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Abstract: A contextual transformation that acts on the diatonic content of outer-voice dyadic harmony
provides a way to demonstrate another correspondence between the openings of the F-minor piano sonatas
by Robert Schumann and Johannes Brahms beyond those already recognized in current research. This
contextual transformation also models some variation procedures within other music of Brahms and his
eighteenth-century predecessors, suggesting an understanding of any influence of Schumann’s opening on
Brahms’s compositional procedures within the framework of variation.
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I. Historical Context and Article Outline

30th September 1853 marks a significant date in the history of canonic western art music:
on this Friday, the twenty-year-old Johannes Brahms first visited the home of Robert and
Clara Schumann in Düsseldorf, Germany. With him, Brahms carried two completed slow

movements—what would become the second and fourth movements—for his third piano sonata,
but its fast movements were not yet composed, including the first movement ([3, p. 371]). During
the four weeks of Brahms’s stay in Düsseldorf, Clara played for him Robert’s third piano sonata
in F minor, op. 14, which begins as shown in Figure 1a. On 26 December 1853, Brahms sent off
for publication as his fifth opus his completed third piano sonata in F minor in five movements,
constituting the “most solid and impressive piece he had yet written” ([17, p. 126]). This sonata
begins as shown in Figure 1b.

Some scholars recognize similarities between the openings of the two composers’ sonatas
(e.g. [7]). In arguably the most exhaustive study of Brahms’s three piano sonatas, Gero Ehlert
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([6, p. 325]) proposes three likenesses, shown with colored shaded regions in Figure 1. The blue
shading indicates an initiating three-note treble motive descending stepwise from A flat to F, the
red shading indicates the bass’s chromatic descent—-sometimes called a “lament bass”—-from F
down to C, and the green shading indicates both an aggressive cadential arrival on a downbeat
dominant triad with E in the treble and a trochaic ebb onto lower pitches on the second beat
with C in the treble.1 Nonetheless, Ehlert recommends against inferring too much from these
similarities, concentrating instead on the considerable contrasts between their openings, such as
the differences in their melodies.

In this article, I propose that these melodies, particularly the notes enclosed in Figure 1, closely
correspond, lending additional support to the hypothesis that Brahms’s opening is a variation
of Schumann’s. This proposed correspondence recruits a new type of contextual transformation
G that expands an ordered pair of pitches while preserving its interval class. Section II of this
article defines and demonstrates G, Section III shows how G serves as the basis for variation in
three passages from Brahms’s oeuvre composed before and after 1853, and Section IV returns to
Schumann’s and Brahms’s sonatas, enlisting G to draw a connection between them.

II. The Contextual Dyadic Transformation G

A contextual transformation, relative to a usual (noncontextual) transformation, requires some
additional knowledge—the “context”—about the input in order to determine the output. David
Lewin ([14], [16]) cultivated this concept, which was further explored by Philip Lambert [13],
Joseph Straus [20], and others. For an example, the transformation “invert around C” is a
noncontextual transformation, because no knowledge is needed beyond the content of the pitches
being transformed to calculate the result of the transformation. If the inputted pitch-class set
contains a B, then the output of this “invert around C” transformation will contain a C sharp,
regardless of the rest of the input. However, the transformation “invert around the major third,”
applied exclusively to a major or minor triad, is a contextual transformation, because it requires
an extra assessment of the input to know the output.2 If the input contains a B, then the output of
this “invert around the major third” transformation will contain a C sharp if and only if the entire
input is an E-major triad.3

To compare the openings of Schumann’s and Brahms’s F-minor piano sonatas, I present a
contextual transformation that I call G (for Grow) that acts on ordered duples of pitches. For
unequal pitches x and y, the transformation G changes <x, y> into <n, y> (and G’ changes <y,
x> into <y, n>) such that (1) the unordered sets {x, y} and {n, y} are pitch-class transpositions
of one another, (2) x is between and unequal to both n and y, and (3) the difference between
x and n is minimal. This transformation resembles Straus’s generalized contextual inversions
[20], in that they maintain both set class and one or more common tones (and, ordering aside,
a transposition of a dyad could as easily be considered as an inversion). However, whereas
Straus [20] concerns trichords, tetrachords, and pentachords, he does not address dyads. This
transformation undergirds something resembling Tymoczko’s dyadic form of circular voice-leading
space [21], but Tymoczko privileges conjunct voice-leading distance—therefore, he favors the
nearly even interval class 5 (ic5)—and he eschews transformational methodology.

1The first edition of Schumann’s sonata has a D flat in the treble instead of the C at this point (m. 7).
2The “invert around the major third” contextual transformation, applied particularly to a major or minor triad, is called

REL in Lewin [15], and abbreviated to R in neo-Riemannian theory ([12], [14]).
3To invert around a pitch or set of pitches is to invert such that the pitch or set inverts into itself, and the other pitches

invert likewise. Inverting around a major third is to invert the two pitches of this interval into one another. The major third
in an E-major triad is between E and G sharp. I0 inverts these two pitches into each other; it also inverts B into C sharp.

2

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

Figure 1: (a) Robert Schumann, Piano Sonata No. 3 in F Minor, op. 14, mm. 1–7 (b) Johannes Brahms, Piano Sonata
No. 3 in F Minor, op. 5, mm. 1–6 (coloration indicates correspondences put forward in [6]).

3

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

Figure 2: Demonstrations of G: (a) temporal ordering <first, second>, chromatic or WT0 scale, registral pitch (b)
registral ordering <top, bottom>, white-note scale, registral pitch (c) prime-form ordering <root, not root>
(à la Straus [20]), white-note scale, pitch class (d) registral ordering <top, bottom>, OCT0,1 scale, registral
pitch.

G can be defined for any scale and any kind of ordering, act on any interval class, and involve
pitch classes rather than registral pitches. If the inputs and outputs are pitch classes, the second
and third parts of the definition provided above are immaterial. Following convention, compounds
of G and G’ are indicated with positive superscripts (e.g. G•G = G2, G’•G’•G’ = G’3, the zero
superscript (G0) indicates the identity transformation, and the inverse of G or G’ is indicated with
negative unit superscripts: G-1 and G’-1. When they act on registral pitches, G-1 or G’-1 shrink the
interval between them; the inverse does not exist if and only if G acts on registral pitches and
these registral pitches span the minimal distance permitted by the interval class they span within
the governing scale.

Figure 2 provides some examples of G in action. The first dyad in Figure 2a is <C5, D5>,
ordered in time. The G transform of this dyad changes only the first pitch (G’ would change
the second pitch), and lowers it in particular so that the distance between the two pitches will
increase. This first pitch is lowered precisely to E4, because this is the one pitch both below C5
and closest to C5 that, when combined with D5, forms an unordered dyad that is a pitch-class
scalar transposition of C5, D5 within, say, the chromatic scale or the whole-tone scale with C
(WT0). Therefore, G<C5,D5> = <E4,D5>. If G were applied to the <C5, D5> dyad within, say, the
2- or 3-flat diatonic scale, or the octatonic scale with C and D (OCT2,3) instead, then G<C5,D5>
= <Eb4,D5>. Although <C5,D5> and <Eb4,D5> as unordered sets are not chromatic pitch-class
transpositions of one another, they are nonetheless pitch-class transpositions of one another within
these other scalar contexts.

Figure 2a continues by using the output <E4,D5> as the input for another G transformation,
which yields <C4, D5>, again within the chromatic scale or WT0. Curiously, the moving pitch
drops only four semitones (E4 down to C4) under the second G, whereas it dropped eight
semitones (C5 down to E4) under the first G. This curiosity, highlighted with curved arrows
and well manifested in both the two back-to-back G transformations that open Figure 2a as
well as the two back-to-back G’-1 transformations that follow, illustrates a special feature of
contextual transformations: homogeneity of contextual transformation has the potential to be
realized as heterogeny of noncontextual transformation. In published transformational theory, this
feature is most evident in neo-Riemannian theory’s contextual transpositions. For example, LP is a
contextual transposition that transposes a major triad by T4 or “up a major third” and a minor triad
by T8 or “down a major third.” Lewin [14] used LP to equate two different sounding harmonic
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progressions in two themes from Richard Wagner’s Das Rheingold: “Tarnhelm” (LP{G♯,B,D♯} =
{E,G,B}) and “Valhalla” (LP{G♭,B♭,D♭} = {B♭,D,F}). In these two progressions, the transpositional
size (major third) remains the same, but the direction of transposition (“up” or “down”) changes
depending on the contextual structure of the input (major triad or minor triad). In the first two
progressions of Figure 2a, the transpositional direction of the first note (down) remains the same,
but the size (eight or four semitones) changes depending on the contextual structure of the input
(major second or minor seventh). From this point of view that focuses on size and direction,
neo-Riemannian contextual transformations and G contextual transformations resemble “duals”
of one another, at least colloquially.

Figures 2b, 2c, and 2d furnish further demonstrations, varying type of ordering, scale, and
attention or inattention to octave equivalence. The ends of Figures 2b and 2c show how a G
transformation with an even superscript outputs a dyad with the same ordered pitch-class content
as the input. Figure 2c’s dyadic series has the same pitch-class content as that of Figure 2b, even
though Figure 2c simply iterates G’ while Figure 2b alternates between G and G’. Figure 2c’s
sleight-of-hand owes to the use of prime form (e.g. [03]) as the dyad’s ordering (similar to [20]),
whereby, in an ordered pair <x, y>, x corresponds to the first digit (the [0. . . ]) of the dyad’s
prime form—-what might be called the “root” ([10])—-and y corresponds to the second digit (the
[. . . n]) of the dyad’s prime form. Some may see this as analytical overkill, saying instead that
Figure 5 simply displays descending-third transpositions, beginning as parallel motion through
register and continuing by departing from such. However, the use of G’ suggests a certain type
of voice leading, annotated with straight and mostly crossed lines in Figure 2c, that declines a
parallel hearing in favor of another perhaps more covert, in the manner similar to how Lewin [14]
approached some instances of parallel voice leading in Debussy’s music.

III. G as Variation Mechanism in Some Music of Brahms

A configuration of G that is especially suitable for tonal music is a G that acts within some diatonic
scale—-or more generally, on the seven diatonic letters irrespective of accidental—-on concurrent
pitches or pitch classes in outer voices, with an arbitrary ordering of <soprano, bass>. This
emphasis on outer voices is consistent with other prominent theories of tonal musical structure
([18], [8]). For tonal music more associated with “high” styles, a good choice for the one interval
class spanned by these outer-voice pitches is the diatonic interval class of two steps (dic2), more
commonly known as imperfect intervals: thirds, sixths, tenths, thirteenths, and so forth. This
interval class tends to be used more often between simultaneous outer-voice pitches in these styles
than each of the other three diatonic interval classes (unison/octave (dic0), second/seventh (dic1),
fourth/fifth (dic3)) except at beginnings and endings of formal units like phrases and sections,
where dic3 and dic0 are more common.

The transformation G works well as a variation mechanism in general because it preserves
one pitch while changing the other, a balance of mutability and immutability that is at the
heart of variation technique. It works well as a variation mechanism more specifically in two
capacities: addition of pitches, and alteration of pitches. The first capacity supplies embellishments
through applying G syntagmatically to one dyad to create the next dyad, as Figure 2 does.
When G is configured as outlined above, this converts a one-to-one first-species texture into
a many-to-one second-(or third-)species texture: a pitch of one of the outer voices remains
fixed as a “cantus-firmus” note, and the paired pitch from the other voice shifts to another
pitch idiomatically consonant with the fixed pitch. The second capacity makes changes through
applying G paradigmatically to one dyad to create the corresponding dyad in the next variational
rotation, as Figure 2 does not. For example, if the variation is over a ground bass, each application
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Figure 3: Gradated application of G as variation technique: Brahms, Variations on a Theme of Haydn, op. 56, Finale,
mm. 31—33 and 36-–38, soprano and bass lines only (registral ordering <top, bottom>, two-flat diatonic
collection, registral pitch).

of G would maintain a pitch in this fixed bass line while modifying the treble pitch above it
(mutatis mutandis, consistent employment of G’ works well for a reharmonizing variation of a fixed
top line).

Figure 3 shown an instance of G operating in both paradigmatic and syntagmatic capacities.
These excerpts come from the finale of Brahms’s Variations on a Theme of Haydn of 1873, which
is structured as a set of continuous variations on a repeating five-measure line in B-flat major
(B♭-B♭-E♭-D-C-B♭-E♭-C-F-F) assembled from the outer voices of the theme’s first phrase. This line
first appears in the bass during the finale’s first 65 measures, and moves to the treble for mm.
61-80 before returning to the bass in m. 81 soon before a coda in mm. 86–109. Measure 31 begins
the seventh ground-bass variation, whose outer voices of its first three of five measures are shown
in the top system of Figure 3. Here, a high treble line unhurriedly descends, mostly in parallel
with the stepwise descending bass. Its syncopations create suspensions that decorate a series
of imperfect harmonies above the bass line, enclosed in rectangles, that are displaced onto off
beats in this cut-time music. By defining G as specified in this section, and additionally as acting
on registral pitches, a succession of G-based transformations—shown in the middle of Figure
3-—paradigmatically converts the sixth variation’s gently descending treble line of D-C-B♭-A. . .
into the seventh variation’s bouncily ascending treble line of D-G-B♭-E♭. . . , reduced in the lower
grand staff of Figure 3. More specifically, this succession of transformations is gradated: the
G-compound superscripts begin with their lowest value of -2, setting the treble line an octave
lower, and incrementally increase through -1, 0, and 1, ultimately superseding the treble’s pitch
height in the earlier corresponding spot. Considering the seventh variation on its own, Brahms
realizes this gradation syntagmatically with three distinct Gs that fuel each embellishing leap in
the melody, shown on the bottom of Figure 3. As another case of contextual-transformational
heterogeny, these three leaps alternate between the size of a fifth and a fourth, indicated again
with curved dashed arrows.

This same four-stage gradated succession of G-compounds undergirds another variation in a
work Brahms completed three years after his Haydn Variations. The secondary theme in the finale of
Brahms’s first symphony begins as a set of continuous variations over a looped four-quarter-note
bass line, first C-B-A-G in G major in the movement’s exposition, and then F-E-D-C in C major
in the movement’s tonal resolution. The scale degrees (4̂-3̂-2̂-1̂) match those of the E♭-D-C-B♭

6
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Figure 4: Gradated application of G as variation technique: Brahms, Symphony No. 1, op. 68, iv, mm. 301—303,
soprano and simplified bass lines only (registral ordering <top, bottom>, white-note scale, registral pitch).

portion of the Haydn Variations’s ground bass upon which the G transformations were shown to
act. Figure 4 transcribes and simplifies the outer voices for the beginning of the C-major version of
this secondary theme. Measure 301 offers a first-species opening: two parallel tenths and a sixth
that leads to a quasi-cadential arrival on an octave on the next downbeat, an interval that remains
outside of G’s purview as defined here. The treble of m. 302 decorates the treble pitches of m. 301
with non-harmonic stepwise embellishments also outside of G’s purview. However, m. 303 relates
to m. 301 with the same series of G-2, G-1, G0, and G(1) transformations that was deployed for the
analysis of the music in Figure 3: here, all four transformations are paradigmatic, and the last is
also syntagmatic. As before, the result is a rising treble that starts an octave below the first pitch
of its antecedent, and surpasses the antecedent by its end. While the line is significantly different,
the preference for imperfect harmony before the cadence is preserved.

An outer-voice G that acts on pitch classes instead of registral pitches affords another perspec-
tive on more of this theme. In general, iterative applications of such a G on a dyad toggles its first
(or, if G’, second) member between two states, which correspond to the two ordered-pitch-class-
interval members of a non-zero interval class. For example, there are two diatonic pitch classes
that form an imperfect interval above F: A and D. Therefore, G<A,F> = <D,F>, and G<D,F> =
<A,F>. Such a G involutes, or, in other words, G-1 = G, and, more generally, Gn = Gn+2t, where
t, n ∈ Z . Figure 5 discloses this toggling in the theme’s first nine measures, a span of time that
comes full circle as m. 309 repeats m. 302, which ornaments the same consonant pitches from
m. 301. The regions that are shaded yellow and purple keep track of the G-based toggling for
each beat’s dyad through these nine measures, where, above the fixed bass note, yellow signifies
the starting imperfect harmony as the default and purple signifies the other (from a toggling
perspective, antipodal) imperfect harmony. For example, the second beat’s switch from the treble’s
initial A in mm. 301–3 (in yellow) to a contrasting D in mm. 304–6 (in purple) above the fixed
bass note F can be indicated as G<A,F> = <D,F>. Applying G again restores the treble’s F back to
A for the next three measures: G<D,F> = <A,F>. (Figure 5 accommodates pitches outside of the
C-major collection by defining G to act on the seven notated diatonic letters regardless of their
inflections by accidentals.)

Not every outer-voice harmony exclusively expresses an imperfect quality during the second,
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Figure 5: Toggling application of G as variation technique: Brahms, Symphony No. 1, op. 68, iv, mm. 301—309,
soprano and simplified bass lines only (registral ordering <top, bottom>, generalized diatonic scale, pitch
class).
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Figure 6: (a) G toggling cycle as analogous to a hexatonic cycle (b) Portion of this cycle used by Brahms, Symphony
No. 1, op. 68, iv, mm. 301—309 and its hexatonic analogue.

third, and fourth beats of this theme; those treble pitches that express a different diatonic interval
class with the ground bass receive a smaller font. However, there remains enough imperfect
harmony to measure the advance through these nine measures using G as the unit of distance
and energy. Each beat toggles between its two pitch classes at different times, not only within
the measure, which is unavoidable, but also at different times between measures, which is not.
The second and third beats toggle once, and the fourth beat toggles twice, before all three beats’
pitches return to their default states. Even the treble pitches on the first beat, after they indulge
octave quasi-cadences in the first two measures, join in the toggling, moving above the bass C
from E to A in m. 306 and back to E in m. 308. This advance during the last three beats of each
measure is analogous to motion along an instance of Richard Cohn’s [4] hexatonic cycle, which
Michael Siciliano [19] reinterpreted as staggered instances of toggling among three half-step dyads,
as shown in the first part (a) of Figure 6, which reuses the default and contrasting coloration
of Figure 5. Here, consonant triads are analogous to a mixture of harmonic thirds and sixths,
whereas augmented triads are analogous to an exclusive use of one of these harmonic types or the
other. However, Brahms’s theme, summarized in Figure 6b, does not complete the cycle. Rather,
it progresses halfway through the cycle to the completely purple “hexatonic pole” of the initial
completely yellow default, which it embellishes with an “augmented triad”—-exclusively sixths
during mm. 304–5, shown with grace notes in Figure 6b—-and then retraces its steps back to the
default. This pole coincides with the transitory tonicization of A minor, the relative minor of the
main key of C major.

In addition to serving as analyses in their own right, Figures 3–6 serve as documentation that
G can model some of Brahms’s variations, and therefore help to corroborate a claim that, if G,
especially a gradated G, relates the opening of Schumann’s op.14 to Brahms’s op. 5, then one can
think of the latter as a variation of the former. However, both the Haydn Variations and the First
Symphony came after 1853: does G model variations before this date? One type of an eighteenth-
century alteration modeled by G’ (or occasionally G’-1), although typically governed by some
other form besides variation, emerges when the composer presents two formally corresponding
fixed stepwise rising treble motives, usually 3̂-4̂-5̂, twice: in one of its appearances (usually the
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Figure 7: An eighteenth-century motivic reharmonization using a three-stage gradated succession of G’- or G’-1-
compounds.

first), the bass harmonizes this motive with 1̂-2̂-3̂ in rising motion parallel to the treble; in the
other; the bass harmonizes this motive with 1̂-6̂-3̂ in descending motion contrary to the treble.
They may correspond as part of successive parallel basic ideas, phrases, or themes, or even as
part of exposition and recapitulation.4 As shown with an abstracted case of this in Figure 7, a
three-stage gradated succession of G’–or G’-1–compounds relates these two moments, depending
on which progression begets the other. While this transformation can serve practical benefits, such
as connecting a part of this bass line to a higher or lower register, it also offers aesthetic diversity.

