
succession REST , ATTACK , TIE then the TIE converts to an ATTACK . For example, TRUNCATE (2)
for[▶ ▶−]gives[▶ ▶].

• ROTATE — Target derived from source by right shifting N positions, with N ̸= 0. For example
ROTATE (1) for[▶▶▶]gives[▶ ▶▶]. If right-shifting a REST places it in front of a TIE ,
then the TIE converts to an ATTACK ; for example ROTATE (1) for[−▶] gives[▶ ▶] rather
than the invalid[▶ −].

• MASK — Target derived from source by resting in N-th pulse. For example, MASK (1) for[▶
▶▶▶] gives[▶ ▶▶]. If pulse N + 1 has a TIE , then the TIE converts to an ATTACK ; for
example, MASK (0) for[▶−−] gives[▶−]rather than the invalid[−−].

• EXCHANGE — Target derived from source by swapping pulse position N with pulse position
N + 1. For example, EXCHANGE (1) for [▶ ▶ ▶] gives [▶ ▶▶] . Exchanges preserve
durations; for example EXCHANGE (0) for [▶−]gives [▶−]. If the exchange would move a
REST in front of a TIE , then the TIE converts to an ATTACK ; for example EXCHANGE (0) for
[−]gives[▶] rather than the invalid[−].

There is no exclusivity to relations: [▶▶▶▶]bears the IDENTITY (0) relation to itself, but it also
bears the relations REVERSE (0), ROTATE (N) (for every N), EXCHANGE (N) (for every N) and so forth.

Coding the procedures which discover valid relations between patterns was a challenging
exercise combining asymmetric iterations with conditional branching. The special circumstances
introduced by ties greatly complicate things. This is an exercise I would recommend for beginning
programmers, especially those who wish to pursue composing programs.

To document all pattern-to-pattern relations I implemented a BTreeMap whose key consisted
of three long integers: the source-pattern ID, the relation ID, and the target-pattern ID. Placing
the relation ID in the middle allowed map queries of the form: given a a reference instance,
which PulsePattern instances bear any sort of relation? Also map queries of the form: given a a
reference instance, which PulsePattern instances bear a specific relation? (The BTreeMap value
repeated the relation ID.) For the record, the number of pattern-to-pattern relations discovered
was 6889.

79

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

Two PulseTexture instances are defined to bear a Relation if all their layered PulsePattern
instances bear the same relation. Given any two PulseTexture instances (a source and a target),
the comparison algorithm iterated through all the different ways the target layers could align with
the source layers. (With the knowledge base depth set to three layers per texture, this amounted to
six permutations.) The algorithm then identified all the different relations existing between source
layer 0 and its corresponding target layer. For each layer-0 relation, the remaining layers were
compared. If both remaining source layers bore the same relation to their corresponding target
layers, then the two textures were determined to have that relation.

To document the close relationships discovered by these pairwise comparisons, I created a
BTreeMap whose key combined four long integers: the source-texture ID, the relation ID, the
permutation ID, and the target-texture ID. (The BTreeMap value repeated the relation ID and the
permutation ID.)

Specifying the source-texture ID as 16520 and allowing the remaining key fields to range freely
queries all texture-to-texture relations with PulseTexture #16520 as the source. This query fetched
back 51 instances in all. Here once again is PulseTexture #16520:

PulseTexture #16520

Layer PatternID Content
0 40 [▶ −▶]
1 54 [▶▶ −−]
2 78 [−− ▶]

And here is a random sampling of 6 from the 51 instances fetched:

MASK (2)

PulseTexture #9688

Layer PatternID Content
0 34 [▶]
1 48 [▶▶ ▶]
2 76 [−−]

ROTATE (2)

PulseTexture #21902

Layer PatternID Content
0 69 [−▶ ▶]
1 79 [−−▶▶]
2 46 [▶ ▶−]

NOT (0)

PulseTexture #1958

Layer PatternID Content
0 42 [▶]
1 29 []
2 30 [▶]

MASK (1)

PulseTexture #7003

Layer PatternID Content
0 32 [▶▶]
1 46 [▶ ▶−]
2 65 [− ▶]

ROTATE (3)

PulseTexture #29016

Layer PatternID Content
0 78 [−−▶]
1 61 [▶−−▶]
2 69 [−▶ ▶]

TRUNCATE (0)

PulseTexture #1684

Layer PatternID Content
0 19 [▶−▶]
1 20 [▶−−]
2 23 [−▶]

(Notice that PulseTexture #9688 is missing an attack in position 3 of layer 0. The RelationCategory
code still needs work.)