Another relevant precedent links this eighteenth-century practice to the next section’s G-
enabled analysis of the opening of Brahms’s op. 5. Before visiting the Schumanns, Brahms had just
completed his C-major piano sonata, which was published as his op. 1, although it was composed
after his F-sharp-minor piano sonata, his second opus. The C-major sonata opens with a basic
idea that rises from 3̂ (E) to 6̂ (A) in the treble, harmonized by parallel tenths with the bass. This
basic idea is followed by its repetition that apexes one step higher on B flat, lightly tonicizing F
Major, again with consistent parallel tenths below. The next two measures function as basic-idea
repetition (the treble still rises by step), basic-idea variation (the bass departs from its strict parallel
motion), and cadence on the dominant. As shown in Figure 8, G’ well expresses the bass’s
transformation from conjunct and generally ascending motion in mm. 1-4 (Figure 8a) to disjunct
and generally descending motion in mm. 5-6 and the two pickup notes (Figure 8c). As Figure
8b sets out, the outer voices in mm. 3-4 are transposed up four diatonic steps and the prevailing
diatonic collection is shifted two accidentals sharpward from the one flat of F major to the one
sharp of G major, indicated using Julian Hook’s [11] nomenclature from his study of signature

4Examples of this altered repetition of the bass under the 3̂-4̂-5̂ portion of a formal unit include:

• J.S. Bach, Cantata, BWV 140, vi: G’(m. 1) = m. 3 (basic idea and its immediate repetition transposed to dominant)
• J. Haydn, Piano Sonata, XVI: 35, i: G’-1(mm. 40–41) = mm. 130–31 (exposition and recapitulation transposed from

dominant)
• W.A. Mozart, Violin Concerto No. 2, K. 211, i: G’(m. 7) = m. 9 (basic idea and its immediate repetition)
• W.A. Mozart, Horn Concerto No. 3, K. 447, ii, G’(m. 3) = m. 11 (period and its immediate repetition)
• A. Salieri, Organ Concerto, IAS 27, i: G’(m. 116) = m. 117 (motive and its immediate repetition)

10
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Figure 8: (a) Brahms, Piano Sonata op. 1, i, mm. 1–4 (b) Figure 8a transformed by signature transformations and
gradated G’(c) Brahms, op. 1, mm. 4–6.

transformations. Then a three-stage gradated succession of G’-compounds, but with the first two
stages operating on pairs of dyads, turns the outer voices from their incremental, lockstepped, and
measured opening in mm. 1-4 to their vaulting, expanding, and dramatic conclusion in mm. 5-6.

IV. Schumann’s Op. 14 and Brahms’s Op. 5

In the second measure of the opening of Schumann’s op. 14 piano sonata (Figure 1a), the local,
mostly up-stemmed, maxima of the right-hand pitches—the jagged line A♭-G-C-B♭-F—bears the
characteristic heterogenous stairstep design of a gradated G-series transform of parallel imperfect
intervals (compare this treble line to that of mm. 36–38 of Figure 3). The left side of Figure
9 (a-c) shows the generation of this design from a succession of parallel thirds as a proposed
precursory “deep structure.” This is a mirrored form of the transformation from parallel thirds
to an expanding wedge in the opening measures of Brahms’s op. 1 in Figure 8, reprinted on
the right side of Figure 9 (d, e) with corresponding parts connected with dashed lines for ease
of comparison: Schumann’s G-varied jagged line goes up in the treble, and Brahms’s G’-varied
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jagged line goes down in the bass.5 If the pattern in Schumann’s second measure were to continue,
a C in the bass and an E in the treble would appear on the downbeat of the third measure, an
expectation that could be made more palpable if the performer would indulge even the slightest
of ritardandos at the end of the second measure. As visualized with the left-pointing arrows and
“no” symbol in Figure 9, this dyad does not materialize here despite this expected continuation.
Yet it does appear on the downbeat of m. 6 as the culmination of the opening phrase albeit with
the E two octaves higher. Schumann gets to this climactic cadence via transposed repetitions,
shown in Figure 1 with brackets and italic labels: most of mm. 2–3 transpose up a fourth to make
most of mm. 4–5, and two beats spanning the downbeat of m. 6 transpose up an octave to make
the next two beats.

In comparing the first six measures of Brahms F-minor piano sonata to the first seven measures
of Schumann’s F-minor piano sonata, I hear a rerouting of the path from the starting dyad
<A♭,F> to the finishing dyad <E,C>.6 Whereas Schumann maneuvered this course with the
aforementioned extensions, Brahms does so through expansions: specifically, an expansion of
Schumann’s second measure, aligning its <E,C> continuation, unrealized on the downbeat of m.
3, with its realization four measures later. This expansion is most clearly accomplished in the
bass, as the chromatic descent F-E-E♭-D-D♭-C is stretched out from Schumann’s single measure to
Brahms’s five measures. But a rerouted expansion needs to involve not only time but also register,
especially in the treble, which in Schumann’s second measure starts at A♭4 and rises around an
octave to prepare for the unrealized E5, but then rises around two more octaves in the next four
measures to peak at E7. How does Brahms’s expansion of Schumann’s treble make up for this
two-octave difference?

One half of the solution is simply to move the melody’s initial A♭4 up to A♭5, which is Brahms’s
first treble pitch. The other half of the solution is, using the apparatus developed in this study, to
apply a three-stage series of G-compounds to Schumann’s second measure. Figure 10 presents
a detailed schematic of this application, reusing coloration from Figures 1, 5, and 6. The outer
voices have been simplified, with the treble in particular down an octave in the Brahms portions
of Figures 10c and 10d. Figures 10a and 10b inspects the left portion of Figure 9 from a slightly
different angle. Figure 10a shows a “deep structure” of parallel thirds over a lament bass: as
Figure 10’s G operates on the seven diatonic pitch names without reference to a specific key, this
“deep” bass line could be F-E-D-C, F-E♭-D♭-C, or F-E-E♭-D-D♭-C. Figure 10b performs a three-stage
series of G-compounds to this “deep structure,” and superimposes the two-voice design onto
Schumann’s first seven measures, highlighting the four-measure gap. The horizontal gray arrows
marked G add a syntagmatic component to the interpretation, rather than the purely paradigmatic
replacements of Figure 9, and the diagonal lines show the shift to the next stage, which always
take place during a syntagmatic embellishment, at least of a diatonic framework.

The E at the end of Figure 10b is still one octave shy of the treble’s cadential goal. To get
there, one might imagine that Brahms applies a three-stage series of G-compounds (G0, G, G2) to
Schumann’s second measure, varying Schumann’s music in a manner that I have shown him to

5Here, “mirror” counterpoint refers to two lines that both inverted as individual lines, and swap positions in register,
as if the notation of the two-voice construction has been reflected in a horizontal mirror.

6Instead of rerouting, one could apply the metaphor of repair, in that Brahms is “fixing” Schumann’s detachment
between the second measure’s generation of an expectation of <E,C> to immediately follow the second measure, and
<E,C>’s eventual appearance, displaced by four measures and two octaves. Following Harold Bloom’s [2] theory of poetic
influence, this metaphor would hypothesize that Brahms’s response to Schumann’s music is agonistic to some degree, that
Brahms commits misprision and “misreads” Schumann’s opening. Of Bloom’s revisionary ratios, this misreading comes
closest to what Bloom calls a tessera or fragment, such that Brahms’s solution is “to retain its terms but to mean them in
another sense, as though the precursor had failed to go far enough.” [2, p. 14]. This approach is also consistent with Cohn’s
[5] interpretation of the opening of Brahms’s op. 5 as itself involving “cracked and mended hemiolas,” parenthetical
insertions that replace one form of well-formedness with another.
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Figure 9: (a) Chromatic lament bass harmonized in parallel thirds (b) Figure 9a transformed by gradated G (c)
Schumann, op. 14, m. 2 (an unfolding of Figure 9b) (d) Figure 8a transformed by signature transformations
and gradated G (e) Brahms, op. 1, mm. 4–6.

use both before and after the fall of 1853, and producing the music of Figure 10c from the music
of Figure 10b. I particularly value this way of relating these two passages, because it puts forward
the notion that the hypothetical series of transformations that Schumann applied to a “deep”
structure of purely stepwise parallel thirds to produce the contrary and stairstepping “surface” of
the second measure of his F-minor sonata (G0, G, G2) is the same series of transformations that
Brahms applies to Schumann’s “surface” to create the even steeper stairstepping “supersurface” of
the first six measures of his F-minor sonata. Moreover, the link between “deep” and “surface” is
more than hypothetical for Brahms: he compositionally realized this link in the first six measures
of the piano sonata he had just completed months earlier, albeit with the stairsteps in the bass
instead of the treble. The steeper ascent in the treble perfectly bridges the second octave, achieving
the high E7 (again, shown down an octave at the end of Figure 10c and 10d for ease of reading).

One difference between the transformation from “deep” to “surface,” and from “surface” to
“supersurface,” is the pacing by which the output moves through the three stages. The distribution
of G0, G, and G2 in the former is fairly regular with two dyads for each stage, as can be seen
reading the transformations from left to right in between Figure 10a and 10b. However, for the
latter—in between Figure 10b and 10c–the second stage of G predominates. Brahms’s syntagmatic
embellishment of <A♭,F> to <D♭,F> in the first measure passes the variation immediately into
its second stage, in which it stays for five dyads, each a G transform of the rest of Schumann’s
second measure. Another syntagmatic embellishment of the final dyad—-<B♭,D♭> to <F,D♭>-—of
these five commences the third and final stage right before the <E,C> conclusion. The result is
a treble line whose pitch-class content only matches that of the very beginning and ending of
Schumann’s second measure and seventh downbeat, as shown with the yellow-as-default and
purple-as-contrasting coloration employed earlier. All of the other treble pitches are different,
which considerably obscures their G-enabled kinship.

These two syntagmatic additions to Schumann’s treble content carry metric and rhythmic
ramifications. Figure 10d summarizes how the pitches within the consonant framework of
Figure 10c relocate into their final temporal and motivic positions; orange arrows indicate these
displacements. Schumann’s second measure expresses duple metrical relations on two levels: the
even alternation of bass-then-treble within an isochronous compound melody puts a sixteenth
pulse within an eighth pulse, and assigning two dyads per G-incremental stage puts this eighth
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Figure 10: (a) Lament bass harmonized in parallel thirds (b) Figure 5a transformed by gradated G to match Schumann,
op. 14, i, m. 2 (compare to Figure 4b and Figure 4c) (c) Figure 5b transformed by gradated G (d) reduction
of Brahms, Piano Sonata op. 5, i, mm. 1–6 (displacement of Figure 5c) (color scheme corresponds to that of
Figure 1).

pulse within a quarter pulse. However, the initial syntagmatic embellishment of <A♭,F> to <D♭,F>
increments the number of pitch events during the first harmony from two to three—bass F, treble
A♭, treble D♭-—which matches the younger composer’s new meter of 3/4. Brahms maintains
this same voice-beat assignment—bass-one, treble-two, treble-three—in the next two measures.
Since this pair of measures remains in the second stage, where Schumann’s pitches are only
replaced rather than increased in number, Brahms must pull treble pitches earlier in time to meet
each measure’s two-treble-pitch quota, portrayed with left-pointing orange arrows. The resulting
implicit bass suspensions create a powerful outer-voice torsion, especially in the context of the
implicit treble D♭ suspension over the bass E on the downbeat of m. 2. The second and last-second
syntagmatic embellishment of <B♭,D♭> to <F,D♭> furnishes an extra treble pitch, but three more
would be needed to maintain the current voice-beat assignment: two treble pitches each for the
bass pitches D and D♭. To square the uneven distribution, Brahms’s fourth measure switches to
a bass-one, treble-two, bass-three voice-beat assignment—bass D, treble F, bass D♭-—which also
idiomatically accelerates the harmonic rhythm before the cadence.

V. Conclusions

This article presents one way in which mathematically-based music-theoretical tools may be
mobilized to substantiate or qualify music-historical claims. Although this study involves a
specific transformation as the tool and a specific intertextual influence in the claim, I suspect
that other crossover opportunities await, not only through sophisticated statistical analyses of
Big (Musical) Data (e.g. [9]), but also through close readings of individual works such as the one
submitted herein. This article also endorses a transformational understanding of musical variation,
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a perspective especially explored by Carlos Almada (e.g. [1]) but also one that I suspect is far from
exhausted in its scholarly and pedagogical utility.
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Abstract: The Rhythmic Partitioning Analysis demands laborious tasks on segmentation and agglom-
eration/dispersion calculus. Parsemat software runs these tasks and renders indexogram and partitiogram
charts. In the present paper, we introduce the Rhythmic Partitioning Scripts (RP Scripts) as an application
of Rhythmic Partitioning in the Python environment. It adds some features absent in Parsemat, such as
the access to measure indications of each partition, introduction of rest handling, annotation of texture
info into digital scores, and other improvements. The RP Scripts collect musical events’ locations and
output locations and partitions’ data into CSV files, render indexogram/partitiogram charts, and generate
annotated MusicXML score files. RP Scripts have three components: calculator (RPC), plotter (RPP),
and annotator (RPA) scripts.
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I. Introduction

Parsemat software [12], developed by Pauxy Gentil-Nunes, assists in Rhythmic Partitioning
Analysis of musical texture. Despite being crucial for studying the Partitional Analysis of
musical texture, it lacks events’ location in terms of bar numbers and measure positions, as

well as rest handling. This absence impairs the identification and location of musical events in the
analysis process.
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In the present paper, we introduce the Rhythmic Partitioning Scripts (or RP Scripts) to fill these
gaps. These scripts output partitions data with the bars’ location and in-measure position location,
render partitiogram and indexogram charts, and annotate the partitions information into the given
digital score.

RP Scripts are composed of the Rhythmic Partitioning Calculator script (RPC), Rhythmic Partition-
ing Plotter script (RPP), and Rhythmic Partitioning Annotator script (RPA). These scripts, written in
Python [27], take advantage of the features of Music21 [6], Pandas [28], Matplotlib [19], and CSV
libraries, allowing the use of Kern [25] and MusicXML [15] digital scores as input and CSV, SVG,
PNG, and JPG files as output.1 Thus, in this paper, we review the Rhythmic Partitioning Theory
and Parsemat, present RP Scripts and introduce a short analysis of three pieces from Music21’s
corpus [5] to illustrate the data usage.

II. Partitional Analysis and Rhythmic Partitioning

Musical texture is understood here as the interaction between constituent parts of a musical
plot.2 It is a critical task in contemporary musical analysis. In this field, the pioneering work
of Wallace Berry [4] inspired several researchers to develop models to describe the relationships
and transformations between textural configurations of musical pieces, especially in the context
of concert music [16, 1]. Partitional Analysis (henceforth, PA [13, 10, 11]) is one of the texture
formalization initiatives developed through the mediation between Berry’s work and the Theory
of Integer Partitions [2, 3].

Partitions are representations of integers by the sum of other integers. Since each integer
has a finite set of partitions, it is possible to establish an exhaustive taxonomy and map their
relationships. One can, too, establish a biunivocal correspondence between partitions and textural
configurations. The inventory of textural configurations of a given instrumental set is called the
lexical-set in PA, whose cardinality is called lexical sum. For example, a four-part ensemble (like a
string quartet or a four-voice choir) has 11 settings in its lexical-set: L = {(1), (2), (1 + 1), (3), (1 +
2), (1 + 1 + 1), (4), (1 + 3), (2 + 2), (1 + 1 + 1 + 2), (1 + 1 + 1 + 1)}. Each partition corresponds to
a mode of grouping and interacting between parts or musicians. Musical works written for these
groups can then be read as a continuous linear progression involving these 11 states.

When a part articulates, and others are suspended (as sustained durations arising from previous
attacks), the common suspended state is considered as similarity or convergence and counted as an
agglomeration relationship. Each configuration, or partition, has a specific degree of homorhythmic
texture (that is, parts that articulate together) and polyphony (parts that articulate independently).
This characteristic emerges from the qualitative evaluation of the binary relationship (i.e., pairwise
assessments) between its elements, separating, on the one hand, the relationships of congruence,
collaboration, or similarity and, on the other, the relations of incongruity, opposition, or difference.
This count generates the agglomeration and dispersion indices, which form a pair (a, d).

In the case of the texture-plot, the basic grouping criteria are attack points (picked at time-
points) and the durations of each note. Other types of partitioning can be defined by different
standards, like the structural nature of events [9]; the performative relation between body and
instrument [22]; the instrumental sonic resources involved [18]; compositional concepts and
techniques [20], among others. Independent of the adopted criteria, partition (2 + 2) is more

1Another implementation of partitioning functions in Python is the module comp.parsepy, by Pedro Faria Proença
Gomes, a component of his compositional toolset [14]. This initiative is part of his Master’s Thesis in press, advised by Dr.
Liduino Pitombeira.

2Or texture-plot, according to Pablo Fessel [8], in opposition to the texture-sonority, concerned with the quality of timbre
and other esthesic qualities.
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(a) Relations. (b) Angles schema.

Figure 1: Relations between successive partitions expressed by the angles between the correspondent agglomeration and
dispersion indices in the indexogram (standard style). Adapted from Gentil-Nunes [10].

crowded than partition (1 + 1 + 1 + 1), as its parts are more massive and the number of distinct
parts is smaller; on the other hand, it is more dispersed than partition (4), the most crowded of
the lexical-set of 4. In this sense, there is perfect homology between the global organization of
these distinct fields, which gives rise to the possibility of free transduction between them in a
more organic and meaningful way than just a series of values (as proposed in Integral Serialism).

Partitional Analysis then constitutes itself as a field of investigation that includes analytical
methods (as the assessment of the partitional progressions and structures aroused in graphical
outputs, like the bubbles3 or recurrence of indexes patterns), fundamental structures (as the Parti-
tional Young Lattice, Partitiogram, textural classes, textural complexes), creative processes (as the
use of partitional operators and taxonomies for evaluating compositional choices and plannings),
among other proposals. In addition, PA was used by some researchers and composers to identify
compositional signatures or shared textural features between pieces, helping morphological analy-
sis and constructing models for practical musical tasks, like idiomatic writing and performance,
orchestration, and voice-leading, among others.

Regarding partitions notation, George Andrews [2] and the mathematicians that work with the
Theory of Integer Partitions use to abbreviate them with indexes that express the multiplicity of
the parts. When there are successive unique parts, they are separated by dots. For instance, the
abbreviated notation of partition (1 + 1 + 2 + 2 + 2 + 3 + 4) is (12233.4).

III. The indexogram

The indexogram is one of the visualization tools developed in the context of Partitional Analysis.
It consists of plotting the agglomeration and dispersion indices in a mirrored arrangement (y-axis),
i. e., the agglomeration expressed with a negative sign, relative to a median temporal axis (x-axis).
In the standard mode, the patterns formed by the angles of both trajectories are read as one of
the four principal relations between partitions [10]: resizing (m), revariance (v), transference (t),
and concurrence (c), each one with a positive and negative sign (+m,−m,+v,−v,+t,−t,+c,−c)4

(Figure 1).

3See Section III.
4The presentation of the relations between partitions is out of the scope of this paper. See Gentil-Nunes [10, 11] for

further information.
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(a) Standard. (b) Stairs.

(c) Combined. (d) Stem.

Figure 2: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). Mm. 1–7+3/2. Indexogram types.

The interaction between trajectories of the (a, d) indices in the indexogram forms broader
structures, generally delimited by low values. These structures are called bubbles and can be
read as significant textural movements responsible for delimiting sections in traditional concert
music. Sometimes, these bubbles have recurrent contours, with or without graphical variations
and transformation, forming patterns. The assessment of this kind of structure is an analytical
method per se. However, these recurrences can eventually correspond, in the score, to musical
fragments with no rhythmic or pitch similarities, which indicate a kind of textural motivic work
that can be hard to detect by a simple glance at the score, justifying the use of the indexogram as
a tool for exploring specific textural features.

The data contained in the indexogram is always characterized by the temporal trajectories of the
(a, d) indices. On the other hand, this framework can be presented by distinct visualization styles.
As an initial attempt, Gentil-Nunes [10] points to three: standard (Figure 2a), stairs (Figure 2b), and
combined (Figure 2c).

The stairs style (Figure 2b) delineates the whole cutline of each partition’s duration but, as a
drawback, finishes to miss the angles that allow reading the relations. In fact, trying to assess
the operators in a stairs indexogram implies the mental assumption of these angles. That is the
main reason to embrace the standard view, once the essential function of the indexogram is not
to iconically reproduce the esthesic dimension of the textural progressions but rather promote
recognition of the sequence of operators and the bubbles.5

The combined style brings the difference between the indices expressed in a single line. In this
case, the graph shows the prevalence and dynamic interaction between the indices.

Other alternatives already used include a stem style [17] (Figure 2d) and the temporal parti-
tiogram [12] (See Figure 4c, on page 22). The latter combines the indices (a, d) and the time points

5The same approach is adopted in Music Contour Theory [23].
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in a single line delineated in a 3D arrangement. According to the analytical purposes, each style
has its own application and advantages.

IV. Parsemat

Parsemat [12] is the original program that processes information regarding the textural partitions
of a song from a MIDI or MusicXML file. The program analyzes the textural configurations at each
point of attack, considering synchronized notes and their durations. Convergence is positive when
there is a coincidence between these two data. The program also categorizes sustained pitches
from previous attacks as synchronous.

The Parsemat program comes in two versions. The first version is a toolbox with 80 functions
that the user can type on the command line within the Matlab program. These functions apply
to two variables: the note matrix, the native format of the MIDI Toolbox [7], which is a matrix
representation of MIDI events; and the variable tab, which consists of a list of attack points
(note-ons) found in the piece, followed by the partitions resulted from the chosen analysis
(rhythmic, linear or per channel).

The first command to type is midi2nm, which makes the routine for converting the MIDI file
into a note matrix. The second command will determine the chosen analysis — parsemarit(nm),
parsemalin(nm), or parsemachan(nm). The result is always a tab variable. Finally, the user can
choose the command for rendering the graph of choice — partitiogram(tab), indexogram(tab),
or tempartgram(tab), to result respectively in a partitiogram, indexogram, or temporal partitiogram.

The program has some ready-made scripts that perform all operations in sequence: partrit,
partlin, partchan, indrit, indlin, indchan, tempartrit, tempartlin, and tempartchan. The
script automatically carries out the entire sequence in response to the user command.

The second version of the program is standalone and can run on Windows and Mac OS systems
(Figure 3). The interface presents buttons and menus that perform the reading operations, the
assemblage of the variables note matrix and tab, which displays in the form of a spreadsheet
embedded in the window, as well as the choice of analytical processes and graphics (Figure 4).

In the case of Rhythmic Partitioning (parsemarit function), the program performs the following
operations:

1. Capture the list of all attack points.

2. Collate the list of attacks and durations of each note to check the situation at each point:

(a) Simultaneous notes with the same duration (agglomeration).

(b) Simultaneous notes with distinct durations (dispersion).

(c) Suspended state notes - sustained from a previous attack (also agglomeration).

3. Counts the notes in the same situation. These groups generate the blocks that will make up
the partition for each attack point.

4. Performs the calculation of agglomeration and dispersion indices for each partition, which
then stand as coordinates (a, d) in the output graphs.
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Figure 3: Parsemat’s interface.

(a) Indexogram.

(b) Partitiogram. (c) Temporal partitiogram.

Figure 4: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). Parsemat’s output. Generated by Parsemat [12].
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V. RP Scripts description

The RPC’s main feature is calculating textural partition data from a given digital score. RPC
collects musical events from the given digital score in MusicXML or Kern formats, gets their
location in the score (measure numbers and offsets), calculates partitions, density-numbers6, and
agglomeration/dispersion values, and returns these data in a CSV file (See Listing 1). The output
CSV file contains nine columns:

1. Index

2. Measure number

3. Offset

4. Global offset

5. Duration

6. Partition

7. Density number

8. Agglomeration index

9. Dispersion index

The Index column contains the events’ locations in the format measure+offset. It is helpful for
chart plotting. Offset is a Music21 class attribute that means the distance to the beginning. In this
paper, the offset is related to the measure beginning, and global offset, to the piece beginning.

Listing 1: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). Excerpt of RPC’s output as a CSV file.

" Index " , " Measure number " , " O f f s e t " , " Global o f f s e t " , " Duration " , "
P a r t i t i o n " , " Density −number " , " Agglomeration " , " Dispersion "

" 1+0 " , 1 , 0 , 0 , 1 / 4 , " 0 " , 0 , " " , " "
" 1+1/4 " ,1 ,1/4 ,1/4 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 1+1/2 " ,1 ,1/2 ,1/2 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 2+0 " ,2 ,0 ,3/4 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 2+1/4 " ,2 ,1/4 ,1 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 2+1/2 " ,2 ,1/2 ,5/4 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 2+3/4 " ,2 ,3/4 ,3/2 ,3/2 , " 1 . 3 " , 4 , 3 . 0 , 3 . 0
" 2+1 " , 2 , 1 , 7 / 4 , 1 , " 4 " , 4 , 6 . 0 , 0 . 0
" 2+5/4 " , 2 , 5 / 4 , 2 , 1 , " 4 " , 4 , 6 . 0 , 0 . 0
" 2+3/2 " ,2 ,3/2 ,9/4 ,1 , " 4 " , 4 , 6 . 0 , 0 . 0
" 2+7/4 " ,2 ,7/4 ,5/2 ,1 , " 4 " , 4 , 6 . 0 , 0 . 0

RPC takes advantage on multiple Music21’s tools. The function converter.parse parses
digital scores from different formats, such as Kern and MusicXML and outputs stream.Stream
objects. These Stream objects contain multiple nested classes such as Part, Voice, Measure, Note,
Chord, Rest, Pitch, and Duration.

RPC performs similar procedures to Parsemat (See Section IV):

6The density-number is an index referring to the number of concurrent sounding components in a given time point [4].
In this paper it is abbreviated as dn.
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Figure 5: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?)., mm. 1–4. Rhythmic partitions annotated in a digital
score. Generated by RPA Script.

1. Extract musical events and their locations from the data input;

2. Map notes’ and rests’ beginnings and endings;

3. Loop through these boundaries to check other voices’ notes;

4. Group events by duration to create partitions;

5. Calculate partitions’ density-number and agglomeration/dispersion values;

6. Join adjacent partitions in parsemae.

RPA annotates the partitions information of RPC’s CSV output file into the given digital
score returning a new annotated MusicXML digital score. This file can be opened and edited in
conventional score writers softwares (See Section VIII). It simply adds the partitions data into a
new staff as note lyrics (Figure 5).

RPP takes advantage of Pandas [28] and Matplotlib [19] libraries functionalities. The script
reads CSV data built by RPC and converts it to a DataFrame object. DataFrame.plot method
generates the partitiogram and the indexogram and saves them in an SVG file. The functions
plot_simple_partitiogram and plot_simple_indexogram among the functions correspondent
to other indexogram styles solely add customized labels on line and scatter default charts
and save them in SVG files. RPP outputs partitiogram and indexogram charts such in figures 2
(page 20), 6a, 6b (See both figures on page 28). Its source code is available in Appendix B.

i. RPC Structure

RPC is object-oriented and contains six object classes and auxiliary functions in a single module.
Its source code is available in Appendix A. The auxiliary functions are helpful handling fractions,
assisting events finding, and parsing Music21 events to SingleEvent objects. Texture, Parsema,
and ScoreSoundingMap are the three most important script’s classes. While Texture is the script’s
main class, Parsema represents the partitions, and ScoreSoundingMap, the music segmentation.

1. MusicalEvent

2. SingleEvent
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3. Parsema

4. PartSoundingMap

5. ScoreSoundingMap

6. Texture

MusicalEvent A class that represents rests, notes, and chords. It simplifies Music21’s structure,
which contains different classes and nesting levels for these events. MusicalEvent class stores
offset and global offset, number of pitches, duration, tie’s type, and Music21 class of the given
events (Note, Chord or Rest). This class has a set_data_from_m21_obj constructor method, with
Music21’s event, measure number, and measure offset as arguments.

SingleEvent An auxiliary class for sounding map creation. It is similar to MusicalEvent class,
but with the additional boolean sounding attribute, and without tie and m21_class attributes.

Parsema A class representing repeated adjacent partitions. It stores the partitions sequence’s
location, duration, name, and list of SingleEvents. It provides methods to add events, and to get
partition information, such as agglomeration and dispersion indexes (see Section II).

PartSoundingMap A map of the sounding events of a single musical part. It stores the list of
part events and attacks’ global offsets. It provides methods to parse music21.stream.Part and to
get SingleEvent by location.

ScoreSoundingMap A map of sounding events for the complete musical piece. This class
provides methods to add part sounding maps and create Parsema objects.

Texture The top-level class. It provides methods to generate Parsema objects from given
music21.stream.Stream and to output the partitions data into CSV file.

ii. RPC procedure

RPC procedure consists of the following steps:

1. Parsing of digital score and conversion to the music21.stream.base.Score object with
music21.converter.parse method;

2. Instantiation of Texture and ScoreSoundingMap objects;

3. Conversion of Score’s voices into parts with Score.voicesToParts method;

4. Instantiation of PartSoundingMaps objects;

5. Conversion of Music21’s events into SingleEvent objects, storage of location data with
set_from_m21_part method and make_music_events_from_part auxiliary function;

6. Creation of part’s sounding and attack maps;

7. Instantiation of Sounding and attack analysis and Parsema method with add_part_sounding_map,
set_from_m21_part, and make_parsemae methods;
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8. Calculus of Density-number, agglomeration and dispersion with respectively Parsema’s
methods;

9. Normalization with events of equal duration;

10. Creation of CSV file and output.

VI. RP Scripts installing and running

RP Scripts [24] depend on Python and a few libraries.7 The command below installs Python
libraries with built-in pip command:

pip i n s t a l l pandas numpy m a t p l o t l i b music21

Since RPC, RPP, and RPA are standalone, there is no reason to install them in the system. Their
running depends only on command line callback:

python rpc . py score . xml
python rpp . py score . csv
python rpa . py −s score . xml −c score . csv

RPP provides optional arguments (Listing 2) for choosing output image format, resolution and
indexograms types (stairs, stem, combined, standard) and plotting bubble closing artificial lines.
RPA demands the score (with -s) and csv files (with -c) as arguments to output the annotated
MusicXML digital score.

Listing 2: RPP’s help output.

usage : rpp [ −h ] [ − f IMG_FORMAT] [ − r RESOLUTION] [ −a ] [ − c ] [ − e ] [ − t ] [ −b
] f i lename

P l o t Par t i t iogram and Indexogram from RPC output

p o s i t i o n a l arguments :
f i lename

options :
−h , −−help show t h i s help message and e x i t
− f IMG_FORMAT, −−img_format IMG_FORMAT

Image format ( svg , jpg or png ) . Defaul t=svg
−r RESOLUTION, −− r e s o l u t i o n RESOLUTION

PNG image r e s o l u t i o n . Defaul t =300
−a , −− a l l P l o t a l l a v a i l a b l e c h a r t s
−c , −−c lose_bubbles Close indexogram bubbles .
−e , −−stem Indexogram as a stem ch ar t
−t , −− s t a i r s Indexogram as a s t a i r ch ar t
−b , −−combined Indexogram as a combination of aglomeration and

dispers ion

Rhythmic P a r t i t i o n i n g P l o t t e r

7Since the installing of Python and its libraries is well documented, this procedure is out of the scope of this paper.
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Genre Year Composer Title

Madrigal 1592 C. Monteverdi
Poi ch’ella in sè tornò deserto e muto,
Third book of madrigals, n. 10

String quartet 1784 W. A. Mozart String Quartet n. 17, K458, mov. I
Lied 1844? R. Schumann Diechterliebe, Op. 48, n. 2

Table 1: Analysed corpus.

VII. Application

We have generated partitioning data, partitiograms and indexograms for three pieces from
Music21’s repository [5] to illustrate the RP Scripts usage (Table 1).8

Monteverdi’s madrigal contains well-distributed textural partitions from density-number zero
to five (Figure 6a). Only partition (15) is absent in the piece. Most time, agglomeration and
dispersion indexes are limited to the value of six, which correspond to density-number four
(Figure 6b). Partitions with values higher than five are present only in strategic points such occur
around measures 13, 18, 32, 65, 70, and 80. Furthermore, there are a few moments with lighter
textures around measures 26 and 48.

Throughout the piece, peaks of dispersion and agglomeration are arranged in pairs, indicating
a balance between a soft polyphony (as the figures of each voice are approximate with the same
pace and rhythmic values but in asynchrony) and tiny fragments made of homorhythmic blocks.
The indexogram made this textural dynamic visible by comparing superior and inferior peaks.
The combination of latin vocal lyrics in concurrent parts does not follow this pattern in the middle
of the phrases, eventually mixing syllables of different words (for instance, the last syllable of
measure 7, Figure 6c). The convergence of rhythm and text is more substantial at the end of
sections (for example, in mm. 18 to 19, Figure 6d).

In Mozart’s case (Figure 7), the quartet uses a repertoire of partitions very similar to Mon-
teverdi’s one—that is, the 11 partitions of the lexical-set of dn = 4, and some accessory partitions—
in Monteverdi’s case, coming from the fifth voice, and in the case of Mozart, the strings’ double
stops.

Monteverdi and Mozart use all partitions of dn = 5 but partition (15). In Mozart, this exclusion
is understandable, as it would require a technique of double-stop polyphony that would be
improbable in the instrumental language of his time. However, this same lack in Monteverdi is
more surprising since it would be the natural expression of a five-part polyphony. An explanation
for this could come from the rhythmic structure of the piece, which revolves around simple
divisions of the quaternary measure. A five-voice polyphony would imply a complication of
divisions outside the piece’s character.

Mozart’s partitions for dn = 6 and dn = 8 occur in the piece’s final section and are in a
purely cadential context. The arrangement in pairs of dispersion and agglomeration peaks also
occurs in the Mozart excerpt. For example, in mm. 100–107.2 (Figure 7c), the alternation occurs
between antecedent and consequent, which present themselves with contrasting profiles (dispersed
- agglomerated), which points to the sense of completion and closure typical of agglomerated
partitions (blocks).

In Schumman’s excerpt of Diechterliebe—a piece for voice and piano—each dn is explored at
its base, that is, in its most massive partitions, thus leaving aside the most dispersed partitions,

8We manually edited Monteverdi’s digital score to add note tie endings for RPC’s processing. See more information in
Section VIII.

27

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

(a) Partitiogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).

(b) Indexogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).
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(c) Mm. 7–10. Generated by Music21 [6] (see Section VIII) and Lilypond [21].
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Figure 6: C. Monteverdi. “Poi ch’ella in sè tornò deserto e muto”, Il terzo libro de madrigali a cinque voci, n. 10,
Venice (1592).
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(a) Partitiogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).

(b) Indexogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).
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(c) Mm. 100–107. Generated by Music21 [6] (see Section VIII) and Lilypond [21], edited manually to add
the partitions annotations.

Figure 7: W.A. Mozart. String Quartet n. 17, K 458, mov. I (1784).
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corresponding to polyphonies (Figures 8a and 8b9). For example, of the 18 partitions in the
lexical-set of dn = 5, only its 9 most agglomerated partitions are used.

On the other hand, we can see that the phrasal relationship between antecedent and consequent
is also related to the dispersion-agglomeration progression. In the initial bubbles, closure occurs
in agglomerated partitions (mm. 1–3, 4–6, 8–12, Figure 8c). Interestingly, this relationship is
inverted in the last two bubbles of the excerpt (mm. 14–15 and 16–17, Figure 8d), forming a
textural palindrome with the initial bubbles, which shows that contrast between dispersed and
agglomerated partitions can work in both directions.

VIII. Discussion

Since RPC allows MusicXML and KRN files as input, its application potential is expressive. Major
score writers such as Dorico, Finale, MuseScore, and Sibelius can export their scores to MusicXML
files.10 Furthermore, MuseScore and KernScores have large digital scores repositories in these file
formats.

CSV files are popular, easy to parse, and readable by spreadsheet softwares. Therefore, this
file format allows using output data for multiple purposes, such as data analysis and plotting.
Moreover, spreadsheets softwares can easily filter partitions that are difficult to find in the
indexograms. Additionally, RPA’s output helps find all partitions directly into the music score.

The events’ location by their measure numbers and offset is a notable feature of RPC. This
information is helpful in piece comprehension since it allows the indexogram’s X-axis labeling.
Moreover, using these locations, along with Music21’s show method, makes it possible to display
the score of any specific piece point. For instance, the code below extracts and shows measures 7
to 10 on Figure 6c.

import music21
score = music21 . conver ter . parse ( ’ monteverdi . xml ’ )
measures = score . measures ( 7 , 10)
measures . show ( )

Another RP Scripts’ highlight is the possibility of processing large corpora. Since they are
standalone scripts, a concatenation in a shell script is possible. For instance, the single line below
calls RPC and RPP to create CSV, indexogram, and partitiogram files from all the MusicXML files
in a directory:

for f in * . xml ; do python rpc . py $f && python rpp . py $ { f %.xml } . csv &&
python rpa . py −s $f . xml −c $ { f %.xml } . csv ; done

Parsemat’s and RPC’s outputs differ in two aspects: voice and rest handling. The voice
processing is different due to the particularities of the MIDI and MusicXML data parsing. Given
two equal MIDI notes coded in two different voices, if they are in the same channel, Parsemat
processes them as a single part. RPC splits all part voices into new parts before processing
partitions. Thus, RPC processes these equal notes as separate parts. This difference is more visible
in instruments that allow multiple voices, such as the piano. For instance, in Schumann’s fourth
measure, the E4 note in the left hand is written twice (Figure 9a). Since this music staff occurs in
only one channel, Parsemat processes only one occurrence of them. According to Parsemat, this
excerpt’s partition is (1) and (12). Since RPC splits these voices (Figure 9b), this excerpt’s partition

9In spite on the anacrusis measure, the piece’s indexogram (Figure 8b) starts in measure number 1 because the anacrusis
measure is codified in this way in the piece’s source. See a discussion about music codification in Section VIII.

10See a complete software list with MusicXML export support at https://www.musicxml.com/software/.
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(a) Partitiogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).

(b) Indexogram. Generated by RPC and RPP Scripts (see
Appendixes A and B).
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(c) Mm. 1–5. Generated by Music21 [6] (see Section VIII) and Lilypond [21], edited manually to add
the partitions and bubbles annotations.
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(d) Mm. 13–16. Generated by Music21 [6] (see Section VIII) and Lilypond [21], edited
manually to add the partitions and bubbles annotations.

Figure 8: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?).
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Figure 9: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). Voices processing approaches, m. 4, piano’s left hand.
Generated by Music21 [6] (see Section VIII) and Lilypond [21].

(a) RPC and RPP. Generated by RPC and RPP
Scripts (see Appendixes A and B).

(b) Parsemat. Generated by Parsemat [12].

Figure 10: R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). Mm. 0–4+3/4. Indexogram excerpts. See Section III.

is only (12). This algorithm does not merge different voices in this situation. The present authors
consider the inclusion of these possibilities as interface options in future releases of Parsemat and
RPC.

RPC is sensitive to a precise musical representation. Thus, ambiguous decisions in coded
music lead to processing errors during Music21 parsing and, consequently, during the script’s
processing. For instance, RPC needs explicit encoding of note tie endings to calculate the partitions
and return bad results in processing scores without this information. This issue is not particular to
this script but a common problem of the music processing. Accordingly to Elaine Selfridge-Field,
“Common notation evolved with a view toward economy, but many conventions that save space
or time in print complicate the operational instructions required to process musical information
automatically” [26].

The other difference between Parsemat and RPC occurs in rest processing. RPC returns rest
events with agglomeration and dispersion null values (not zero), while Parsemat’s current version
does not return rest events11. This procedure impacts indexogram creation resulting in empty
spaces in RPC/RPP indexogram and linking points in the Parsemat indexogram. For instance,
the rest at measure 2 (Figure 8c) is visible in RPC/RPP’s indexogram (Figure 10a), but not in
Parsemat’s (Figure 10b, around time point 4).

Although RPC/RPP’s approach reveals the rests in the indexogram, it compromises the bubbles
identification. A possible solution to bubble visualization is drawing vertical lines at the edges

11According to Parsemat’s website [12], “As the location of pauses affects the formal analysis, there is an option to read
noteoffs in the command line version that will be inserted in the following program standalone versions. At the moment,
the Parsemat standalone version simply ignores the pauses when creating the partitioning tables.”
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(a) R. Schumann. Diechterliebe, Op. 48, n. 2 (1844?). (b) W.A. Mozart. String Quartet n. 17, K 458, mov. I
(1784).

Figure 11: Vertical lines closing indexograms’ bubbles. Generated by RPC and RPP Scripts (see Appendixes A and B).

of the rests (Figure 11). This solution improves the chart understanding in some cases, such as
Schumman’s indexogram (Compare figures 11a and 8b). However, these lines can pollute chart
comprehension in more complex indexograms, such as Mozart’s one (Figure 11b). The alternation
between rests and notes in measures 231 and 236 pollutes this chart.

The representation of the pause as a discontinuity in the indexogram’s temporal axis is a visual
solution that aids the analysis. Anyway, silence as a rhythmic texture remains a conceptual issue
to be addressed in future works.

IX. Conclusion

In the present paper, we introduced the Rhythmic Partitioning Scripts to get and plot events’
locations, and annotating partitions info into digital scores, filling Parsemat’s gaps. We presented
their structures and source codes and analyzed three scores to demonstrate their usage.

The RP Scripts’ Python basis allows integration with other tools such as Music21 to plot scores
and run different types of music analysis. Furthermore, their input and output data formats are
well known and permit analysis of large corpora of music scores.