80

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

VIII. Application: Foundational Textures

The rhythmic knowledge base described here takes a neutral attitude toward rhythmic material.
With applications this changes. Here the user actively expresses some sort of preference. He or
she first uses a BTreeMap to query for candidates meeting some desired criterion. The resulting list
can then be filtered by iterating through them and discarding those which fail to meet additional
criteria. The pared-down list should then be shuffled randomly to eliminate enumeration biases.
If all criteria have been applied, then the first candidate in the shuffled list becomes the selection.
However sometimes additional criteria remain which impose additional overhead — like trying
out different permutations. In this scenario a second iteration may be necessary. The selected
candidate will be the first one in the shuffled list which has a permutation that works.

i. Silence

A texture is concerted when for any given pulse position, all layers have the same event type. This
very first application will demonstrate how to identify concerted textures which are entirely silent;
that is, where the event type is REST for all layers and all positions.

There is no lookup map which specifically identifies silent textures. The best route available
is the attacks-profile lookup map. Querying this map for the attacks profile [0,0] returns 10
candidates (from the 120 textures of length 2). The first 5 of these are:

PulseTexture #0

Layer PatternID Content
0 0 []
1 0 []
2 0 []

PulseTexture #5

Layer PatternID Content
0 0 []
1 0 []
2 5 [−]

PulseTexture #7

Layer PatternID Content
0 0 []
1 0 []
2 7 [−−]

PulseTexture #30

Layer PatternID Content
0 0 []
1 5 [−]
2 5 [−]

PulseTexture #30

Layer PatternID Content
0 0 []
1 5 [−]
2 7 [−−]

While it happens that PulseTexture #0 is the exactly the texture sought, the end user can’t
be expected to know that the texture-enumeration algorithm would have produced this first.
However, with only 10 candidates it is not unreasonable to iterate through the candidates to filter
out those with event type TIE in any layer or position. Once coverage profiles have been captured
within the stored PulseTexture instances, it will be a simple matter to exclude textures with
coverage profiles other than [0,0].

81

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

To identify silent textures of length 3 involves first querying for textures with attacks profile
[0,0,0]. This returns 20 candidates (from the 1771 textures of length 3), which can then be filtered
for coverage profile [0,0,0].

Likewise, identifying silent textures of length 4 involves first querying for textures with attacks
profile [0,0,0,0]. This returns 35 candidates (from the 29260 textures of length 4), which can then
be filtered for coverage profile [0,0,0,0].

In summary, the query-and-filter operations just described produce exactly three examples of
entirely silent textures, one for each texture length in the knowledge base:

PulseTexture #0

Layer PatternID Content
0 0 []
1 0 []
2 0 []

PulseTexture #120

Layer PatternID Content
0 8 []
1 8 []
2 8 []

PulseTexture #1891

Layer PatternID Content
0 29 []
1 29 []
2 29 []

ii. Onbeats

This second application will demonstrate how to identify concerted textures where the event type
is ATTACK for all layers in position 0 and not ATTACK elsewhere. Candidates will be identified
using the attacks-profile lookup map, for profiles containing the number of simultaneous events
per pulse in pulse position 0 and 0 in all other positions. The number of simultaneous events per
pulse is determined by the knowledge-base depth, which is 3.

The patterns will be articulated in three ways:

• Staccato onbeats will be identified using a coverage profile that is the same as the attacks
profile.

• Sustained onbeats will be identified using a coverage profile with 3 in all positions.
• Detached onbeats will be identified using a coverage profile with 0 in the rightmost position

and with 3 in all other positions.

The query phases of these operations produced 5 candidates of length 2, 10 candidates of
length 3, and 20 candidates of length 4.