As possible future work, these scripts can receive Linear- and Per-Event Partitioning function-
alities and Graphical User Interface and be part of Music21 as a package.
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A. RPC’ source-code

1 import argparse
2 import copy
3 import csv
4 import f r a c t i o n s
5 import math
6 import music21
7 import numpy
8
9 def get_number_combinations_pairs ( n ) :

10 return n * ( n − 1) / 2
11
12 def make_fract ion ( value ) :
13 i f i s i n s t a n c e ( value , f r a c t i o n s . F r a c t i o n ) :
14 return f r a c t i o n s . F r a c t i o n ( i n t ( value . numerator ) , i n t ( value .

denominator ) )
15 e lse :
16 a , b = value . a s _ i n t e g e r _ r a t i o ( )
17 return f r a c t i o n s . F r a c t i o n ( i n t ( a ) , i n t ( b ) )
18
19 def get_common_fractions_denominator ( f r a c t i o n s _ l s t ) :
20 denominators = [ f r . denominator for f r in f r a c t i o n s _ l s t ]
21 return numpy . lcm . reduce ( denominators )
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22
23 def get_common_denominator_from_list ( seq ) :
24 d i f f s = [ b − a for a , b in zip ( seq , seq [ 1 : ] ) ]
25 values = map( make_fraction , sorted ( l i s t ( s e t ( d i f f s ) ) ) )
26 return f r a c t i o n s . F r a c t i o n ( 1 , get_common_fractions_denominator (

values ) )
27
28 def f i n d _ n e a r e s t _ s m a l l e r ( value , seq ) :
29 i f value < seq [ 0 ] :
30 return −1
31
32 i f value > seq [ − 1 ] :
33 return seq [ −1]
34
35 s i z e = len ( seq )
36 i f s i z e == 1 and value >= seq [ 0 ] :
37 return seq [ 0 ]
38
39 middle_pointer = math . f l o o r ( s i z e /2)
40 l e f t = seq [ : middle_pointer ]
41 r i g h t = seq [ middle_pointer : ]
42
43 i f value < r i g h t [ 0 ] :
44 return f i n d _ n e a r e s t _ s m a l l e r ( value , l e f t )
45 e lse :
46 return f i n d _ n e a r e s t _ s m a l l e r ( value , r i g h t )
47
48 def a u x i l i a r y _ f i n d _ i n t e r v a l ( value , dic , i =0) :
49 s i z e = len ( dic . keys ( ) )
50
51 i f i > s i z e − 1 :
52 r a i s e IndexError ( ’ Given index i s out of dic ’ )
53
54 keys = l i s t ( dic . keys ( ) )
55 while i < s i z e − 1 and value >= dic [ keys [ i + 1 ] ] :
56 i += 1
57
58 return keys [ i ] , i
59
60 def aux_make_events_from_part ( m21_part ) :
61 ’ ’ ’ Return a d i c t i o n a r y with l o c a t i o n and Musica l Events
62 f rom a g i v e n Music21 p a r t o b j e c t .
63 ’ ’ ’
64
65 measures = m21_part . getElementsByClass ( music21 . stream . Measure )
66
67 events = { }
68
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69 for m21_measure in measures :
70 notes_and_res ts = m21_measure . notesAndRests
71 for m21_obj in notes_and_res ts :
72 m_event = MusicalEvent ( )
73 m_event . set_data_from_m21_obj ( m21_obj , m21_measure . number ,

m21_measure . o f f s e t )
74 events . update ( {
75 m_event . g l o b a l _ o f f s e t : m_event
76 } )
77
78 return events
79
80
81 def aux_join_music_events ( events ) :
82
83 # Add n u l l e v e n t a t t h e end
84 l a s t _ l o c a t i o n = l i s t ( events . keys ( ) ) [ −1]
85 l a s t _ e v e n t = events [ l a s t _ l o c a t i o n ]
86 l a s t _ l o c a t i o n += l a s t _ e v e n t . durat ion + 1
87 current_event = MusicalEvent ( )
88 current_event . i s _ n u l l = True
89 events . update ( {
90 l a s t _ l o c a t i o n : MusicalEvent ( )
91 } )
92
93 # S t a r t wi th n u l l
94 l a s t _ e v e n t = None
95 l a s t _ l o c a t i o n = None
96 jo ined_events = { }
97
98 for l o c a t i o n , current_event in events . i tems ( ) :
99 i f current_event . i s _ n u l l : # any − n u l l

100 jo ined_events . update ( { l a s t _ l o c a t i o n : l a s t _ e v e n t } )
101 e lse :
102 i f not l a s t _ e v e n t : # n u l l − any
103 l a s t _ e v e n t = current_event
104 l a s t _ l o c a t i o n = l o c a t i o n
105 e lse :
106 i f current_event . i s _ r e s t ( ) :
107 i f l a s t _ e v e n t . i s _ r e s t ( ) : # r e s t − r e s t
108 l a s t _ e v e n t . durat ion += current_event . durat ion
109 e lse : # n o t e − r e s t
110 jo ined_events . update ( { l a s t _ l o c a t i o n : l a s t _ e v e n t

} )
111 l a s t _ e v e n t = current_event
112 l a s t _ l o c a t i o n = l o c a t i o n
113 e lse :
114 i f l a s t _ e v e n t . i s _ r e s t ( ) : # r e s t − n o t e
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115 jo ined_events . update ( { l a s t _ l o c a t i o n : l a s t _ e v e n t
} )

116 l a s t _ e v e n t = current_event
117 l a s t _ l o c a t i o n = l o c a t i o n
118 e lse : # n o t e − n o t e
119 i f current_event . t i e :
120 i f current_event . t i e == ’ s t a r t ’ : # n o t e −

n o t e . s t a r t
121 jo ined_events . update ( { l a s t _ l o c a t i o n :

l a s t _ e v e n t } )
122 l a s t _ e v e n t = current_event
123 l a s t _ l o c a t i o n = l o c a t i o n
124 e lse : # n o t e − n o t e . c o n t i n u e or n o t e . s t o p
125 l a s t _ e v e n t . durat ion += current_event .

durat ion
126 pass
127 e lse :
128 jo ined_events . update ( { l a s t _ l o c a t i o n :

l a s t _ e v e n t } )
129 l a s t _ e v e n t = current_event
130 l a s t _ l o c a t i o n = l o c a t i o n
131
132 return j o ined_events
133
134 def make_music_events_from_part ( m21_part ) :
135 events = aux_make_events_from_part ( m21_part )
136 return aux_join_music_events ( events )
137
138 def p r e t t y _ p a r t i t i o n _ f r o m _ l i s t ( seq ) :
139 i f not seq :
140 return ’ 0 ’
141 dic = { }
142 for e l in seq :
143 i f e l not in dic . keys ( ) :
144 dic [ e l ] = 0
145 dic [ e l ] += 1
146 p a r t i t i o n = ’ . ’ . j o i n ( [ s t r ( k ) i f v < 2 e lse ’ { } ^ { } ’ . format ( k , v )
147 for k , v in sorted ( dic . i tems ( ) )
148 ] )
149
150 return p a r t i t i o n
151
152 c l a s s CustomException ( Exception ) :
153 pass
154
155 c l a s s MusicalEvent ( object ) :
156 def _ _ i n i t _ _ ( s e l f ) :
157 s e l f . o f f s e t = 0
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158 s e l f . g l o b a l _ o f f s e t = 0
159 s e l f . number_of_pitches = 0
160 s e l f . durat ion = 0
161 s e l f . t i e = None
162 s e l f . m21_class = None
163 s e l f . i s _ n u l l = Fa l se
164
165 def _ _ s t r _ _ ( s e l f ) −> s t r :
166 return ’ ’ . j o i n ( l i s t (map( s t r , [ s e l f . number_of_pitches , s e l f .

duration , s e l f . t i e ] ) ) )
167
168 def __repr__ ( s e l f ) :
169 return ’<E {} > ’ . format ( s e l f . _ _ s t r _ _ ( ) )
170
171 def i s _ r e s t ( s e l f ) :
172 return s e l f . m21_class == music21 . note . Rest
173
174 def set_data_from_m21_obj ( s e l f , m21_obj , measure_number ,

measure_offset ) :
175 s e l f . measure_number = measure_number
176 s e l f . o f f s e t = make_fract ion ( m21_obj . o f f s e t )
177 s e l f . g l o b a l _ o f f s e t = s e l f . o f f s e t + make_fract ion ( measure_offset

)
178 s e l f . durat ion = make_fract ion ( m21_obj . durat ion . quarterLength )
179 s e l f . m21_class = m21_obj . _ _ c l a s s _ _
180
181 i f s e l f . i s _ r e s t ( ) :
182 s e l f . number_of_pitches = 0
183 e lse :
184 i f m21_obj . isNote :
185 s e l f . number_of_pitches = 1
186 e lse :
187 s e l f . number_of_pitches = len ( m21_obj . p i t c h e s )
188 i f m21_obj . t i e :
189 i f m21_obj . t i e . type in [ ’ s t a r t ’ , ’ continue ’ , ’ stop ’ ] :
190 s e l f . t i e = m21_obj . t i e . type
191
192 c l a s s SingleEvent ( object ) :
193 def _ _ i n i t _ _ ( s e l f ) :
194 s e l f . number_of_pitches = 0
195 s e l f . durat ion = 0
196 s e l f . measure_number = 0
197 s e l f . o f f s e t = 0
198 s e l f . sounding = Fa lse
199 s e l f . p a r t i t i o n _ i n f o = [ ]
200
201 c l a s s Parsema ( object ) :
202 def _ _ i n i t _ _ ( s e l f ) :
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203 s e l f . measure_number = None
204 s e l f . o f f s e t = None
205 s e l f . g l o b a l _ o f f s e t = None
206 s e l f . durat ion = 0
207 s e l f . s i n g l e _ e v e n t s = [ ]
208 s e l f . p a r t i t i o n _ i n f o = [ ]
209 s e l f . p a r t i t i o n _ p r e t t y = ’ ’
210
211 def __repr__ ( s e l f ) :
212 return ’<P : { } ( { } , { } ) , dur {} > ’ . format ( s e l f . p a r t i t i o n _ p r e t t y ,

s e l f . measure_number , s e l f . o f f s e t , s e l f . durat ion )
213
214 def add_single_events ( s e l f , s i n g l e _ e v e n t s ) :
215 s e l f . s i n g l e _ e v e n t s = s i n g l e _ e v e n t s
216 durat ions = [ event . durat ion for event in s i n g l e _ e v e n t s i f event

]
217 i f durat ions :
218 s e l f . durat ion = min ( durat ions )
219
220 s e l f . s e t _ p a r t i t i o n _ i n f o ( )
221 s e l f . p a r t i t i o n _ p r e t t y = p r e t t y _ p a r t i t i o n _ f r o m _ l i s t ( s e l f .

p a r t i t i o n _ i n f o )
222
223 def s e t _ p a r t i t i o n _ i n f o ( s e l f ) :
224 p a r t i t i o n s = { }
225 number_of_pitches_set = s e t ( [
226 s_event . number_of_pitches
227 for s_event in s e l f . s i n g l e _ e v e n t s
228 ] )
229 i f l i s t ( number_of_pitches_set ) == [ 0 ] :
230 return [ 0 ]
231 for s_event in s e l f . s i n g l e _ e v e n t s :
232 key = ( s_event . sounding , s_event . durat ion )
233 i f key not in p a r t i t i o n s . keys ( ) and s_event .

number_of_pitches > 0 :
234 p a r t i t i o n s [ key ] = 0
235 i f s_event . number_of_pitches > 0 :
236 p a r t i t i o n s [ key ] += s_event . number_of_pitches
237 s e l f . p a r t i t i o n _ i n f o = sorted ( p a r t i t i o n s . values ( ) )
238
239 def get_density_number ( s e l f ) :
240 return i n t (sum( s e l f . p a r t i t i o n _ i n f o ) )
241
242 def c o u n t _ b i n a r y _ r e l a t i o n s ( s e l f ) :
243 density_number = s e l f . get_density_number ( )
244 return get_number_combinations_pairs ( density_number )
245
246 def get_agglomeration_index ( s e l f ) :
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247 i f s e l f . p a r t i t i o n _ i n f o == [ ] :
248 return None
249 return f l o a t (sum ( [ get_number_combinations_pairs ( n ) for n in

s e l f . p a r t i t i o n _ i n f o ] ) )
250
251 def get_dispers ion_index ( s e l f ) :
252 i f s e l f . p a r t i t i o n _ i n f o == [ ] :
253 return None
254 return f l o a t ( s e l f . c o u n t _ b i n a r y _ r e l a t i o n s ( ) − s e l f .

get_agglomeration_index ( ) )
255
256 c l a s s PartSoundingMap ( object ) :
257 def _ _ i n i t _ _ ( s e l f ) :
258 s e l f . s i n g l e _ e v e n t s = None
259 s e l f . a t t a c k _ g l o b a l _ o f f s e t s = [ ]
260
261 def _ _ s t r _ _ ( s e l f ) :
262 return len ( s e l f . s i n g l e _ e v e n t s . keys ( ) )
263
264 def __repr__ ( s e l f ) :
265 return ’<PSM: { } events > ’ . format ( s e l f . _ _ s t r _ _ ( ) )
266
267 def set_from_m21_part ( s e l f , m21_part ) :
268 music_events = make_music_events_from_part ( m21_part )
269 s e l f . s i n g l e _ e v e n t s = { }
270 for g l o b a l _ o f f s e t , m_event in music_events . i tems ( ) :
271 # i n t e r v a l : c l o s e d s t a r t and open end .
272 closed_beginning = g l o b a l _ o f f s e t
273 open_ending = closed_beginning + m_event . durat ion
274
275 s i n g l e _ e v e n t = SingleEvent ( )
276 s i n g l e _ e v e n t . number_of_pitches = m_event . number_of_pitches
277 s i n g l e _ e v e n t . durat ion = m_event . durat ion
278 s i n g l e _ e v e n t . measure_number = m_event . measure_number
279 s i n g l e _ e v e n t . o f f s e t = m_event . o f f s e t
280
281 s e l f . s i n g l e _ e v e n t s . update ( {
282 ( closed_beginning , open_ending ) : s i n g l e _ e v e n t
283 } )
284 s e l f . a t t a c k _ g l o b a l _ o f f s e t s . append ( closed_beginning )
285
286 def g e t _ s i n g l e _ e v e n t _ b y _ l o c a t i o n ( s e l f , g l o b a l _ o f f s e t ) :
287 beginning = f i n d _ n e a r e s t _ s m a l l e r ( g l o b a l _ o f f s e t , s e l f .

a t t a c k _ g l o b a l _ o f f s e t s )
288
289 i f beginning == −1: # No e v e n t t o r e t u r n
290 return
291
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292 ind = s e l f . a t t a c k _ g l o b a l _ o f f s e t s . index ( beginning )
293 _ , ending = l i s t ( s e l f . s i n g l e _ e v e n t s . keys ( ) ) [ ind ]
294 s_event = None
295 i f g l o b a l _ o f f s e t >= beginning and g l o b a l _ o f f s e t < ending :
296 s_event = copy . deepcopy ( s e l f . s i n g l e _ e v e n t s [ ( beginning ,

ending ) ] )
297 d u r a t i o n _ d i f f = g l o b a l _ o f f s e t − beginning
298 duration = s_event . durat ion
299 duration = duration − d u r a t i o n _ d i f f
300 sounding = d u r a t i o n _ d i f f > 0
301 s_event . durat ion = duration
302 i f s_event . number_of_pitches > 0 :
303 s_event . sounding = sounding
304 e lse :
305 s_event . sounding = Fa lse
306 return s_event
307
308 c l a s s ScoreSoundingMap ( object ) :
309 def _ _ i n i t _ _ ( s e l f ) :
310 s e l f . sounding_maps = [ ]
311 s e l f . a t t a c k s = [ ]
312 s e l f . measure_of fse ts = { }
313
314 def __repr__ ( s e l f ) :
315 return ’<SSM : { } maps , { } a t tacks > ’ . format ( len ( s e l f .

sounding_maps ) , len ( s e l f . a t t a c k s ) )
316
317 def add_part_sounding_map ( s e l f , m21_part ) :
318 psm = PartSoundingMap ( )
319 psm . set_from_m21_part ( m21_part )
320 i f psm . s i n g l e _ e v e n t s :
321 s e l f . sounding_maps . append (psm)
322 s e l f . a t t a c k s . extend (psm . a t t a c k _ g l o b a l _ o f f s e t s )
323 s e l f . a t t a c k s = sorted ( s e t ( s e l f . a t t a c k s ) )
324
325 def add_score_sounding_maps ( s e l f , m21_score ) :
326 # Get and f i l l measure o f f s e t s
327 offset_map = m21_score . p ar t s [ 0 ] . offsetMap ( )
328 s e l f . measure_of fse ts = {
329 om. element . number : make_fract ion (om. element . o f f s e t )
330 for om in offset_map
331 i f i s i n s t a n c e (om. element , music21 . stream . Measure )
332 }
333
334 # Get and f i l l sounding p a r t s
335 pa r t s = m21_score . voicesToParts ( )
336
337 for m21_part in p ar t s :

42

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

338 s e l f . add_part_sounding_map ( m21_part )
339
340 def g e t _ s i n g l e _ e v e n t s _ b y _ l o c a t i o n ( s e l f , g l o b a l _ o f f s e t ) :
341 s i n g l e _ e v e n t s = [ ]
342 for sounding_map in s e l f . sounding_maps :
343 s_event = sounding_map . g e t _ s i n g l e _ e v e n t _ b y _ l o c a t i o n (

g l o b a l _ o f f s e t )
344 i f s_event :
345 s i n g l e _ e v e n t s . append ( s_event )
346 return s i n g l e _ e v e n t s
347
348 def make_parsemae ( s e l f ) :
349 parsemae = [ ]
350
351 offset_map = { ofs : ms for ms, ofs in s e l f . measure_of fse ts . i tems

( ) }
352 a l l _ o f f s e t s = l i s t ( offset_map . keys ( ) )
353
354 for a t t a c k in s e l f . a t t a c k s :
355 measure_offset = f i n d _ n e a r e s t _ s m a l l e r ( a t tack , a l l _ o f f s e t s )
356 measure_number = offset_map [ measure_offset ]
357 o f f s e t = make_fract ion ( a t t a c k ) − make_fract ion (

measure_offset )
358
359 parsema = Parsema ( )
360 parsema . add_single_events ( s e l f .

g e t _ s i n g l e _ e v e n t s _ b y _ l o c a t i o n ( a t t a c k ) )
361 parsema . g l o b a l _ o f f s e t = a t t a c k
362 parsema . measure_number = measure_number
363 parsema . o f f s e t = o f f s e t
364 parsemae . append ( parsema )
365
366 i f not parsemae :
367 return
368
369 # Merge pars emae
370 merged_parsemae = [ ]
371 f i r s t_parsema = parsemae [ 0 ]
372 for parsema in parsemae [ 1 : ] :
373 i f parsema . p a r t i t i o n _ i n f o == f i r s t_parsema . p a r t i t i o n _ i n f o :
374 f i r s t_parsema . durat ion += parsema . durat ion
375 e lse :
376 merged_parsemae . append ( f i r s t_parsema )
377 f i r s t_parsema = parsema
378
379 merged_parsemae . append ( f i r s t_parsema )
380
381 return merged_parsemae
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382
383
384 c l a s s Texture ( object ) :
385 def _ _ i n i t _ _ ( s e l f ) :
386 s e l f . parsemae = [ ]
387 s e l f . _measure_of fse ts = { }
388
389 def __repr__ ( s e l f ) :
390 return ’<T : { } parsemae> ’ . format ( len ( s e l f . parsemae ) )
391
392 def make_from_music21_score ( s e l f , m21_score ) :
393 ssm = ScoreSoundingMap ( )
394 ssm . add_score_sounding_maps ( m21_score )
395 s e l f . parsemae = ssm . make_parsemae ( )
396 s e l f . _measure_of fse ts = ssm . measure_of fse ts
397
398 def _ a u x i l i a r y _ g e t _ d a t a ( s e l f ) :
399 columns = [
400 ’ Index ’ , # 0
401 ’ Measure number ’ , # 1
402 ’ O f f s e t ’ , # 2
403 ’ Global o f f s e t ’ , # 3
404 ’ Duration ’ , # 4
405 ’ P a r t i t i o n ’ , # 5
406 ’ Density −number ’ , # 6
407 ’ Agglomeration ’ , # 7
408 ’ Dispers ion ’ , # 8
409 ]
410 data = [ ]
411 for parsema in s e l f . parsemae :
412 ind = tuple ( [ parsema . measure_number , parsema . o f f s e t ] )
413 data . append ( [
414 ind ,
415 parsema . measure_number ,
416 parsema . o f f s e t ,
417 parsema . g l o b a l _ o f f s e t ,
418 parsema . duration ,
419 parsema . p a r t i t i o n _ p r e t t y ,
420 parsema . get_density_number ( ) ,
421 parsema . get_agglomeration_index ( ) ,
422 parsema . get_dispers ion_index ( ) ,
423 ] )
424 dic = {
425 ’ header ’ : columns ,
426 ’ data ’ : data
427 }
428 return dic
429
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430 def _auxi l ia ry_get_data_comple te ( s e l f ) :
431 # c h e c k i n d e x e s
432 a u x i l i a r y _ d i c = s e l f . _ a u x i l i a r y _ g e t _ d a t a ( )
433 data = a u x i l i a r y _ d i c [ ’ data ’ ]
434 data_map = { row [ 3 ] : row for row in data }
435 g l o b a l _ o f f s e t s = [ row [ 3 ] for row in data ]
436 common = make_fract ion ( get_common_denominator_from_list (

g l o b a l _ o f f s e t s ) )
437 s i z e = g l o b a l _ o f f s e t s [ −1] + data [ − 1 ] [ 4 ]
438
439 new_data = [ ]
440 c u r r e n t _ g l o b a l _ o f f s e t = g l o b a l _ o f f s e t s [ 0 ]
441 last_row = data [ 0 ]
442
443 measure_index = 0
444 while c u r r e n t _ g l o b a l _ o f f s e t < s i z e :
445 current_measure , measure_index = a u x i l i a r y _ f i n d _ i n t e r v a l (

c u r r e n t _ g l o b a l _ o f f s e t , s e l f . _measure_offsets ,
measure_index )

446
447 i f c u r r e n t _ g l o b a l _ o f f s e t in data_map :
448 row = copy . deepcopy ( data_map [ c u r r e n t _ g l o b a l _ o f f s e t ] )
449 last_row = copy . deepcopy ( row )
450 e lse :
451 row = copy . deepcopy ( last_row )
452 row [ 2 ] = c u r r e n t _ g l o b a l _ o f f s e t − s e l f . _measure_of fse ts [

current_measure ]
453 row [ 3 ] = c u r r e n t _ g l o b a l _ o f f s e t
454
455 row [ 0 ] = ’ { } + { } ’ . format ( s t r ( current_measure ) , s t r ( row [ 2 ] ) )
456 row [ 1 ] = current_measure
457 new_data . append ( row )
458
459 last_row = row
460 c u r r e n t _ g l o b a l _ o f f s e t = make_fract ion ( c u r r e n t _ g l o b a l _ o f f s e t

+ common)
461
462 dic = {
463 ’ header ’ : a u x i l i a r y _ d i c [ ’ header ’ ] ,
464 ’ data ’ : new_data ,
465 }
466
467 return dic
468
469 def get_data ( s e l f , equal_durat ion_events=True ) :
470 ’ ’ ’ Get pars emae d a t a as d i c t i o n a r y with d a t a and i n d e x . I f

o n l y _ p a r s e m a _ l i s t a t t r i b u t e i s F a l s e , t h e d a t a i s f i l l e d
wi th e q u a l d u r a t i o n e v e n t s . ’ ’ ’
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471
472 i f equal_durat ion_events :
473 return s e l f . _auxi l ia ry_get_data_comple te ( )
474 e lse :
475 return s e l f . _ a u x i l i a r y _ g e t _ d a t a ( )
476
477
478 i f __name__ == ’ __main__ ’ :
479 parser = argparse . ArgumentParser (
480 prog = ’ rpc ’ ,
481 d e s c r i p t i o n = ’ Rhythmic P a r t i t i o n i n g C a l c u l a t o r ’ ,
482 epi log = ’ Rhythmic P a r t i t i o n i n g C a l c u l a t o r ’ )
483 parser . add_argument ( ’ f i lename ’ )
484
485 args = parser . parse_args ( )
486 fname = args . f i lename
487
488 print ( ’ Running s c r i p t on { } f i lename . . . ’ . format ( fname ) )
489 t r y :
490 sco = music21 . conver ter . parse ( fname )
491 except :
492 r a i s e CustomException ( ’ F i l e must be XML or KRN. ’ )
493
494 t e x t u r e = Texture ( )
495 t e x t u r e . make_from_music21_score ( sco )
496 dic = t e x t u r e . get_data ( equal_durat ion_events=True )
497
498 # F i l e n am e
499 spli t_name = fname . s p l i t ( ’ . ’ )
500 i f len ( spli t_name ) > 2 :
501 base = ’ . ’ . j o i n ( spli t_name [ : − 1 ] )
502 e lse :
503 base = spli t_name [ 0 ]
504 dest = base + ’ . csv ’
505
506 with open ( dest , ’w’ ) as fp :
507 csv_wri te r = csv . w r i t e r ( fp , quoting=csv .QUOTE_NONNUMERIC)
508 csv_wri te r . writerow ( dic [ ’ header ’ ] )
509 csv_wri te r . writerows ( dic [ ’ data ’ ] )

B. RPP’s source-code

1 from f r a c t i o n s import F r a c t i o n
2 from m a t p l o t l i b import pyplot as p l t
3 import argparse
4 import pandas
5
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6 POW_DICT = {
7 ’ 1 ’ : ’\N{ s u p e r s c r i p t one } ’ ,
8 ’ 2 ’ : ’\N{ s u p e r s c r i p t two } ’ ,
9 ’ 3 ’ : ’\N{ s u p e r s c r i p t three } ’ ,

10 ’ 4 ’ : ’\N{ s u p e r s c r i p t four } ’ ,
11 ’ 5 ’ : ’\N{ s u p e r s c r i p t f i v e } ’ ,
12 ’ 6 ’ : ’\N{ s u p e r s c r i p t s i x } ’ ,
13 ’ 7 ’ : ’\N{ s u p e r s c r i p t seven } ’ ,
14 ’ 8 ’ : ’\N{ s u p e r s c r i p t e i g h t } ’ ,
15 ’ 9 ’ : ’\N{ s u p e r s c r i p t nine } ’ ,
16 }
17
18 c l a s s CustomException ( Exception ) :
19 pass
20
21 def p a r s e _ f r a c t i o n ( value ) :
22 i f i s i n s t a n c e ( value , s t r ) :
23 i f ’/ ’ in value :
24 return F r a c t i o n ( * l i s t (map( int , value . s p l i t ( ’/ ’ ) ) ) )
25 return value
26
27 def parse_index ( v ) :
28 a , b = v . s p l i t ( ’+ ’ )
29 return ( a , p a r s e _ f r a c t i o n ( b ) )
30
31 def parse_pow ( p a r t i t i o n ) :
32 pa r t s = p a r t i t i o n . s p l i t ( ’ . ’ )
33 new_parts = [ ]
34 for part in p ar t s :
35 value = part . s p l i t ( ’^ ’ )
36 i f len ( value ) > 1 :
37 base , exp = value
38 _exp = [ ]
39 for e l in l i s t ( exp ) :
40 _exp . append (POW_DICT[ e l ] )
41 value = base + ’ ’ . j o i n ( _exp )
42 e lse :
43 value = value [ 0 ]
44 new_parts . append ( value )
45 return ’ . ’ . j o i n ( new_parts )
46
47 def make_dataframe ( fname ) :
48 df = pandas . read_csv ( fname )
49 for c in [ ’ Agglomeration ’ , ’ Dispersion ’ ] :
50 df [ c ] = df [ c ] . apply ( f l o a t )
51
52 for c in [ ’ O f f s e t ’ , ’ Global o f f s e t ’ , ’ Duration ’ ] :
53 df [ c ] = df [ c ] . apply ( p a r s e _ f r a c t i o n )
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54
55 df . index = df [ ’ Index ’ ] . apply ( parse_index ) . values
56 df [ ’ P a r t i t i o n ’ ] = df [ ’ P a r t i t i o n ’ ] . apply ( parse_pow )
57 df = df . drop ( ’ Index ’ , a x i s =1)
58
59 return df
60
61 def invert_dataframe ( df ) :
62 inver ted = pandas . DataFrame ( [
63 df . Agglomeration * −1 ,
64 df . Dispersion ,
65 ] , index =[ ’ Agglomeration ’ , ’ Dispers ion ’ ] , columns=df . index ) . T
66 return inver ted
67
68 def plot_s imple_par t i t iogram ( df , img_format= ’ svg ’ , w i t h _ l a b e l s=True ,

o u t f i l e =None ) :
69 seq = [
70 [ p a r t i t i o n , len ( _df ) , _df . Agglomeration . i l o c [ 0 ] , _df . Dispersion

. i l o c [ 0 ] ]
71 for p a r t i t i o n , _df in df . groupby ( ’ P a r t i t i o n ’ )
72 ]
73 columns =[ ’ P a r t i t i o n ’ , ’ Quantity ’ , ’ Agglomeration ’ , ’ Dispersion ’ ]
74 df = pandas . DataFrame ( seq , columns=columns )
75
76 p l t . c l f ( )
77 ax = df . p l o t (
78 grid=True ,
79 kind= ’ s c a t t e r ’ ,
80 x= ’ Agglomeration ’ ,
81 y= ’ Dispers ion ’ ,
82 )
83
84 i f w i t h _ l a b e l s :
85 f a c t o r = 1 .025
86 f o n t s i z e = 12
87
88 for _ , s in df . i t e r rows ( ) :
89 x = s [ ’ Agglomeration ’ ]
90 y = s [ ’ Dispers ion ’ ]
91 v = s [ ’ P a r t i t i o n ’ ]
92 p l t . t e x t ( x * f a c t o r , y * f a c t o r , v , f o n t s i z e = f o n t s i z e )
93
94 i f img_format == ’ svg ’ :
95 p l t . s a v e f i g ( o u t f i l e )
96 e lse :
97 p l t . s a v e f i g ( o u t f i l e , dpi=RESOLUTION)
98 p l t . c l o s e ( )
99
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100 def plot_simple_indexogram ( df , img_format= ’ svg ’ , o u t f i l e =None ,
c lose_bubbles=Fa l se ) :

101 def d r a w _ v e r t i c a l _ l i n e ( row , x ) :
102 ymin = row [ 1 ] . Agglomeration * −1
103 ymax = row [ 1 ] . Dispers ion
104 p l t . v l i n e s ( x=x , ymin=ymin , ymax=ymax , l i n e s t y l e s = ’ dotted ’ ,

c o l o r s = ’C3 ’ )
105
106 inver ted = invert_dataframe ( df )
107
108 p l t . c l f ( )
109
110 ax = inver ted . p l o t ( gr id=True )
111 ax . s e t _ y l a b e l ( ’ Values\n<− aggl ./ disp . −> ’ )
112 ax . s e t _ x l a b e l ( ’ P o s i t i o n s ( measure , o f f s e t ) ’ )
113
114 # draw v e r t i c a l l i n e s t o c l o s e t h e b u b b l e s
115 i f c lose_bubbles :
116 rest_segment = Fa l se
117 last_row = None
118 for i , row in enumerate ( df . i t e r rows ( ) ) :
119 _agg = row [ 1 ] . Agglomeration
120 i f pandas . i s n u l l ( _agg ) :
121 i f not rest_segment :
122 i f last_row :
123 x = i − 1
124 d r a w _ v e r t i c a l _ l i n e ( last_row , x )
125 rest_segment = True
126 e lse :
127 i f rest_segment :
128 x = i
129 d r a w _ v e r t i c a l _ l i n e ( row , x )
130 rest_segment = Fa l se
131 last_row = row
132
133 p l t . x t i c k s ( r o t a t i o n =90)
134 p l t . t i g h t _ l a y o u t ( )
135
136 i f img_format == ’ svg ’ :
137 p l t . s a v e f i g ( o u t f i l e )
138 e lse :
139 p l t . s a v e f i g ( o u t f i l e , dpi=RESOLUTION)
140 p l t . c l o s e ( )
141
142 def plot_stem_indexogram ( df , img_format= ’ svg ’ , o u t f i l e =None ) :
143 inver ted = invert_dataframe ( df )
144
145 ind = [ ’ ( { } , { } ) ’ . format ( a , b ) for a , b in inver ted . index . values ]

49

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

146 s i z e = len ( ind )
147 step = i n t ( s i z e / 8)
148
149 p l t . c l f ( )
150 p l t . stem ( ind , inver ted . Dispers ion . values , markerfmt= ’ ’ )
151 p l t . stem ( ind , inver ted . Agglomeration . values , markerfmt= ’ ’ , l i n e f m t

= ’C1− ’ )
152 p l t . x t i c k s ( range ( 0 , s ize , s tep ) )
153 p l t . x l a b e l ( ’ P o s i t i o n s ( measure , o f f s e t ) ’ )
154 p l t . y l a b e l ( ’ Values\n<− aggl ./ disp . −> ’ )
155 p l t . gr id ( )
156 p l t . legend ( inver ted . columns )
157 p l t . x t i c k s ( r o t a t i o n =90)
158 p l t . t i g h t _ l a y o u t ( )
159
160 i f img_format == ’ svg ’ :
161 p l t . s a v e f i g ( o u t f i l e )
162 e lse :
163 p l t . s a v e f i g ( o u t f i l e , dpi=RESOLUTION)
164 p l t . c l o s e ( )
165
166 def plot_s ta i rs_ indexogram ( df , img_format= ’ svg ’ , o u t f i l e =None ) :
167 inver ted = invert_dataframe ( df )
168
169 ind = [ ’ ( { } , { } ) ’ . format ( a , b ) for a , b in inver ted . index . values ]
170 s i z e = len ( ind )
171 step = i n t ( s i z e / 8)
172
173 p l t . c l f ( )
174 p l t . s t a i r s ( inver ted . Dispers ion . values [ : − 1 ] , ind )
175 p l t . s t a i r s ( inver ted . Agglomeration . values [ : − 1 ] , ind )
176 p l t . x t i c k s ( range ( 0 , s ize , s tep ) )
177 p l t . x l a b e l ( ’ P o s i t i o n s ( measure , o f f s e t ) ’ )
178 p l t . y l a b e l ( ’ Values\n<− aggl ./ disp . −> ’ )
179 p l t . gr id ( )
180 p l t . legend ( inver ted . columns )
181 p l t . x t i c k s ( r o t a t i o n =90)
182 p l t . t i g h t _ l a y o u t ( )
183
184 i f img_format == ’ svg ’ :
185 p l t . s a v e f i g ( o u t f i l e )
186 e lse :
187 p l t . s a v e f i g ( o u t f i l e , dpi=RESOLUTION)
188 p l t . c l o s e ( )
189
190 def plot_combined_indexogram ( df , img_format= ’ svg ’ , o u t f i l e =None) :
191 inver ted = invert_dataframe ( df )
192 s e r i e s = inver ted . Dispers ion + inver ted . Agglomeration
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193
194 p l t . c l f ( )
195 ax = s e r i e s . p l o t ( gr id=True )
196 ax . s e t _ y l a b e l ( ’ Values\n ( d − a ) ’ )
197 ax . s e t _ x l a b e l ( ’ P o s i t i o n s ( measure , o f f s e t ) ’ )
198
199 p l t . x t i c k s ( r o t a t i o n =90)
200 p l t . t i g h t _ l a y o u t ( )
201
202 i f img_format == ’ svg ’ :
203 p l t . s a v e f i g ( o u t f i l e )
204 e lse :
205 p l t . s a v e f i g ( o u t f i l e , dpi=RESOLUTION)
206 p l t . c l o s e ( )
207
208 i f __name__ == ’ __main__ ’ :
209 parser = argparse . ArgumentParser (
210 prog = ’ rpp ’ ,
211 d e s c r i p t i o n = " P l o t Par t i t iogram and Indexogram

from RPC ’ s output " ,
212 epi log = ’ Rhythmic P a r t i t i o n i n g P l o t t e r ’ )
213
214 parser . add_argument ( ’ f i lename ’ )
215 parser . add_argument ( "− f " , "−−img_format " , help = " Image format ( svg

, jpg or png ) . Defaul t=svg " , d e f a u l t = ’ svg ’ )
216 parser . add_argument ( "−r " , "−− r e s o l u t i o n " , help = "PNG image

r e s o l u t i o n . Defaul t =300 " , d e f a u l t =300)
217 parser . add_argument ( "−a " , "−− a l l " , help = " P l o t a l l a v a i l a b l e

c h a r t s " , a c t i o n = ’ s t o r e _ t r u e ’ )
218 parser . add_argument ( "−c " , "−−c lose_bubbles " , help = " Close

indexogram bubbles . " , d e f a u l t =False , a c t i o n = ’ s t o r e _ t r u e ’ )
219 parser . add_argument ( "−e " , "−−stem " , help = " Indexogram as a stem

c ha r t " , a c t i o n = ’ s t o r e _ t r u e ’ )
220 parser . add_argument ( "− t " , "−− s t a i r s " , help = " Indexogram as a s t a i r

ch ar t " , a c t i o n = ’ s t o r e _ t r u e ’ )
221 parser . add_argument ( "−b " , "−−combined " , help = " Indexogram as a

combination of aglomeration and dispers ion " , a c t i o n = ’ s t o r e _ t r u e ’
)

222 args = parser . parse_args ( )
223
224 t r y :
225 RESOLUTION = i n t ( args . r e s o l u t i o n )
226 except :
227 r a i s e CustomException ( ’ Resolut ion must be an i n t e g e r from 0 to

1200 ’ )
228
229 c lose_bubbles = args . c lose_bubbles
230 i f c lose_bubbles :
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231 c lose_bubbles = True
232
233 img_format = args . img_format . lower ( )
234 i f img_format not in [ ’ svg ’ , ’ jpg ’ , ’png ’ ] :
235 r a i s e CustomException ( ’ Image format must be svg , jpg or png . ’ )
236
237 fname = args . f i lename
238
239 print ( ’ Running s c r i p t on { } f i lename . . . ’ . format ( fname ) )
240
241 indexogram_choices = {
242 ’ simple ’ : plot_simple_indexogram ,
243 ’ stem ’ : plot_stem_indexogram ,
244 ’ s t a i r s ’ : p lot_sta irs_ indexogram ,
245 ’ combined ’ : plot_combined_indexogram ,
246 }
247
248 t r y :
249 df = make_dataframe ( fname )
250 bname = fname . r s t r i p ( ’ . csv ’ )
251
252 partitiogram_name = bname + ’−par t i t iogram . ’ + img_format
253 plo t_s imple_par t i t iogram ( df , img_format , o u t f i l e =

partitiogram_name )
254
255 i f args . a l l :
256 for k , fn in indexogram_choices . i tems ( ) :
257 o u t f i l e = bname + ’−indexogram − { } . ’ . format ( k ) +

img_format
258 fn ( df , img_format , o u t f i l e = o u t f i l e )
259 e l i f args . stem :
260 k = ’ stem ’
261 fn = indexogram_choices [ k ]
262 o u t f i l e = bname + ’−indexogram − { } . ’ . format ( k ) + img_format
263 fn ( df , img_format , o u t f i l e = o u t f i l e )
264 e l i f args . s t a i r s :
265 k = ’ s t a i r s ’
266 fn = indexogram_choices [ k ]
267 o u t f i l e = bname + ’−indexogram − { } . ’ . format ( k ) + img_format
268 fn ( df , img_format , o u t f i l e = o u t f i l e )
269 e l i f args . combined :
270 k = ’ combined ’
271 fn = indexogram_choices [ k ]
272 o u t f i l e = bname + ’−indexogram − { } . ’ . format ( k ) + img_format
273 fn ( df , img_format , o u t f i l e = o u t f i l e )
274 e lse :
275 k = ’ simple ’
276 fn = indexogram_choices [ k ]
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277 o u t f i l e = bname + ’−indexogram . ’ + img_format
278 fn ( df , img_format , o u t f i l e = o u t f i l e , c lose_bubbles=

c lose_bubbles )
279
280 except :
281 r a i s e CustomException ( ’ Something wrong with given csv f i l e . ’ )

C. RPA’s source-code

1 import argparse
2 import csv
3 import f r a c t i o n s
4 import math
5 import music21
6
7 def f i n d _ n e a r e s t _ s m a l l e r ( value , seq ) :
8 i f value < seq [ 0 ] :
9 return −1

10
11 i f value > seq [ − 1 ] :
12 return seq [ −1]
13
14 s i z e = len ( seq )
15
16 i f s i z e == 1 and value >= seq [ 0 ] :
17 return seq [ 0 ]
18
19 middle_pointer = math . f l o o r ( s i z e /2)
20 l e f t = seq [ : middle_pointer ]
21 r i g h t = seq [ middle_pointer : ]
22
23 i f value < r i g h t [ 0 ] :
24 return f i n d _ n e a r e s t _ s m a l l e r ( value , l e f t )
25 e lse :
26 return f i n d _ n e a r e s t _ s m a l l e r ( value , r i g h t )
27
28 def s impl i fy_csv ( csv_fname ) :
29 seq = [ ]
30 last_row = None
31 with open ( csv_fname , ’ r ’ ) as fp :
32 i = 0
33 for row in csv . reader ( fp ) :
34 i f i > 0 :
35 i f i == 1 :
36 last_row = row
37 i f row [ 5 ] != last_row [ 5 ] :
38 seq . append ( last_row )
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39 last_row = row
40 i += 1
41 return seq
42
43 def make_offset_map ( sco ) :
44 measures = sco . pa r t s [ 0 ] . getElementsByClass ( music21 . stream . Measure ) .

stream ( )
45 return {om. element . o f f s e t : om. element . number for om in measures .