Filtering by the staccato coverage profile produced exactly three examples of staccato-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #64

Layer PatternID Content
0 2 [▶]
1 2 [▶]
2 2 [▶]

PulseTexture #1075

Layer PatternID Content
0 13 [▶]
1 13 [▶]
2 13 [▶]

82

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

PulseTexture #17907

Layer PatternID Content
0 29 [▶]
1 29 [▶]
2 29 [▶]

Filtering by the sustained coverage profile produced exactly three examples of sustained-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #100

Layer PatternID Content
0 4 [▶−]
1 4 [▶−]
2 4 [▶−]

PulseTexture #1726

Layer PatternID Content
0 20 [▶−−]
1 20 [▶−−]
2 20 [▶−−]

PulseTexture #29127

Layer PatternID Content
0 62 [▶−−−]
1 62 [▶−−−]
2 62 [▶−−−]

Filtering by the detached coverage profile produced exactly three examples of detached-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #64

Layer PatternID Content
0 2 [▶−]
1 2 [▶−]
2 2 [▶−]

PulseTexture #1605

Layer PatternID Content
0 18 [▶−]
1 18 [▶−]
2 18 [▶−]

PulseTexture #28551

Layer PatternID Content
0 60 [▶−−]
1 60 [▶−−]
2 60 [▶−−]

IX. Application: Additive Rhythm

What I’m looking to do first with this knowledge base is additive rhythm. The most basic thing
that happens with additive rhythm is elongating musical ideas one pulse at a time.

This next application will generate a TextureStatement compounding six simple texture-
statements with this structure:

83

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

i. XXO XX’O

Texture-statement X, being first, cannot contain TIE events in pulse position 0. Its activity profile
will be [3,1,2,1]. This profile satisfies the no-starting TIE constraint and also establishes a 2 + 2
beat structure. Texture-statement O will be the staccato onbeat texture of length 4, identified
previously under “Onbeats” (Subsection ii of Section VIII) as PulseTexture #17907. Item X’ will
extend texture-statement X by one pulse, added to the end. The first four pulses will have the same
content as texture-statement X. The fifth pulse will have an ATTACK in one layer. This establishes a
beat structure of 2 + 3.

But wait: The knowledge base does not support PulseTexture instances of length 5 or
greater. That means dividing texture-statement X into texture-statement A with activity profile
[3,1] and texture-statement B with activity profile [2,1], then extending texture-statement B into
texture-statement B’ with activity profile [2,1,1]. The structure now becomes:

ii. XXO XAB’O

Step 1: Texture-statement X is selected by querying the PulseTexture supply by attacks profile
[3,1,2,1]. This query discovered 100 candidates. Here are the first 6:

PulseTexture #17996

Layer PatternID Content
0 42 [▶]
1 44 [▶ ▶]
2 50 [▶▶▶▶]

PulseTexture #18034

Layer PatternID Content
0 42 [▶]
1 45 [▶ ▶▶]
2 49 [▶▶▶]

PulseTexture #18036

Layer PatternID Content
0 42 [▶]
1 45 [▶ ▶▶]
2 51 [▶▶▶−]

PulseTexture #18073

Layer PatternID Content
0 42 [▶]
1 46 [▶ ▶−]
2 50 [▶▶▶▶]

PulseTexture #18189

Layer PatternID Content
0 42 [▶]
1 49 [▶▶▶]
2 58 [▶−▶▶]

PulseTexture #18222

Layer PatternID Content
0 42 [▶]
1 50 [▶▶▶▶]
2 57 [▶−▶]

The query fetches results in their enumeration order, which seems to disfavor TIE events.
Since the only criterion prescribed is the attacks profile, any bias introduced by the enumeration
algorithm should be overcome by choosing one candidate at random. So I did that (and ended up
tweaking the random seed until the result had a few ties). The selected candidate was #19999:

PulseTexture #19999

Layer PatternID Content
0 44 [▶ ▶]
1 53 [▶▶−▶]
2 57 [▶−▶]

84

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

Step 2: PulseTexture #19999 embraces six different actual passages depending upon which
musical part plays which layer. The selected permutation orders layers from most to least active,
using the beauty contest described above under “Order of Patterns in Textures” (Section V):

PulseTexture #19999

Layer PatternID Content
0 53 [▶▶−▶]
1 57 [▶−▶]
2 44 [▶ ▶]

Step 3: How to divide X into A and B, given how the knowledge base documents relations
between PulseTexture instances? There is no direct way to extract two out of four pulses from
a texture. However, texture-statement A can be obtained from texture-statement X by looking
up an intermediate texture-statement Q bearing the relation TRUNCATE (3) to X, then looking up a
PulseTexture bearing the relation TRUNCATE (2) to Q. Both of these lookups are supported by a
BTreeMap, making them efficient.