offsetMap ( ) }
46
47 def g e t _ e v e n t s _ l o c a t i o n ( sco , csv_fname ) :
48 offset_map = make_offset_map ( sco )
49 o f f s e t s = l i s t ( offset_map . keys ( ) )
50 seq = s impl i fy_csv ( csv_fname )
51
52 e v e n t s _ l o c a t i o n = { }
53
54 for row in seq :
55 i f row [ 3 ] == ’ 0 ’ :
56 a , b = 0 , 1
57 e l i f ’/ ’ in row [ 3 ] :
58 a , b = l i s t (map( int , row [ 3 ] . s p l i t ( ’/ ’ ) ) )
59 e lse :
60 a , b = i n t ( row [ 3 ] ) , 1
61 g l o b a l _ o f f s e t = f r a c t i o n s . F r a c t i o n ( a , b )
62 p a r t i t i o n = row [ 5 ]
63 measure_offset = f i n d _ n e a r e s t _ s m a l l e r ( g l o b a l _ o f f s e t , o f f s e t s )
64 measure_number = offset_map [ measure_offset ]
65 o f f s e t = g l o b a l _ o f f s e t − measure_offset
66 i f measure_number not in e v e n t s _ l o c a t i o n :
67 e v e n t s _ l o c a t i o n [ measure_number ] = [ ]
68 e v e n t s _ l o c a t i o n [ measure_number ] . append ( ( o f f s e t , p a r t i t i o n ) )
69
70 return e v e n t s _ l o c a t i o n
71
72 def main ( sco , csv_fname , o u t f i l e ) :
73 e v e n t s _ l o c a t i o n = g e t _ e v e n t s _ l o c a t i o n ( sco , csv_fname )
74
75 p0 = sco . pa r t s [ 0 ]
76 new_part = music21 . stream . Stream ( )
77 new_part . i n s e r t ( 0 , music21 . c l e f . Percuss ionCle f ( ) )
78
79 measures = { }
80
81 for m in p0 . getElementsByClass ( music21 . stream . Measure ) :
82 new_measure = music21 . stream . Measure ( )
83 new_measure . number = m. number
84 new_measure . o f f s e t = m. o f f s e t
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85 i f m. number in e v e n t s _ l o c a t i o n . keys ( ) :
86 for _ o f f s e t , p a r t i t i o n in e v e n t s _ l o c a t i o n [m. number ] :
87 r e s t = music21 . note . Rest ( quarterLength =1/256)
88 r e s t . o f f s e t = _ o f f s e t
89 r e s t . addLyric ( p a r t i t i o n )
90 new_measure . i n s e r t ( _ o f f s e t , r e s t )
91 new_measure = new_measure . makeRests ( f i l l G a p s =True )
92 for e l in new_measure :
93 e l . s t y l e . c o l o r = ’ white ’
94 e l . s t y l e . hideObjectOnPrint = True
95 measures . update ( {m. number : new_measure } )
96
97 for m in measures . values ( ) :
98 new_part . append (m)
99

100 new_part = new_part . makeRests ( f i l l G a p s =True )
101
102 sco . i n s e r t ( 0 , new_part )
103 sco . wri te ( fmt= ’ xml ’ , fp= o u t f i l e )
104
105 i f __name__ == ’ __main__ ’ :
106 parser = argparse . ArgumentParser (
107 prog = ’ rpa ’ ,
108 d e s c r i p t i o n = ’ Rhythmic P a r t i t i o n i n g Annotator ’ ,
109 epi log = ’ Rhythmic P a r t i t i o n i n g Annotator ’ )
110 parser . add_argument ( "−s " , "−−score " , help = " Score f i lename . " )
111 parser . add_argument ( "−c " , "−−csv " , help = "CSV fi lename . " )
112
113 args = parser . parse_args ( )
114 sco_fname = args . score
115 csv_fname = args . csv
116
117 print ( ’ Running s c r i p t on { } f i lename . . . ’ . format ( sco_fname ) )
118
119 sco = music21 . conver ter . parse ( sco_fname )
120 o u t f i l e = csv_fname . r s t r i p ( ’ . csv ’ ) + ’−annotated . xml ’
121
122 main ( sco , csv_fname , o u t f i l e )
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Abstract: In this article, Xenakis’s trilogy of pieces based on zero-sum games is investigated, revealing
axiomatic inconsistencies between game-theoretical models and their musical translations implemented
according to the aesthetic preferences of the composer. The problematic elements regard 1) the formal defi-
nition of the games and 2) the limits of objective utility functions in the music domain. After introducing
these games of musical strategy and the few existing practical implementations found in the literature, a
detailed comparison between the mathematical models and Xenakis’s renditions is presented to highlight
their divergence. Then, the feasibility from a musical perspective of the rational decision-making required
by the models is explored through a computational simulation of game dynamics using Reinforcement
Learning. Lastly, the article concludes by contextualising the findings to the increasingly ubiquitous role
of the machine in the creative processes of musical composition and generation. In doing so, Xenakis’s
original works offer themselves as a springboard for (re-)imagining and developing novel approaches
integrating human-machine decision processes with musical design and interaction.
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I Introduction

Duel (1959), Stratégie (1962) and Linaia-Agon (1972) form a trilogy of pieces that Xenakis
wrote using identical underlying principles. Such principles imply external rather than
internal conflict, with the latter relating to intrinsic factors (i.e., the dialogical relation

between the sound rendition and the symbolic schema) and the former involving extrinsic factors.
Xenakis calls the music originating from these heteronomous (external conflict) and autonomous
(internal conflict). These three works can be classified as game pieces [7, 9], which would draw
inspiration from a notion of “game” linked to ludic activities, social theory, anthropology and
game design. For example, John Zorn’s Cobra [4] focuses on emergent social dynamics, Mauricio
Kagel’s Match [11] is inspired by tennis, and Mathius Shadow-Sky’s Ludus Musicae Temporarium
[22] is based on the work of Huizinga [10] and Caillois [6].

Xenakis’s trilogy, however, differs in that it is stricter in its application of formal and rational
theories on decision-making to the music domain. More specifically, it is rooted in the applied
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mathematics field known as game theory, which models scenarios of conflict or cooperation
between agents. While game theory is popular in economics, social network theory, and computer
science (with applications ranging from artificial intelligence to network systems), game-theoretical
musical pieces remain relatively under-explored. Besides some sporadic experiments with Bayesian
games of imperfect information in the context of networked music performance [14, 13, 12], game-
theoretical formalisms are not a popular paradigm for composition or sound design, because of
the difficulty of mapping objective utility functions in the music domain. That is, abiding by the
principles of optimisation, rational decision-making and mathematical solutions might be, at times,
undesirable if in conflict with musical and aesthetic goals. Imaginary rewards (e.g., “points” won
or lost in a game) may be less motivating than sonic, experiential counterparts (e.g., the perceived
quality of the music or the musical interactions originating from the musical game piece).

Xenakis’s game pieces are not devoid of these issues, and it is important to consider them in the
context of the (then) newly re-defined role of the composer: caught in between “inventing schemes
(previously forms) and exploring the limits of these schemes”, and “effecting the scientific synthesis
of the new methods of construction and of sound emission” [32, p.133]. While uncompromisingly
and single-mindedly striving for novelty and originality, Xenakis retained an executive role rooted
in the idea of the composer as the sole owner of the work. His indisputable aesthetic compass, for
example, is asserted when stating that “the winner has won simply because he has better followed
the rules imposed by the composer, who, by consequence, claims all responsibility for the ‘beauty’
or ‘ugliness’ of the music” [31].

However, game theory has an aesthetic of its own. In fact, this might be the true raison d’etre
of these works, as Xenakis confesses that he had “[. . . ] been interested in social questions, in
the relationship between people and the aesthetic aspect of all that” [28, p.49]. One might say
that Xenakis’s games of musical strategy find their most defining characteristic to be this tension
between internal (the composer’s quest for aesthetic integrity) and external conflict (opposing
interests which must be allowed to emerge).

When revisiting Xenakis’s games of musical strategy, it is also crucial to acknowledge the
changes brought forward by the increasingly common application of AI techniques and methods
in the music domain and how these retroactively affect one’s understanding and appreciation of
Xenakis’s game pieces. According to Xenakis, the role of the machine is perceived either through
negative or positive bias or as an explorative process which, however, is ultimately not sufficient
per se as a means to artistic value [32]. In agreement with this viewpoint, this article is, nevertheless,
focused on analyses and implementations of Xenakis’s trilogy comprising a computer-assisted
factor.

I.i Background

Despite their simplicity and potential for myriad variations and implementations, Xenakis’s
game pieces have not enjoyed as much attention as the remainder of his body of work. Liuni &
Morelli [18] rendered Duel as a live installation in which members of the public could take the
role of the conductors. Their movements were analysed by computer vision algorithms to drive
the score, which was, in turn, visualised on a large screen. This rendition concentrated on the
interactive participation of the human players, and the musical events prescribed in the original
score were realised using audio samples instead of real orchestras. Regarding Linaia-Agon, there
exists a documentary DVD [24] with original radio broadcasts and newly recorded live and studio
performances of the piece using a computational interface.

As for the computational analysis of Xenakis’s trilogy, Sluchin & Malt [25] simulated Duel based
on four different methods for choosing tactics (see Section II.iii). Beyond the numerical simulation
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of game dynamics, that work, and a follow-up study [26] which included a computational
interface to switch between different strategies, does not point to an audio rendition of the piece.
Linaia-Agon, finally, was analysed by DeLio [8], Sluchin [23], and Beguš [3].

The next section precedes the formal analysis of Xenakis’s trilogy by introducing the reader to
some fundamental notions in game theory.

II Fundamental Notions

In the context of game theory, “a game is a description of strategic interaction that includes the
constraints on the actions that the players can take and the players’ interests, but does not specify
the actions that the players do take” [21, p.2]. The basic elements of a game are:

• a finite set of players N
• for each player i ∈ N a non-empty set Ai representing the set of actions available to player i
• for each player i ∈ N a preference relation ≿i on A = ×j∈N Aj (the set of outcomes by A)

Morgenstern & von Neumann [19] are credited as the initiators of modern game theory, which
is normally divided into two main branches: non-cooperative and cooperative game theory. The
former considers each player’s individual actions as primitives, whereas the latter sees joint actions
as primitives, and assumes that binding agreements can be made by players and within groups of
players. For the sake of this article, only non-cooperative games are discussed.

Another fundamental characterisation of games that will be crucial for Xenakis’s game pieces
is based on the utility function which maps rewards to actions ui : A → R, so that ui(a) ≥ ui(b)
whenever a ≿i b. These “rewards” are hereinafter referred to as payoffs. To this end, one can
distinguish between constant-sum and variable-sum games. In the former, the payoffs for each
possible combination of actions sum up to the same constant C. A particular case of constant-sum
games is zero-sum games. This means, simply, that for every combination of players’ actions, one
player’s gains are the other’s losses, and therefore payoffs sum up to 0. In variable-sum games, on
the other hand, the rewards are neither symmetrical (opposites) nor sum up to a constant.

A strategy is a decision algorithm which considers the options available under a given scenario.
In other words, a strategy is a complete contingent plan that defines the action a player will take
in all states of the game. A strategy profile is a set of strategies for all players that fully specify all
actions in a game.

Insofar as the discussions of this article are concerned, the most important aspects of a game
entail notions of time, information, and equilibrium.

II.i Time

This dimension determines whether games are simultaneous or sequential, meaning whether
players take actions synchronously and independently from each other, or in turns, respectively.
Simultaneous and sequential games are normally notated differently. For the former, one uses
the normal form (or strategic form), while for the latter the extensive form (or game tree). For
simplicity, two players are considered, hereinafter x and y. Examples of two games and their
graphical representations can be seen in Figure 1. In zero-sum games, such as the game shown
on the left (known as Rock, Paper, Scissors), for each cell in the matrix, payoffs are expressed as
a single signed integer. Since this is a zero-sum game, the payoffs are symmetrical (opposites);
for example, −1 means (−1, 1) where the first value in the tuple would be assigned to x and the
second to y. Instead, in the sequential game depicted on the right, the payoffs are not symmetrical
and are explicitly expressed as tuples of values.
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Figure 1: Simultaneous (left) and sequential (right) games, and their notation: normal and extensive form, respectively.

II.ii Information

In this dimension, one must distinguish between perfect vs. imperfect and complete vs. incom-
plete information. The former describes whether or not players have knowledge of each others’
actions and history. The latter is instead concerned with common knowledge of each player’s
utility functions, payoffs, strategies and “types”. The two are not mutually exclusive: for example,
a game could have perfect and incomplete information, and so forth. These distinctions are not
trivial and fundamentally affect the decision-making process.

It is possible to convert simultaneous games from normal to extensive form, and vice versa
(induced normal form). To illustrate this procedure, a zero-sum game known as Matching
Pennies is considered. To convert it to extended form using the game matrix, one introduces an
information set, indicated as a dotted ellipse enveloping decision leaf nodes. The information set
shown in the game tree on the right in Figure 2 indicates that player y, while moving after player
x, has no knowledge of what action the opponent chose and, therefore, whether she finds herself
under the right or left leaf node. This uncertainty would define such a game as an extensive form
game of incomplete information.

Figure 2: A popular zero-sum game known as Matching Pennies, shown in matrix form (left), and in an equivalent
extensive form (right).

However, this article is only concerned with games with perfect and complete information,
either simultaneous or sequential. From now on, the former will be referred to simply as strategic
games, whereas extensive-form games with complete information will be referred to as extensive
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games. For the latter, two more elements are needed for a formal definition:

• a set H of sequences where each member is a history and each component of a history is an
action. A history (ak)k=1,...,K ∈ H is terminal if it is infinite or if there is no aK+1 such that
(ak)k=1,...,K+1 ∈ H. The set of terminal histories is indicated as Z

• a player function P that assigns to each non-terminal history (each member of H \ Z) a
member of N

II.iii Equilibrium

There are several approaches to solving games. Solutions are optimal combinations of strategies
that ensure the best outcome for a given or all players.

For strategic games, different game-theoretic solution concepts include maximax (maximise
one’s payoff), maximin (maximise one’s minimum payoff, a.k.a. choosing the best of the worst
possible outcomes), and minimax (minimise one’s maximum loss). In a two-player zero-sum
game, when the matrix has a saddle point, meaning a given action pair yields the best outcome
for both players (i.e., neither could do any better), the maximin and minimax strategies produce
the same result. Thus, one can define Nash equilibrium for a strategic game ⟨N, (Ai), (≿i)⟩ as
the solution where no player has an incentive to change strategy given that no one else does, and
express it formally as a profile a∗ ∈ A for every player i ∈ N so that (a∗−i, a∗i ) ≿i (a∗−i, ai) for all
ai ∈ Ai.

When there is no saddle point, one can use the notion of equilibrium defined in terms of mixed
strategies [19]. This involves randomising one’s action selection with weighted probabilities, which
ensure statistically optimal outcomes. In other words, each player makes the other indifferent
between choosing one action or another, so neither player has an incentive to try another strategy.
As a practical example, one can use the previously seen game of Matching Pennies. One assumes
that player x plays heads with probability p and tails with probability 1 − p. Similarly, player y
plays heads with probability q and tails with probability 1 − q. According to the payoff values in
Figure 2, x’s rewards will be 1 · q − 1 · (1 − q) for playing heads and −1 · q + 1 · (1 − q) for playing
tails. In equilibrium, player x is willing to randomise only when she is indifferent between heads
and tails. Thus, the two equations must be equal, yielding q = 1

2 . Following identical reasoning
for player y, one obtains p = 1

2 . Therefore, both players will play heads or tails with a probability
of 1

2 . This is a simple if trivial example, but mixed strategies, if allowed, can always guarantee an
equilibrium.

For an extensive game ⟨N, H, P, (≿i)⟩, and having defined O(s) as the outcome of a strategy
profile s = (si)i∈N , the Nash equilibrium will be the strategy profile s∗ for every player i ∈ N such
that O(s∗−i, s∗i ) ≿i O(s∗−i, si) for every strategy si of player i. Mixed strategies can work analogously
to what is seen in strategic games, whereby a Nash equilibrium in mixed strategies for extensive
games can be expressed as a profile σ∗ of mixed strategies so that O(σ∗

−i, σ∗
i ) ≿i O(σ∗

−i, σi) for
every mixed strategy σi of player i.

However, because of the sequential nature of extensive games, the notion of subgame perfect
equilibrium is introduced. This is a refinement of the Nash equilibrium defined above which
accounts for history-dependent best responses so that, for every non-terminal history h ∈ H \ Z for
which the player function is P(h) = i, O(s∗−i|h, s∗i |h) ≿i O(s∗−i|h, si|h) for every strategy si of player
i, for the subgame G(h). Normally, subgame perfect equilibrium is obtained using backwards
induction: starting from the terminal history, one finds the best response strategy profiles or the
Nash equilibria in the subgame, assigns these strategy profiles and the associated payoffs to the
subgame, and moves successively towards the beginning of the game.
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The next section looks at how Xenakis leveraged game-theoretical concepts to design musical
game pieces.

III Xenakis’s Game Pieces

Xenakis’s trilogy is based on zero-sum games with complete and perfect information: each player,
when making a decision, has knowledge of all the events that have previously occurred (i.e.,
actions taken by the opponent are observable). Xenakis expresses all three games as strategic
games using the normal form, and he provides mixed strategy calculations since these game
matrices have no saddle points.

The details for each zero-sum game piece in Xenakis’s trilogy follow.

III.i Duel

Duel is described in Chapter IV of Formalized Music [32], where the reader is referred for finer
details. This game piece sees two conductors and their respective orchestras (hereinafter x and
y, in keeping with the convention adopted thus far) competing against each other via means of
juxtaposing musical events (or tactics, in Xenakis’s choice of terms). Said tactics are chosen based
on combinations of pairwise actions (i.e., the payoff matrix) associated with an aesthetic outcome
value stipulated by the composer. Details on the musical instructions for these events are omitted
here for the sake of brevity. The payoff matrix undergoes several transformations to ensure a fair
game, and its final form is shown in Figure 3.

Figure 3: Duel’s payoff matrix and associated weights of the mixed strategies.

The mixed strategy Nash equilibrium for Duel can be calculated by determining the probability
corresponding to each strategy so that x is indifferent to the actions of y, and vice versa. Each
conductor might select the next event based purely on these probabilistic weights. For example, x
will pick event I with a probability of 14

56 , and so forth.
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III.ii Stratégie

Like in Duel, there are 6 possible tactics to choose from, but their musical content differs in
Stratégie. Conceptually an extension of Duel, Stratégie augments the scope of the score by allowing
combinations of 2 or 3 tactics for each conductor. These yield 19 possible combinations for each
conductor to choose from and 361 possible pairs of such composite events. The resulting matrix is
omitted here. In addition to this matrix, Stratégie also provides two additional 3 × 3 matrices that,
by aggregating two-by-two and three-by-three compatible combinations of fundamental tactics,
reduce the decisional complexity for the conductors.

Figure 4: One of Stratégie’s 3 × 3 payoff matrices and associated weights of the mixed strategies.

III.iii Linaia-Agon

This piece is inspired by mythological tales of a human musician, Linos, challenging the god
Apollo. Linaia-Agon is a three-part work, of which the second is structured around zero-sum
games of strategy, not unlike those seen so far. This part comprises two games: Choice of Combats
and Combats. Figure 5 shows the former on the left and one of the combats on the right, with
Linos (played by a trombone) indicated as x and Apollo (played by a tuba) marked as y, for the
sake of consistency with earlier seen game matrices. In Choice of Combats, the available tactics
are indicated as α, β, γ and correspond to specific notes (different for trombone and tuba). The
sequence of their occurrence in the game then goes to determine the following part (i.e., Combats),
where each of these three Greek letters corresponds to a new game matrix, each with different
payoffs (and resulting mixed strategy Nash equilibrium) and instrumentation (only for Apollo). In
these three games, there are four tactics that one can choose.

Xenakis provides instructions and guidelines for playing his games of musical strategy. If
carefully examined, however, these explanations, along with additional evidence gathered from
interviews containing direct references or notions relating to the trilogy under scrutiny, might
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Figure 5: On the left: Linaia-agon’s payoff matrix for the Choice of Combats game. On the right: Linaia-agon’s β

game matrix, one of the three Combats. Tactics symbols and corresponding musical content are as follows:
≁ indicates frequency and amplitude modulation, ∵ stands for staccato articulation, / means glissandi, and
∅ was originally left null in Xenakis’s score but is here introduced to denote silence.

reveal contradictions and incongruencies. The points of contention are discussed in the next
section.

IV Insight

Although discrepancies between the theoretical axioms and the score implementations have been
flagged [2] for other works of Xenakis, similar discussions concerning his game pieces have not,
to the author’s knowledge, been had as yet. This section aims to provide deeper insight and a
critical understanding of Xenakis’s games of musical strategy.

IV.i Game Formalism

Perhaps the most important issue in Xenakis’s trilogy concerns the formal definition of the game
model. In particular, there is little clarity with respect to the time dimension (as defined in
Section II.i). In the original description of Duel and Stratégie, Xenakis states that the payoffs refer
to “couples of simultaneous events” [32, p.114] and again that “pairs of tactics are performed
simultaneously” [32, p.126]. However, in Figure IV-4 [32, p.126], reproduced here in Figure 6,
one can see that the tactics in a pair are instead asynchronous: one conductor starts by choosing
event i and the other conductor responds with event j. This is further corroborated when, after
having decided who is x and who is y by means of a coin toss, “deciding who starts the game is
determined by a second toss” [32, p.126].

Figure 6: A reproduction of Xenakis’s original Figure IV-4 in Formalized Music. Note: in this version, only the
temporal sequence of tactics is displayed, whereas corresponding payoffs are omitted.
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Moreover, when discussing how to award points, Xenakis suggests “to have one or two referees
counting the points in two columns, one for conductor X and one for conductor Y, both in positive
numbers”. As already explained, however, this is a zero-sum game meaning that one’s gains are
the other’s losses. Therefore, this instruction is somewhat confusing. Another option for awarding
points is to use “an automatic system that consists of an individual board for each conductor”.
In this case, Xenakis explains that, for example, “if conductor X chooses tactic XV against Y’s
IV, he presses the button at the intersection of row XV and column IV”. The use of the word
“against” suggests that one conductor selects a tactic conditioned on the tactic of the opponent.
So far, all evidence points to sequential games in extensive form. The choice of representation is
not a reason for debate, since it is possible to convert from normal to extensive forms, as seen in
Section II.i. However, univocal clarity about the time dimension of Xenakis’s game pieces becomes
problematic because in sequential games players who move later in the game can condition their
choices on observed moves made earlier in the game. Conversely, in simultaneous games, players
must all choose their own strategies without knowing what strategies are chosen by other players.
These two types of games are solved differently, based on this information dependency, as seen in
Section II.iii.

Xenakis’s games are repeated, and at each repetition (hereinafter, stage game) both conductors
are presented again with the entire game matrix, thus, effectively, starting anew. Repeated games
are normally described as extensive form games where each stage game is modelled on a normal
form. That is, each stage game is considered either as a strategic game or as an extensive form
game with imperfect information derived from the normal form. As Xenakis’s games have been
shown to be sequential, it can be concluded that they should be classified as finitely repeated
sequential games with perfect and complete information, or, more succinctly, finitely repeated
extensive games. To summarise:

• The strategic relationship between players is expressed by a normal form (the payoff matrix)
• Players play an extensive form game (a sequential game) derived from the normal form
• Payoffs are handed out after every stage game
• Every stage game is the same in every stage
• One can find the minimax point using the normal form representation of the stage game

and define the subgame perfect equilibrium in the corresponding repeated game

Having formally defined the game model for Xenakis’s trilogy, the next step is to look at the
decision-making processes that might provide viable solutions.

IV.ii Decision-making

Xenakis discusses decision-making strategies explicitly when referring to Stratégie, but these
equally apply to Duel. He provides the following options:

1. arbitrary choice

2. a priori agreement on a sequence of action pairs

3. “drawing from an urn containing balls [. . . ] in different proportions”

4. eliminating one conductor (the remaining one directs both orchestras)

5. conditioning on “the winnings or losses contained in the game matrix”
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Option (3) is effectively equivalent to abiding by the mixed strategy Nash equilibrium. Ar-
guably, probabilistic pooling is a difficult task for the average folk: randomising using weighted
probabilities would require some aid, which is what Xenakis suggests (i.e., urns). The composer
further recommends that this be done offline, before the performance, and adequately rehearsed.
However, this option, along with (1), (2) and (4), is disregarded. This is somewhat strange given
that a good part of the chapter dedicated to Duel and Stratègie is spent on optimisations based
on randomisation strategies. Except for the last option, all these decision-making methods are
deemed unsuitable and termed degenerate, lacking “any conditioning for conflict, and therefore
without any new compositional argument” [32, p.113]. One is thus left with subgame perfect
equilibrium either via a) backward induction or b) choosing the best response at each stage game
and disregarding the history up to that point. Whether to use one or the other is largely dependent
on how the game is going to end. Xenakis provides three options to limit the game: based on a
fixed number of stage games (histories), on a fixed cumulative payoff value or on a fixed time
length.

To use backward induction to calculate the subgame perfect equilibrium, it is necessary to
know the terminal history Z. There could be two ways to determine the number of histories.
In one case this would be decided on the spot, just before starting the game. This would put
conductors under considerable strain as they would have to be apt in rapid backward induction
calculations. Otherwise, the number of histories could be determined before the start of the game,
leaving ample time to calculate the subgame perfect equilibrium using backward induction a
priori. Then, the conductors would simply follow the sequence of action pairs in H during the
performance. This case would reduce the decisional power of the conductors to solely choosing
a time for the next action, and it would arguably be at least as dismissive of “conditioning for
conflict” as the other degenerate options listed earlier.

If the number of stage games is unknown (i.e., the game ends upon reaching a stipulated
cumulative payoff or time value) and conductors are advised not to use mixed strategies (see
above), then they must simply select the action that yields the best outcome in each stage game.
This is akin to a memoryless system since each conductor only considers the current state to
deliberate. Besides offering an impoverished notion of decision-making agency (arguably not
particularly skilful in dealing with expectation or insightful in the opponent’s ways), purely
reacting at each decision node without knowledge of the past highlights another problematic
aspect of Xenakis’s game design. That is, there might be times when having to choose between
equivalent payoffs for different action pairs in the game matrix, as in the case of Duel (see Figure
3) and Linaia-Agon’s Choice of Combat (see Figure 5). How would then a conductor break these ties?
Random selection must be excluded since it is degenerate according to Xenakis (see above). What
about personal preference regarding the aesthetic value of candidate actions or action pairs? This
would seem reasonable, although in conflict with the aesthetic top-down control advocated when
one is told that “I am the judge - the one who determines which solution is more interesting” [28,
p.108].

Finally, it must be noted that a subgame perfect equilibrium requires that, regardless of what
players observe, they will continue to maintain the original assumptions that the opponent is 1)
rational 2) knows the game or perceives it identically to how it has been specified and 3) does
not make mistakes. If the sole aim was to keep with a less lenient approach that foregrounds
the mathematical foundations of the game piece over an ill-defined utility function in the music
domain, then computational conductors could be employed. To investigate this option, the
next section offers a simple simulation using computational conductors that can learn optimal
strategies.
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V Experiment: Duel

Duel is considered as a case study. The experiment presented here is not a mere replication of that
conducted by Sluchin & Malt [25] because it involves computational decision-making agents that
are able to learn how to solve Duel via either minimax or mixed strategies. The game is treated
as a simultaneous repeated game, allowing the conductors to continue playing it as many times
as necessary to learn the best response. A conductor is modelled using Reinforcement Learning
(RL), one of the three main paradigms used in machine learning (the others being: supervised
and unsupervised learning) and the most widely applied to gaming problems, in general. RL
involves a loop whereby agents in an environment take actions and receive feedback from some
reward function, thus incrementally learning to optimise their cumulative rewards. RL is normally
modelled as a Markov Decision Process (MDP): at each discrete time step t, the agent receives
the current state st and a reward rt, chooses an action at from the set of available actions A,
which modifies the environment to a new state st+1 and yields a new reward rt+1 based on the
transition (st, at, st+1). Through this iterative process, the learning agent aims to learn a policy:
π : A × S → [0, 1], π(a, s) = Pr(at = a | st = s) that maximises the expected cumulative reward.
Arguably, RL is very suitable for modelling game-theoretical tasks [20].

V.i Q-Learning

Q-learning [30] is a model-free RL algorithm, meaning that it does not use the transition probability
distribution associated with an MDP, but it is rather a trial-and-error approach. Q-learning was
chosen for the experiment presented in this section because it is applicable exclusively to discrete
action and state spaces, which is the case of Xenakis’s game pieces. Q stands for the quality of
a state-action combination, and it is expressed as Q : S × A → R using a value iteration update
equation that accounts for the weighted average of the old value and the new information, as well
as other parameters such as a learning rate α and a discount factor γ. Simply put, the Q-learning
algorithm works as follows: initialise a Q-table (n × m with n = number of actions and m = number
of states), choose an action, measure the reward, update the Q-table, repeat.

V.ii Tournament

For this experiment, three types of conductors are used: one that learns the mixed strategy
Nash equilibrium using Q-learning (hereinafter, NashQ), another that learns the minimax strategy
using Q-learning (from now on referred to as MinimaxQ), and yet another which does not learn
but simply selects tactics at random (hence, called Random). The simulation was implemented
using the Python1 programming language with few additional dependencies. These included
the nashpy library2 which offers different algorithms for the calculation of the Nash Equilibria,
such as vertex enumeration [29] or the Lemke & Howson [17] method. Learning conductors were
instantiated with a default value of γ = 0.99. In this case, a tournament comprises all possible
combinations of conductors, with repetition (e.g., [A, A], [B, B], etc.) but with order invariance
(e.g., [A, B] == [B, A]). One instance of a repeated game between any given pair will hereafter be
referred to as an epoch, whereas one repetition of the game in an epoch will be called an episode.

Figure 7 shows one epoch in a tournament, between a NashQ and a MinimaxQ, while Figure
8 shows the duel between two NashQ. Figure 9, instead, shows a duel involving a Random
conductor, as a comparison baseline. From these plots, it is possible to note that, after an initial

1https://python.org
2https://pypi.org/project/nashpy/
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Figure 7: Duel between a NashQ conductor and a MinimaxQ opponent, playing a repeated game of 200 episodes.

Figure 8: Duel between two NashQ conductors, playing a repeated game of 200 episodes.
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Figure 9: Duel between a NashQ conductors and a Random conductor, playing a repeated game of 200 episodes.

phase of learning, the conductors converge towards stable strategies, meaning that they end up
playing the same tactic for many consecutive episodes.

In a real-performance scenario, how would these learnt behaviours and policies potentially
affect the resulting music? Although there is general consensus on the basic principles of design
in visual arts [1], the same cannot be said for musical design and composition. However, the
notion of contrast (or variety) seems to be a constant among all the arts, including music. Using
contrast as an evaluation metric, would imply that learned, informed conductors might be liable
for considerably lower musical contrast (boring music, some might say?), whilst being numerically
optimal.

VI Reflection & Future Work

It is hopefully clear by now how the choice of an applied mathematics framework gives rise to
some interesting disjunctures. The axioms of game theory, which presuppose a well-defined utility
function, can be challenging to uphold when artistic, creative, and aesthetic goals compete with
theoretical ones. One must then consider that the intrinsic value of a game-based framework
resides in the possibility to subvert its rational/theoretical axioms in favour of more palatable,
musically pleasing, or desirable outcomes. Doing so allows x or y to make sub-optimal or biased
choices in terms of payoff that are instead optimal from an artistic (subjective) viewpoint. Given
the current involvement of computers in creative and musical tasks, it is important to contextualise
the lessons learned so far. Solving Xenakis’s game matrices is a trivial task. Simulating naturalistic
decision-making [16] that might communicate a sense of negotiation between aesthetic or musical
concerns and the mathematical imperatives of the game, on the other hand, is not. To this end,
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when designing computational versions of Xenakis’s zero-sum games of strategy, one could
deliberately introduce some sub-optimality [15], even opening up to simple options such as finite
state machines. In this case, decision policies could stochastically include not only mixed strategies
and minimax, but also subversive states based on the simulation of some aesthetic preference,
for example, or some intrinsic attitude trait (e.g., impulsive, greedy, rational, etc.). Employing
simple approaches such as automata might sound naïve in an age of large language models with
billions of parameters [5] and an in-depth discussion of the best approaches to simulate a process
as complex as human decision-making is beyond the scope of this article (and possibly beyond
the scope of machine learning techniques to date). Thus, these speculations are merely included
as a springboard for further exploration of Xenakis’s game pieces. For example, paradigms such
as interactive evolutionary computation [27], whereby the reward function (the fitness function,
in this case) is updated according to the feedback given by a human meta-conductor, could be
leveraged. Furthermore, and particularly given the recent shift toward increased online presence
due to the COVID-19 pandemic, telematic, remote implementations of Xenakis’s game pieces
could also be envisaged. These are just a few re-imagined incarnations of Xenakis’s trilogy among
the endless possibilities available.

VII Conclusion

This article considered the games of musical strategy composed by Xenakis between 1959 and 1972
and discussed philosophical, musical, and mathematical properties of these works. In identifying a
problematic disparity between the game-theoretical models and their rendition in Xenakis’s game-
based works, the relationship between rational decision-making and the notion of payoff or reward
in a musical context foregrounded further incongruencies. It was posited that a payoff matrix alone
is not a sufficient incentive or motivation to resolve musical conflict and that, if one wishes to use
applied mathematics for musical interaction in a strict fashion, disappointments regarding both
numerical solutions and musical texture are likely to emerge. These claims were substantiated by
an in-depth probe at a theoretical level, accompanied by supporting evidence offered in the form
of direct references in Xenakis’s game description and instructions. More evidence was gathered
via a simulation of Duel, where computational learning agents took on the role of conductors and
battled in an extensive tournament. Said agents were modelled using Reinforcement Learning
to optimise their responses over time, based on different solutions (namely mixed strategies
and minimax). An additional agent that responded arbitrarily (without learning) was also used
as a comparison baseline. In summary, this article attempted to show that the experience of
playing a game of musical strategy is a complex phenomenon where disparate factors converge,
transcending the pure mechanics stipulated by the mathematical model of the game. Arguably, a
real conductor, even if appropriately informed about the axioms of the game and its solutions,
would still exhibit behaviours based not only on the utility function, but (presumably) also on
aesthetic preference, feedback from the audience, the orchestra(s), the acoustic environment, and so
forth. Notwithstanding the limitations of the mathematical framework that this article investigated,
and given the new potential provided by machine learning and networked performance, game
theory-based pieces continue to be exciting vehicles for structuring musical interaction and design
that can open up to novel and unforeseen modalities of musical expression.
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Abstract: This article is about composing programs. It explores generating up-front a knowledge base
of rhythms as an alternative to generating rhythms on the fly. Since the knowledge base contains much
more information than any one composing program will ever actually use, it employs ISAM technology
to persist the information in one random-access file. The fundamental rhythmic entities are monophonic
patterns and polyphonic textures. Patterns are defined as successions of pulse events (rests, attacks,
ties). Textures present multiple patterns simultaneously. Various entity properties are calculated up
front and stored alongside content data. For textures, these properties include an attacks profile, which
is a vector. A persistent lookup map is realized to efficiently identify textures sharing attacks profiles in
common. A pattern-to-pattern comparison identifies relationships which are documented in an ISAM map;
these pattern-to-pattern relationships are then used to build a random-access map of texture-to-texture
relationships. The article closes with a series of applications demonstrating how rhythms may be selected
by combining knowledge-base queries with random shuffling and constraint filtering.

Keywords: Composing program. Rhythm knowledge base. ISAM.

I. Introduction

Rhythm is the foundation of my music-theoretical thinking. To give a visual analogy, rhythm
provides the shapes which pitch illuminates with color. Pretty much all of my composing
programs lay out the rhythm first and fill in the pitches later. That applies to programs which

emulate familiar styles and also to programs which explore pan-chromaticism and emancipated
dissonance.

Most of my programs have taken an on-the-fly approach to generating rhythms. For example,
my 1987 “Cybernetic Composer”1 generated rhythms for rock, 2 jazz styles, and ragtime using
context-sensitive grammars which divided long durations into shorter ones. Three of the four
styles alternated ‘composed’ tunes with ‘improvisatory’ material; the ‘composed’ sections followed
templates which generated ‘fresh’ rhythms for some segments and copied earlier rhythms for
other segments. One feature of the rock style was an improvisatory break during which the
accompaniment rested while the lead played through.

Received: October 21st, 2022
Approved: December 21st, 2022

1The “Cybernetic Composer” is described on my site at https://charlesames.net/cybernetic-composer/index.
html.
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You can judge from the examples provided on my site whether these grammars were effective;
however, the site examples were selected to present my work in the best light. The two rock
examples happen to present fairly active material for their improvisatory breaks, but this didn’t
always happen. The rhythm generator basically worked its way down the decision tree by flipping
coins, and I was unable at the time to figure out how to incline those decisions toward more
active results. Later it occurred to me that however many different rhythms my grammars were
capable of producing, it would still be practical to run an enumeration algorithm that would list
all candidates up front. Having that, my program could assign an activity score (attacks per beat)
to each candidate. But by then the Age of Intelligent Machines exhibit was already on the road.

The idea of enumerating material up front stuck with me. I took a stab at it in the programs
for my 1988 solo-violin piece, “Concurrence” [1]. Here the rhythmic material comprised different
ways of dividing a quarter note into sixteenths, given that the instrument could do any of four
things in each sixteenth: Initiate a new note, tie from a previous note, slur from a previous note,
or rest. But this time around my concern wasn’t for the qualities of specific patterns but rather
for rather the degree of similarity between any two patterns. This was measured by calculating
the minimum number of primitive operations required to transform one pattern into the other.
The rhythm-selecting programs worked from a template which laid out the compositional form
as a sequence of nodes, one per quarter note. These nodes were connected with references that
indicated “this node is similar to that previous node” or “this node contrasts with that previous
node”.

The present effort generalizes what I did for “Concurrence” into a knowledge base of rhythms.
First off, the idea of dividing quarter notes into sixteenths generalizes into the idea of dividing
some unspecified longer duration into pulses of nominally-equal shorter durations. Beyond that,
the fixed-length, monophonic patterns of “Concurrence” are here extended to textures with two,
three, or four pulses, layering up to three patterns polyphonically. Hovering over this effort has
been the prospect of combinatorial explosion. Faced with this prospect, the distinction between
freshly attacked notes and slurred-to notes had to be dropped. I found it necessary to limit the
maximum pattern length to 4 and to fix the number of layered patterns at 3 (fewer layers are
accommodated by allowing some layers to rest). Even under these restrictions it required some 4
days to build the file; most of this time being taken up by the process of gleaning texture-to-texture
relationships.

At this writing I have only the vaguest idea what kind of pieces this knowledge base will be
used for, only that there will be more than one (health permitting) and that the first of these pieces
will employ additive rhythms. Since the knowledge base is intended for multiple use by myself
and possibly others (if there’s any interest), its design is neutral and generic.

II. ISAM Persistence

According to my production framework2 I should be implementing the overall compositional
process as a succession of stages, with earlier stages leaving XML-formatted files of data for
later stages to pick up. However here I am creating a knowledge base of building blocks, which
knowledge base is potentially usable by many projects. Therefore the data needs to be persistent
(stored in a file) and random-access. Although the knowledge base may hold a great deal of
material, only a limited subset will be brought in to any individual application. Also there will be
a need to query the knowledge base for sets of entities which meet certain criteria or for sets of
entities which bear a certain relationship to some entity already in hand.

2https://charlesames.net/glossary/production-framework.html.
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As a retired database programmer my first instinct was to go the full SQL route, but SQL
databases impose considerable overhead. The requirements just listed can instead be satisfied
using Indexed Sequential Access Method (ISAM), a technology central to SQL databases which is
also available in stand-alone implementations. The ISAM implementation I found to do this in
Java was MapDB.3 MapDB is “free and open-source” and at this writing is into its 3.X production
release. Despite this history the documentation remains sketchy. The online Javadoc equivalent
simply lists methods without either method or parameter descriptions. Explanatory documents
are few and far between, and of those that I could find, the sample code that did what I wanted to
do wouldn’t even compile.

That’s the bad news. The good news is that MapDB implements a BTreeMap class, which
acts like Java’s SortedMap interface but which stores its data in a random-access file rather than
in memory. Like a SortedMap, a BTreeMap pairs keys with associated values. You can store Java
objects as BTreeMap values with the proviso that the stored objects cannot reference other objects.
So if object A relies on object B you have to implement object B with a unique identifier (MapDB
seems to like long integers). Then if you’ve pulled object A from its BTreeMap, and want to look at
a B contained within A, you can get object B’s identifier from object A and use the identifier to
pull object B from the BTreeMap where object B resides.

In the SQL world I would have stored each class of object in a database table with the unique
identifier as its primary key. To facilitate queries for objects I would have implemented table indices
enumerating the relevant properties and which objects have them.

MapDB has no tables and hence no table indices. However one can construct a BTreeMap
which serves a purpose similar to a table index. In my first attempt to do this I built the key from
one or more object properties and used the unique object identifier (a long) as the value. This
didn’t work because a Map (both SortedMap and BTreeMap implement this interface) associates
exactly one value with each valid key. My second attempt incorporated the unique object identifier
as the rightmost key element. This also didn’t work — the sample code provided for this situation
wouldn’t compile — however I did manage to find a successful kludge by packing key elements
into long integers.

III. Entities

The PulseEventType enumeration lists three things that one layer within a texture can do during
a pulse: REST , ATTACK , and TIE .

Instances of the PulsePattern class persist in the knowledge base. A PulsePattern describes
a succession of pulses and what happens in each pulse. This succession is implemented as an
array of PulseEventType elements. The elements of this array are accessed using a position
index, while the length of a PulsePattern instance is the array length (i.e. the number of pulses).
Each PulsePattern is identified by a serially-generated long integer. There is only one constraint
in forming a PulsePattern: a TIE can never follow a REST .

Instances of the PulseTexture class also persist in the knowledge base. A PulseTexture layers
multiple simultaneous PulsePattern instances, all of the same length. This is implemented as an
array of long integers, whose elements are PulsePattern identifiers. The elements of this array
are accessed using a layer index, while the depth of a PulseTexture instance is the array length
(i.e. the number of overlaid patterns). Each PulseTexture is identified by a serially-generated
long integer. The definition of a PulseTexture abstracts away the order of patterns within the
texture. Thus if a PulseTexture contains patterns A, B, and C, that would apply to pattern A on

3https://MapDB.org/.
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top, pattern B in the middle, and pattern C on the bottom. However it would also apply to pattern
B on top, pattern C in the middle, and pattern A on the bottom.