Querying the knowledge base for textures with the TRUNCATE (3) relation to PulseTexture
#19999 fetches back:

PulseTexture #1255

Layer PatternID Content
0 17 [▶▶−]
1 19 [▶−▶]
2 14 [▶ ▶]

Querying the knowledge base for textures with the TRUNCATE (2) relation to PulseTexture
#1255 gives the result desired for texture-statement A:

PulseTexture #71

Layer PatternID Content
0 17 [▶▶]
1 19 [▶−]
2 14 [▶]

Step 4: Extracting the final two pulses out of texture-statement X can be accomplished by
looking up an intermediate texture-statement R bearing the relation TRUNCATE (0) to X, then looking
up a PulseTexture bearing the relation TRUNCATE (0) to R.

Querying the knowledge base for textures with the TRUNCATE (0) relation to PulseTexture
#19999 fetches back:

PulseTexture #700

Layer PatternID Content
0 19 [▶−▶]
1 23 [−▶]
2 10 [▶]

85

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

Querying the knowledge base for textures with the TRUNCATE (0) relation to PulseTexture #700
gives the result desired for texture-statement B:

PulseTexture #68

Layer PatternID Content
0 2 [▶]
1 2 [▶]
2 6 [−▶]

Step 5: Querying the knowledge base for textures with the EXTEND (2) relation to texture-
statement B brought back 18 textures of length 3. Filtering these down to attacks profile [2,1,1]
produced 6 candidates:

PulseTexture #1086

Layer PatternID Content
0 13 [▶]
1 13 [▶]
2 24 [−▶▶]

PulseTexture #1100

Layer PatternID Content
0 13 [▶]
1 14 [▶ ▶]
2 23 [−▶]

PulseTexture #1102

Layer PatternID Content
0 13 [▶]
1 14 [▶ ▶]
2 25 [−▶−]

PulseTexture #1086

Layer PatternID Content
0 13 [▶]
1 13 [▶]
2 24 [−▶▶]

PulseTexture #1100

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶]
2 23 [−▶]

PulseTexture #1102

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶]
2 25 [−▶−]

Of these PulseTexture #1100 was selected at random, then permuted to align with texture-
statement X:

PulseTexture #1100

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶]
2 23 [−▶]

All the component texture statements have been identified. It just remains to join these simple
statements into a compound TextureStatement instance. Here is the result:

86

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

X X O X A B’ O
[▶−▶] [▶−▶] [▶] [▶−▶] [▶−] [▶ ▶] [▶]
[▶ ▶] [▶ ▶] [▶] [▶ ▶] [▶] [▶] [▶]
[▶▶−▶] [▶▶−▶] [▶] [▶▶−▶] [▶▶] [−▶] [▶]

X. Application: Vertical Masking

This application gives an imagined nod to the Schillinger System [4] or at least something that
John Myhill6 presented as coming from the Schillinger System during a spring 1979 course on
composing programs at the State University of New York at Buffalo.

I have mixed feelings about Schillinger. I have no sympathy for his aesthetic, which to me
seems to hold that music is somehow ’good’ if derivable mathematically and ’poor’ otherwise.
I am also intimidated both by the sheer size of his tome and by its opaqueness. I acquired the
Schillinger System’s two massive volumes when still in high school, but never personally got much
past the “Theory of Rhythm” (Book I) and the “Theory of Melody” (Book IV). Yet the Schillinger
System is no more arbitrary than serialism, and it potentially offers techniques far richer than
retrograde, inversion, and transposition. If one can get through those many pages of mathematical
ciphers.

The technique of vertical masking, employed here, was something John Myhill talked about while
presenting Schillinger in the above-mentioned course. The thrust of Myhill’s presentation was that
one can take a musical passage with several voices and vary it by rotating which instrument plays
which part — rotation being Schillinger’s go-to permutational device. Vertical masking provides
further variation by selectively blanking out some parts while the others continue to play. Since
this is exactly what happens in fugal expositions, the processes of part-permutation and vertical
masking naturally go together. However I am presently writing this with Schillinger’s volumes
beside me. Thumbing through these books (which I hadn’t cracked in decades), I have not been
able to locate the masking scenario Myhill presented.

I had introduced ROTATE and MASK (the horizontal kind) as RelationCategory items with
Schillinger in mind. Now I discover that masking is not actually present in Schillinger’s technique.
I had also been thinking that there was a fair amount of overlap between what I am doing here
and what Schillinger did back when. This experience suggests not.

This present application starts with a texture-statement X, deconstructs it into layers, then
arranges the layers according to the plan presented below:

X−0 − 1 X−0 − 1 X−0 X−0 X X
[] [] [] [] [] []
[] [] [] [] [] []
[] [] [] [] [] []

O X−1 X∼0 X∼2 X O
[] [] [] [] [] []
[] [] [] [] [] []
[] [] [] [] [] []

6John Myhill was a close friend of Lejaren Hiller who taught mathematics at SUNY/Buffalo. His field was recursive
function theory but he was also keenly interested in composing programs.

87

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

O indicates the staccato onbeat texture of length 4 identified under “Onbeats” as PulseTexture
#17907 (Subsection ii of Section VIII). Since the content of X has yet to be determined beyond
its length (4), the above plan uses the symbols “ ”, “ ” and “ ” to indicate different layers.
Variations upon X will be derived by blanking out one or two of the three layers. If “blank” means
rest in all pulse positions, then are 3 ways of blanking 1 out of 3 layers and also 3 ways of blanking
2 out of 3 layers. However metric considerations suggest that that for two consecutive statements
(a leader and a trailer), then a part which is active in the leader but blank in the trailer should be
allowed ’resolution’ to the trailer downbeat. So the X∼0 and X∼1 items in the above plan blank
out all bit the first pulse position.

The plan indicates layer-specific blanking options by appending the blanked layer ID, prefixed
either by a hyphen (“−”) or a tilde (“∼”). The hyphen indicates full silence (all pulses resting),
while the tilde indicates an isolated down beat of (just one attack, then rests). For example X−0− 1
indicates the PulseTexture which carries over from texture-statement X in layer 2 but which is
fully silent in layers 0 and 1.

Readers will notice that in spite of my backstory, the plan takes no steps to rotate layers. I
originally intended to include rotations but decided it would unnecessarily complicate the plan.
Layer permutation is basic functionality in TextureStatement instances. It is no reach at all to
rotate layers if one wishes to do so.

For this present application, texture-statement X will be metric, with full coverage (no part rests
during any pulse). It should be equally active in all parts; that is, the imbalanceCount (Subsection
iv of Section IV) should be 0 (this did not prove attainable).

Step 1: Selecting texture-statement X began by querying the PulseTexture supply by attacks
profile [3,1,2,1]. As reported earlier, this query discovered 100 candidates. Filtering out candidates
with coverage profiles other than [3,3,3,3] whittled this number down to 5. None of these
candidates had imbalanceCount scores of 0, which is what I was hoping for, but three candidates
had imbalanceCount scores of 1:

PulseTexture #24844

Layer PatternID Content
0 51 [▶▶▶−]
1 59 [▶−▶−]
2 61 [▶−−▶]

PulseTexture #25866

Layer PatternID Content
0 53 [▶▶−▶]
1 59 [▶−▶−]
2 59 [▶−▶−]

PulseTexture #26306

Layer PatternID Content
0 54 [▶▶−−]
1 58 [▶−▶▶]
2 59 [▶−▶−]

The application randomly selected PulseTexture #26306, which is fortunate because this
texture conforms least slavishly to the meter. (Demonstrating once again that while randomness is
necessary for unbiased selection, positive criteria should override.) The selected permutation of
PulseTexture #26306 orders its layers from most to least active, using the beauty contest described
above under “Order of Patterns in Textures” (Section V):

88

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

PulseTexture #26306

Layer PatternID Content
1 58 [▶−▶▶]
2 59 [▶−▶−]
0 54 [▶▶−−]

Statement X

The earlier “Silence” application (Subsection i of Section VIII) identified PulseTexture #1891
as the silent texture of length 4. The supply of PulseTexture instances has a lookup map by
pattern IDs, so querying this map with patterns #29 (from all layers of PulseTexture #1891), #29
again, and #54 (bottom layer of X) is very efficient. This query fetched back PulsePattern #1916:

PulseTexture #1916

Layer PatternID Content
1 29 []
2 29 []
0 54 [▶▶−−]

Statement X−0 − 1

The remaining statements are identified by similar lookup queries. The earlier “Onbeats”
application (Subsection ii of Section VIII) identified PulseTexture #17907 as the staccato onbeat
texture of length 4. All three layers of PulseTexture #17907 employ PulsePattern #42, therefore
#42 is the ’blanked’ pattern ID used in for the X∼0 and X∼2 queries:

PulseTexture #2971

Layer PatternID Content
0 29 []
1 59 [▶−▶−]
2 54 [▶▶−−]

Statement X−0

PulseTexture #2970

Layer PatternID Content
0 58 [▶−▶▶]
1 29 []
2 54 [▶▶−−]

Statement X−1

PulseTexture #18350

Layer PatternID Content
0 42 [▶]
1 59 [▶−▶−]
2 54 [▶▶−−]

Statement X∼1

PulseTexture #18460

Layer PatternID Content
0 58 [▶−▶▶]
1 59 [▶−▶−]
2 42 [▶]

Statement X∼2

Understand that the lookup map lists pattern ID’s in all possible permutations. Thus looking up
the pattern-ID sequence [29,59,54] will fetch back PulsePattern #2971 even though this instance
actually lists its component patterns in ascending order: [29,54,59]. The code surrounding the
lookup request also determines what Permutation is necessary to present the patterns in their
requested order.

Compounding these seven simple statements together according to the plan graphed above
completes the result:

89

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

X−0 − 1 X−0 − 1 X−0 X−0 X X
[] [] [] [] [▶−▶▶] [▶−▶▶]
[] [] [▶−▶−] [▶−▶−] [▶−▶−] [▶−▶−]
[▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−]

O X−1 X∼0 X∼2 X O
[▶] [▶−▶▶] [▶] [▶−▶▶] [▶−▶▶] [▶]
[▶] [] [▶−▶−] [▶−▶−] [▶−▶−] [▶]
[▶] [▶▶−−] [▶▶−−] [▶] [▶▶−−] [▶]

XI. Application: Counter Rhythm

My coined term counter rhythm abstracts pitch away from counter melody, which according to
Wikipedia is “a sequence of notes . . . written to be played simultaneously with a more promi-
nent lead melody”. This next application seeks to write two counter rhythms, to be played
simultaneously with a more prominent lead rhythm. The lead rhythm is given as an input.

My own take is that a good counter rhythm compliments the lead with respect to the meter.
That means that when the lead part syncopates over a strong beat, the counter part fills in the beat.
And when the lead part attacks a weak beat, the counter part either ties over or rests. (Remember
the premise, stated earlier under “Profiles” (Section VI), that “musical meter is established through
the convergence of polyphonic attacks on strong beats and divergence of attacks on weak beats.”)

Another desirable feature of counter rhythms is that they actively contribute. This additional
proviso was added late after initial attempts produced solutions where one counter rhythm simply
rested.

Here is the rhythm for the lead part:

[▶ ▶ ▶] [− ▶ ▶ −] [▶]

The meter is described using the attacks profile [2,1,2,1], which repeats. Interpreted with
respect to this 2+2 beat structure, the lead rhythm features a syncopation over beat 2. Placing 2,
rather than 3, in position 0 of the attacks profile ensures that one counter part will play a pickup
rhythm during beat 1. It also ensures that both counter parts will attack the second onbeat (since
the lead syncopates there).

The solution involves the following steps:

1. Using the knowledge base to find PulseTexture instances which conform to attacks profile
[2,1,2,1].

2. Filtering out those PulseTexture instances which do not contain the lead rhythm or which
have imbalanceCount properties greater than 2 (no successful candidates actually had fewer).
The results of this step are then randomly shuffled to eliminate enumeration bias.

3. Iterating through the shuffled instances. For each instance, a Permutation is sought which
brings the lead pattern to part 0 and which also excludes unanticipated ties. If such a
permutation is discovered, the Pulse and its associated Permutation are selected. Otherwise
iteration proceeds.

Step 1: Querying for textures with attacks profile [2,1,2,1] returns 476 PulseTexture instances.
Step 2: (Filtering)

90

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

• Looking up [▶ ▶ ▶] returned PulsePattern #45. 58 of the textures returned in Step 1
included PulsePattern #45 as one layer while also possessing an imbalanceCount of 2.

• Looking up [− ▶ ▶ −] returned PulsePattern #72. 20 of the textures returned in Step 1
included PulsePattern 4 #72 as one layer while also possessing an imbalanceCount of 2.

Step 3: (Iteration and 2nd Filtering)
Here are the first 6 of the 58 shuffled PulseTexture instances obtained for [▶ ▶▶] (PulsePattern

#45).

PulseTexture #20853

Layer PatternID Content
0 45 [▶ ▶▶]
1 55 [▶−]
2 72 [−▶▶−]

PulseTexture #21028

Layer PatternID Content
0 45 [▶ ▶▶]
1 62 [▶−−−]
2 72 [−▶▶−]

PulseTexture #20601

Layer PatternID Content
0 45 [▶ ▶▶]
1 47 [▶▶]
2 80 [−−▶−]

PulseTexture #11962

Layer PatternID Content
0 36 [▶▶]
1 45 [▶ ▶▶]
2 60 [▶−−]

PulseTexture #20962

Layer PatternID Content
0 45 [▶ ▶▶]
1 59 [▶−▶−]
2 75 [−▶−−]

PulseTexture #9507

Layer PatternID Content
0 34 [▶]
1 44 [▶ ▶]
2 45 [▶ ▶▶]

The first 3 of these options begin with ties; therefore the specific texture chosen was #11962.
This texture lists pattern #45 as layer 1:

PulseTexture #11962

Layer PatternID Content
1 45 [▶ ▶▶]
0 36 [▶▶]
2 60 [▶−−]

Here are the first 6 of the 20 shuffled PulseTexture instances obtained for [− ▶▶ −]
(PulsePattern #72).

PulseTexture #18956

Layer PatternID Content
0 43 [▶ ▶]
1 46 [▶ ▶−]
2 72 [−▶▶−]

PulseTexture #27610

Layer PatternID Content
0 57 [▶−▶]
1 61 [▶−−▶]
2 72 [−▶▶−]

91

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

PulseTexture #19308

Layer PatternID Content
0 43 [▶ ▶]
1 57 [▶−▶]
2 72 [−▶▶−]

PulseTexture #27185

Layer PatternID Content
0 56 [▶− ▶]
1 69 [▶−▶−]
2 72 [−▶▶−]

PulseTexture #26754

Layer PatternID Content
0 55 [▶−]
1 58 [▶−▶▶]
2 72 [−▶▶−]

PulseTexture #20853

Layer PatternID Content
0 45 [▶ ▶▶]
1 55 [▶−]
2 72 [−▶▶−]

The first of these options is PulseTexture #18956. Layer 2 is pattern #72, which is the lead
rhythm. This pattern [− ▶▶ −] begins with a TIE , but that’s okay because it follows on after
pattern #45 [▶ ▶▶] which does not end with a REST . So #18956 is the selection:

PulseTexture #18956

Layer PatternID Content
1 72 [−▶▶−]
0 43 [▶ ▶]
2 46 [▶ ▶−]

And here is the assembled TextureStatement instance:

[▶ ▶▶] [−▶▶−] [▶]
[▶▶] [▶ ▶] [▶]
[▶−−] [▶ ▶−] [▶]

XII. Application: Cross Rhythm

The term cross rhythm here refers to simultaneous musical parts playing patterns which share a
common pulse but which do not share the same length. This is distinguished from polyrhythm,
where pulses happen at different speeds, and also from hemiola, which is a full metric modulation
between, say, 3/4 time and 6/8 time. The knowledge base described here copes with hemiola
very easily. It does not cope with polyrhythm at all. The present exercise will demonstrate that
cross-rhythm is doable. However whether it is worth the trouble depends upon whether one finds
it needful to express a cross-rhythm in the TextureStatement format.

Cross rhythm and polyrhythm (but not hemiola) are both examples of what Steve Reich calls
“phase music”. Another example is the selection principle I call “statistical feedback”7 when
applied to nonuniform weights. The compositional attraction here is that you have a period
of time over which individual parts proceed inexorably but which the tension between parts
destabilizes until everything comes together at the moment of convergence. Like a cadence only
different.

This exercise will cross the pattern [▶▶▶▶] (5 pulses) in one musical part with the pattern
[▶ − ▶▶] (4 pulses) in a second musical part. Understand that these components need not

7https://charlesames.net/feedback/index.html

92

http://www.musmat.org/
https://charlesames.net/feedback/index.html

Journal MusMat • December 2022 • Vol. VI, No. 2

be literal — for example, one could dynamically swap out [▶▶▶▶] for [▶▶ − ▶] or even
[− ▶▶▶▶].

Often just one part ’crosses’ the rest of the ensemble; that is, the remaining parts hold to an
established beat. The present exercise will not play favorites in that way. Rather the third part
will present the rhythm derived by Joseph Schillinger in “Interferences of Periodicities”, Chapter
2 of Book 1, the Schillinger System’s “Theory of Rhythm”. In this case the ’periodicities’ are
5 and 4 and the resultant sequence of durations (pulse counts) is {4, 1, 3, 2, 2, 3, 1, 4}. The
present exercise will articulate these durations in a detached manner, meaning that pulse positions
between ATTACK events will be TIE events up to the position just before the next ATTACK ; this will
be a REST event.

What will be produced here is a succession of texture-statement instances, and the first
thing to decide is the sequence of statement-instance lengths. One alternative would be employ
Schillinger’s interference durations; however, the knowledge base does not support PulseTexture
instances of length 1. A reasonable alternative is to employ the shorter pattern length (4), since
PulseTexture instances of length 5 are also not supported.

Next follows a collation algorithm which works out what sequence of pulse events each part
will play during a statement, which looks up the corresponding PulsePattern in the knowledge
base, and which in turn uses all three patterns to look up a PulseTexture and an associated
Permutation. I explained how PulseTexture lookups work under the “Vertical Masking” appli-
cation (Section X). The point here is that the knowledge base doesn’t really help out with these
collation tasks. Cross rhythm is not what the knowledge base is about. The present exercise only
makes sense if performed within a larger context that makes active use of the TextureStatement
representation.

Here is the assembled result:

[▶▶▶] [▶ ▶▶] [▶▶ ▶] [▶▶▶] [▶▶▶▶] [▶]
5 5 5 5

[▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶]
4 4 4 4 4

[▶−−] [▶▶−] [▶ ▶] [▶− ▶] [▶−−] [▶]
4 1 3 2 2 3 1 4

XIII. Reflections

This article describes a personal effort to carry through ideas I’ve had percolating in response to
earlier projects of mine. Whether anybody (other than Schillinger) has done this before, all or in
part, I wouldn’t know. I have long been out of academics. Having limited cognitively productive
hours, I feel no obligation to divert them into scholarship.

I am grateful to Hugo Carvalho, to the MusMat Research Group, and to the Brazilian Journal
of Music and Mathematics for inviting me to contribute. The software project described here did
not exist prior to that invitation, so it can legitimately said to have been created under MusMat
auspices.

If I suddenly had a massively parallel supercomputer at my disposal (plus a full-time profes-
sional programmer to adapt my existing inline code to multi-threading), I would increase the
number of overlaid patterns in a texture (its depth) from 3 to 4. That would raise the number of
textures by a power of 4 and the number of texture-pair evaluations by a power of 8 (?). I believe

93

http://www.musmat.org/

Journal MusMat • December 2022 • Vol. VI, No. 2

the examples provided by this article demonstrate how the length limit can be worked around
using compound texture statements. There is no corresponding workaround for the depth limit.

Limited changes of scale are imaginable. Parts can easily scale vertically to homophonic choirs.
Creative interpretation of the PulseEventType set (REST , ATTACK , TIE) can be used to scale pulses
horizontally into longer durations. Here context may exert influence. Thus the first duration in
the succession [REST , ATTACK] might be filled with some sort of pickup rhythm.

Something “Concurrence” had which presently does not exist here are primitive pattern
alterations like these:

• Promoting a rest/demoting a tie:[▶]⇐⇒ [▶−]
• Promoting a tie/demoting an attack:[▶−]⇐⇒ [▶▶]
• Anticipating/delaying an attack:[▶▶] ⇐⇒ [▶−▶]

Such alterations don’t readily generalize to textures. Still, they ought to be explored.

References

[1] Ames, Charles (1988). Concurrence. Journal of New Music Research, v. 17, n. 1, pp. 3–24.

[2] Ames, Charles (1992). Quantifying Musical Merit. Journal of New Music Research, v. 21, n. 1,
pp. 53–94.

[3] Kohn, Karl (1981). The Renotation of Polyphonic Music. The Musical Quarterly, v. 67, n. 1, pp.
29–49.

[4] Schillinger, Joseph (1941, 1942, 1946). The Schillinger System of Musical Composition. New York:
Carl Fischer.

94

http://www.musmat.org/

	Introduction
	ISAM Persistence
	Entities
	Scalar Properties
	Attacks
	Coverage
	Dispersion
	Imbalance

	Order of Patterns in Textures
	Profiles
	Relations
	Application: Foundational Textures
	Silence
	Onbeats

	Application: Additive Rhythm
	XXO XX'O
	XXO XAB'O

	Application: Vertical Masking
	Application: Counter Rhythm
	Application: Cross Rhythm
	Reflections