A specific statement of a PulseTexture is obtained by combining the PulseTexture with a
mapping from musical parts to texture layers. For any given PulseTexture of depth 3, up to six
distinct statements are available, corresponding to the six permutations of the set {0, 1, 2}. Part-to-
layer mappings are represented in the knowledge base using the Permutation class. Permutation
instances combine an array of 3 ordinals with a long-integer identifier derived by packing the
number of array elements (3) in the leftmost nibble and the individual ordinals in successive
nibbles thereafter. The six Permutation instances persist in the knowledge base, though in practice
they are cached into an in-memory map.

Both simple and compound texture statements can be represented using the TextureStatement
class, whose components are pairings of PulseTexture instances with Permutation instances.
The TextureStatement class effectively presents a two-dimensional array of PulseEventType
elements, with a part index ranging from 0 to depth−1 and a position index ranging from 0 to
length−1. Instances of the TextureStatement class do not persist in the knowledge base; however
the end product of any session working with the knowledge base will typically be one or more
TextureStatement instances.

Instances of the Relation class persist in the knowledge base because in order to get MapDB
to work I needed to associate each Relation instance with a persistent long-integer identifier.
A Relation instance combines a RelationCategory with an integer offset. RelationCategory
is a software enumeration which among other things includes code to determine whether two
patterns are related in that way. The offset depends upon the RelationCategory. For examples
the offset for RelationCategory.ROTATE indicates how far to right shift, while the offset for
RelationCategory.MASK indicates which pulse position is affected. The full RelationCategory
enumeration is presented below.

The remaining class whose instances persist in the knowledge base is Profile. A Profile is
array of integers which count how often a certain PulseEventType (or combination thereof) occurs
simultaneously during the corresponding pulse in a PulseTexture instance. The elements of this
array are accessed using a position index, while the length of a Profile instance is the array
length (i.e. the number of pulses). Profile instances also include a long-integer identifier which
packs the number of array elements (the length) in the leftmost nibble and the individual counts
in successive nibbles thereafter.

IV. Scalar Properties

The most fundamental property of a PulseTexture is length. The most fundamental properties
of a PulseTexture are length and depth.

There is a family of scalar properties which have absolute versions, which are integer counts,
and relative versions. The relative version is a floating-point number calculated as the count di-
vided by its upper limit. Examples for the following definitions will be drawn from PulseTexture
#16520, which has the following content:

PulseTexture #16520

Layer PatternID Content
0 40 [ ▶ −▶]
1 54 [▶▶ −−]
2 78 [−− ▶ ]
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The content is represented pictographically: “▶” means ATTACK , “−” means TIE , and “ ”
means REST .

i. Attacks

The attacksCount and attacksRatio are dual properties shared by PulsePattern and PulseTexture
instances. For PulsePattern the attacksCount is the number of pulses with the ATTACK event
type, for which the upper limit is the pattern length. For PulseTexture the attacksCount remains
the number of ATTACK pulses, however the upper limit expands to length × depth.

Referring back to PulseTexture #16520, PulsePattern #40 has 2 attacks, PulsePattern #54
has 2 attacks, and PulsePattern #78 has 1 attack. Therefore PulsePattern #16520 has an
attacksCount of 2 + 2 + 1 = 5 attacks. The attacksRatio is 5/12 = 42% of a possible 12.

ii. Coverage

The coverageCount and coverageRatio are also dual properties shared PulsePattern and
PulseTexture. For a PulsePattern instance the coverageCount is the number of ATTACK pulses
plus the number of TIE pulses, for which the upper limit is the pattern length. For PulseTexture
the upper limit expands to length × depth.

Referring back to PulseTexture #16520, PulsePattern #40 has 3 non-rest events, PulsePattern
#54 has 4 non-rest events, and PulsePattern #78 has 3 nonrests. Therefore PulsePattern #16520
has a coverageCount of 3 + 4 + 3 = 10. The coverageRatio is 10/12 = 83% of a possible 12.

The compliment to coverageCount is the count of rests, which for PulsePattern #16520 is 2
or 17% of a possible 12.

iii. Dispersion

The dispersionCount and dispersionRatio are dual properties of PulseTexture instances. The
dispersionCount is the number of pulses with an ATTACK in at least one layer. The upper limit is
length.

PulseTexture #16520 has 1 attack in pulse-position 0 (PulsePattern #54), 2 attacks in pulse-
position 1 (PulsePattern #40 and #54), 1 attacks in pulse-position 2 (PulsePattern #78), and
1 attack in position 3 (PulsePattern #40). This gives a dispersionCount of 4 with a 100%
dispersionRatio out of a possible 4.

The compliment to dispersionCount is the count of pulses without an ATTACK in any layer.
For PulsePattern #16520 this is 0 or 0% of a possible 4.

iv. Imbalance

The imbalanceCount and imbalanceRatio are dual properties of PulseTexture instances. The
imbalanceCount is calculated by iterating through the layers, determining the maximum and
minimum number of attacks, then subtracting the minimum from the maximum. If this max-min
is zero, all layers will share the same number of attacks. Otherwise at least one layer will have
more than its fair share activity. The upper limit obtains when all attacks happen in the same layer.

For PulseTexture #16520 the maximum number of attacks is 2 (PulsePattern #40 and #54)
and the minimum number of attacks is 1 (PulsePattern #78). Thus the imbalanceCount is
2 − 1 = 1 and the imbalanceRatio is 25% of a possible 4. An imbalanceCount of 4 (100%) would
have resulted if one pattern had 4 attacks and another of the remaining 2 patterns had no attacks.
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The compliment to imbalanceCount is length − imbalanceCount. For PulsePattern #16520
this is 4 − 0 = 4 or 100% of a possible 4.

V. Order of Patterns in Textures

The enumeration algorithm for PulseTexture instances iterates through all possible pattern IDs
for layer 0. Layer-1 pattern IDs range from the layer-0 pattern ID upwards, while layer-2 pattern
IDs range from the layer-1 pattern ID upwards. This allows the same pattern to appear twice or
three times in the same texture, but prevents any two textures from presenting the same set of
patterns in different permutations.

Anyone employing a PulseTexture instance as a building block for a musical passage will
quickly need to determine which musical part will play which layer. Accepting the default order
is generally not a desirable option. If the voices are co-equal then a better option would be to
permute layers randomly. If the context is metric and one voice has a lead role with the others
providing accompaniment, then it may be desirable to assign those layers which most coincide
with strong beats to the accompaniment and give the more syncopated layer to the lead voice.
This metric option requires strong-beat position data.

Yet another option is to find the permutation which orders the patterns from most to least
active. To quantify the level of activity within a pattern I implemented a beauty contest4 using the
formula:

pattern activity = 16 × attacks + ties + rand[0, 1]. (1)

For example consider PulseTexture #16520:

• [ ▶ −▶]contains 2 attacks and 1 tie. A random offset of 0.524 gives an activity score of
33.524.

• [▶▶ −−]contains 2 attacks and 2 ties. A random offset of 0.340 gives an activity score of
34.340.

• [−− ▶ ]contains 1 attacks and 2 ties. A random offset of 0.721 gives an activity score of
18.721.

The permutation which orders the patterns from most to least active is therefore (1, 0, 2). Notice
that the number of attacks always swamps the number of ties, while the random offset exerts
influence only when two patterns share the same counts of attacks and ties.

VI. Profiles

I adhere to the premise that musical meter is established through the convergence of polyphonic
attacks on strong beats and divergence of attacks on weak beats.5 The rhythmic knowledge base
described here does not itself favor ‘metric’ textures; however, it does provide a handle which can
be used to identify them. This handle is the attack profile.

4Beauty contests are simpler among the merit-based problem-solving strategies discussed in [2]. The specific heading is
“’Beauty Contest’ and ’Blackboard’ Models”, pp. 75–76.

5This premise underlies an article by Karl Kohn [3]. Kohn showed me a renotation example during an undergraduate
composition lesson; however the lesson slipped from memory until we met again a few years ago. Convergence of
polyphonic attacks is also the premise underlying my “Complementary Rhythm Generator”. The backstory given on my
site (https://charlesames.net/rhythm/index.html) says that I came to the premise while studying the collected motets
of Guillaume de Machaut. I now realize that Kohn’s lesson primed me for this realization.

77

http://www.musmat.org/
https://charlesames.net/rhythm/index.html


Journal MusMat • December 2022 • Vol. VI, No. 2

The attacks profile is a vector property of the PulseTexture class. It is an array of small integers
(actually bytes) giving the number of simultaneous ATTACK events, by pulse position. When two
textures have the same attack profile, they will be heard to have the same aggregate rhythm. If the
profile divides into regular groups initiated by larger ATTACK counts, then this aggregate rhythm
will be heard as meter.

Two textures having the same attacks profile is a binary relationship which establishes equiv-
alence classes among PulseTexture entities. Since PulseTexture entities have short lengths it is
possible to pack their profiles into the 16 nibbles of a long integer, then create a lookup map of
PulseTexture instances using this packed profile as the most significant key element.

For example, PulseTexture #16520 has attack profile [1, 2, 1, 1]. A query of the lookup
map returns 756 PulseTexture instances sharing the same attack profile. These results include
PulseTexture #16520. Here is a random sampling of other textures returned by the same query:

PulseTexture #16520

Layer PatternID Content
0 40 [ ▶−▶]
1 54 [▶▶−−]
2 78 [−−▶ ]

PulseTexture #11757

Layer PatternID Content
0 36 [ ▶▶ ]
1 40 [ ▶−▶]
2 60 [▶−− ]

PulseTexture #15097

Layer PatternID Content
0 39 [ ▶− ]
1 42 [▶ ]
2 71 [−▶▶▶]

PulseTexture #15176

Layer PatternID Content
0 39 [ ▶− ]
1 44 [▶ ▶ ]
2 69 [−▶ ▶]

PulseTexture #17033

Layer PatternID Content
0 41 [ ▶−−]
1 42 [▶ ]
2 71 [−▶▶▶]

PulseTexture #17112

Layer PatternID Content
0 41 [ ▶−−]
1 42 [▶ ▶ ]
2 71 [−▶ ▶]

Yet to be implemented as of this writing are the rest profile, the coverage profile, and the non-
attacks profile. The rest profile gives the number of simultaneous REST events by pulse. The coverage
profile gives the number of simultaneous non-REST events (ATTACK or TIE ) by pulse; it is the
compliment of the rest profile. The non-attacks profile gives the number of simultaneous non-ATTACK
events (REST or TIE ) by pulse; it is the compliment of the attacks profile. Among these the coverage
profile is most clearly useful.

VII. Relations

My original plan was to enumerate all possible PulseTexture instances of depth 3 and lengths
of 3, 4, and 5, then evaluate all PulseTexture pairs to discover whether some close relationship
existed between the pair and, if so, to document that relationship. This plan was wrecked by
combinatorial explosion. Testing for depth 3 produced 120 PulseTexture instances of length 2
and 1,771 PulseTexture instances of length 3. This meant evaluating (120 + 1,771)2 = 18,912 =
3,575,881 PulseTexture pairs. The test ran through to completion, but it took my laptop 3 days
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to run it. As things turned out I was able to speed things up substantially by caching pattern
maps into in-memory collections. This allowed me to include textures of length 4, of which
there were 29,260 instances. The number of required pairwise evaluations thus increased to
(120 + 1,771 + 29,260)2 = 311,512 = 970,384,801; however in-memory caching allowed my laptop
to crunch these through in 2 days rather than 3. However, there were bugs. Once those were
(mostly) remedied it required over 4 days to build the file.

Relations are defined between PulsePattern instances. A Relation instance assigns a unique
long-integer ID, to the combination of a RelationCategory (defined through an Enum) and an offset.
Thus IDENTITY (0) indicates the identity relation while REVERSE (0) indicates the retrograde relation.
0 is the only offset permitted for these two categories. Here is a summary of RelationCategory
items:

• IDENTITY — Target same as source. This relation only happens when the compared
PulsePattern instances have the same ID.

• REVERSE — Target retrograde of source. This relation preserves durations, for examples,
REVERSE (0) for[▶−− ] gives[ ▶−−]while REVERSE (0) for[▶−▶ ] gives[ ▶−▶].

• EXTEND — Target same as source except for pulse inserted in N-th position. If an inserted
REST would precede a TIE , then the TIE converts to an ATTACK . For example, EXTEND (1) for
[▶−▶]gives[▶▶−▶],[▶−−▶], and[▶ ▶▶].

• TRUNCATE — Target same as source except for pulse removed from N-th position. For
example TRUNCATE (1) for [▶ −−▶] gives [▶ −▶]. If the ATTACK is truncated from the
succession REST , ATTACK , TIE then the TIE converts to an ATTACK . For example, TRUNCATE (2)
for[▶ ▶−]gives[▶ ▶].

• ROTATE — Target derived from source by right shifting N positions, with N ̸= 0. For example
ROTATE (1) for[ ▶▶▶]gives[▶ ▶▶]. If right-shifting a REST places it in front of a TIE ,
then the TIE converts to an ATTACK ; for example ROTATE (1) for[−▶ ] gives[▶ ▶] rather
than the invalid[▶ −].

• MASK — Target derived from source by resting in N-th pulse. For example, MASK (1) for[▶
▶▶▶] gives[▶ ▶▶]. If pulse N + 1 has a TIE , then the TIE converts to an ATTACK ; for
example, MASK (0) for[▶−−] gives[ ▶−]rather than the invalid[ −−].

• EXCHANGE — Target derived from source by swapping pulse position N with pulse position
N + 1. For example, EXCHANGE (1) for [▶ ▶ ▶] gives [▶ ▶▶] . Exchanges preserve
durations; for example EXCHANGE (0) for [▶−]gives [▶−]. If the exchange would move a
REST in front of a TIE , then the TIE converts to an ATTACK ; for example EXCHANGE (0) for
[− ]gives[ ▶] rather than the invalid[ −].

There is no exclusivity to relations: [▶▶▶▶]bears the IDENTITY (0) relation to itself, but it also
bears the relations REVERSE (0), ROTATE (N) (for every N), EXCHANGE (N) (for every N) and so forth.

Coding the procedures which discover valid relations between patterns was a challenging
exercise combining asymmetric iterations with conditional branching. The special circumstances
introduced by ties greatly complicate things. This is an exercise I would recommend for beginning
programmers, especially those who wish to pursue composing programs.

To document all pattern-to-pattern relations I implemented a BTreeMap whose key consisted
of three long integers: the source-pattern ID, the relation ID, and the target-pattern ID. Placing
the relation ID in the middle allowed map queries of the form: given a a reference instance,
which PulsePattern instances bear any sort of relation? Also map queries of the form: given a a
reference instance, which PulsePattern instances bear a specific relation? (The BTreeMap value
repeated the relation ID.) For the record, the number of pattern-to-pattern relations discovered
was 6889.
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Two PulseTexture instances are defined to bear a Relation if all their layered PulsePattern
instances bear the same relation. Given any two PulseTexture instances (a source and a target),
the comparison algorithm iterated through all the different ways the target layers could align with
the source layers. (With the knowledge base depth set to three layers per texture, this amounted to
six permutations.) The algorithm then identified all the different relations existing between source
layer 0 and its corresponding target layer. For each layer-0 relation, the remaining layers were
compared. If both remaining source layers bore the same relation to their corresponding target
layers, then the two textures were determined to have that relation.

To document the close relationships discovered by these pairwise comparisons, I created a
BTreeMap whose key combined four long integers: the source-texture ID, the relation ID, the
permutation ID, and the target-texture ID. (The BTreeMap value repeated the relation ID and the
permutation ID.)

Specifying the source-texture ID as 16520 and allowing the remaining key fields to range freely
queries all texture-to-texture relations with PulseTexture #16520 as the source. This query fetched
back 51 instances in all. Here once again is PulseTexture #16520:

PulseTexture #16520

Layer PatternID Content
0 40 [ ▶ −▶]
1 54 [▶▶ −−]
2 78 [−− ▶ ]

And here is a random sampling of 6 from the 51 instances fetched:

MASK (2)

PulseTexture #9688

Layer PatternID Content
0 34 [ ▶ ]
1 48 [▶▶ ▶]
2 76 [−− ]

ROTATE (2)

PulseTexture #21902

Layer PatternID Content
0 69 [−▶ ▶]
1 79 [−−▶▶]
2 46 [▶ ▶−]

NOT (0)

PulseTexture #1958

Layer PatternID Content
0 42 [▶ ]
1 29 [ ]
2 30 [ ▶]

MASK (1)

PulseTexture #7003

Layer PatternID Content
0 32 [ ▶▶]
1 46 [▶ ▶−]
2 65 [− ▶ ]

ROTATE (3)

PulseTexture #29016

Layer PatternID Content
0 78 [−−▶ ]
1 61 [▶−−▶]
2 69 [−▶ ▶]

TRUNCATE (0)

PulseTexture #1684

Layer PatternID Content
0 19 [▶−▶]
1 20 [▶−−]
2 23 [−▶ ]

(Notice that PulseTexture #9688 is missing an attack in position 3 of layer 0. The RelationCategory
code still needs work.)

80

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

VIII. Application: Foundational Textures

The rhythmic knowledge base described here takes a neutral attitude toward rhythmic material.
With applications this changes. Here the user actively expresses some sort of preference. He or
she first uses a BTreeMap to query for candidates meeting some desired criterion. The resulting list
can then be filtered by iterating through them and discarding those which fail to meet additional
criteria. The pared-down list should then be shuffled randomly to eliminate enumeration biases.
If all criteria have been applied, then the first candidate in the shuffled list becomes the selection.
However sometimes additional criteria remain which impose additional overhead — like trying
out different permutations. In this scenario a second iteration may be necessary. The selected
candidate will be the first one in the shuffled list which has a permutation that works.

i. Silence

A texture is concerted when for any given pulse position, all layers have the same event type. This
very first application will demonstrate how to identify concerted textures which are entirely silent;
that is, where the event type is REST for all layers and all positions.

There is no lookup map which specifically identifies silent textures. The best route available
is the attacks-profile lookup map. Querying this map for the attacks profile [0,0] returns 10
candidates (from the 120 textures of length 2). The first 5 of these are:

PulseTexture #0

Layer PatternID Content
0 0 [ ]
1 0 [ ]
2 0 [ ]

PulseTexture #5

Layer PatternID Content
0 0 [ ]
1 0 [ ]
2 5 [− ]

PulseTexture #7

Layer PatternID Content
0 0 [ ]
1 0 [ ]
2 7 [−−]

PulseTexture #30

Layer PatternID Content
0 0 [ ]
1 5 [− ]
2 5 [− ]

PulseTexture #30

Layer PatternID Content
0 0 [ ]
1 5 [− ]
2 7 [−−]

While it happens that PulseTexture #0 is the exactly the texture sought, the end user can’t
be expected to know that the texture-enumeration algorithm would have produced this first.
However, with only 10 candidates it is not unreasonable to iterate through the candidates to filter
out those with event type TIE in any layer or position. Once coverage profiles have been captured
within the stored PulseTexture instances, it will be a simple matter to exclude textures with
coverage profiles other than [0,0].
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To identify silent textures of length 3 involves first querying for textures with attacks profile
[0,0,0]. This returns 20 candidates (from the 1771 textures of length 3), which can then be filtered
for coverage profile [0,0,0].

Likewise, identifying silent textures of length 4 involves first querying for textures with attacks
profile [0,0,0,0]. This returns 35 candidates (from the 29260 textures of length 4), which can then
be filtered for coverage profile [0,0,0,0].

In summary, the query-and-filter operations just described produce exactly three examples of
entirely silent textures, one for each texture length in the knowledge base:

PulseTexture #0

Layer PatternID Content
0 0 [ ]
1 0 [ ]
2 0 [ ]

PulseTexture #120

Layer PatternID Content
0 8 [ ]
1 8 [ ]
2 8 [ ]

PulseTexture #1891

Layer PatternID Content
0 29 [ ]
1 29 [ ]
2 29 [ ]

ii. Onbeats

This second application will demonstrate how to identify concerted textures where the event type
is ATTACK for all layers in position 0 and not ATTACK elsewhere. Candidates will be identified
using the attacks-profile lookup map, for profiles containing the number of simultaneous events
per pulse in pulse position 0 and 0 in all other positions. The number of simultaneous events per
pulse is determined by the knowledge-base depth, which is 3.

The patterns will be articulated in three ways:

• Staccato onbeats will be identified using a coverage profile that is the same as the attacks
profile.

• Sustained onbeats will be identified using a coverage profile with 3 in all positions.
• Detached onbeats will be identified using a coverage profile with 0 in the rightmost position

and with 3 in all other positions.

The query phases of these operations produced 5 candidates of length 2, 10 candidates of
length 3, and 20 candidates of length 4.

Filtering by the staccato coverage profile produced exactly three examples of staccato-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #64

Layer PatternID Content
0 2 [▶ ]
1 2 [▶ ]
2 2 [▶ ]

PulseTexture #1075

Layer PatternID Content
0 13 [▶ ]
1 13 [▶ ]
2 13 [▶ ]
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PulseTexture #17907

Layer PatternID Content
0 29 [▶ ]
1 29 [▶ ]
2 29 [▶ ]

Filtering by the sustained coverage profile produced exactly three examples of sustained-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #100

Layer PatternID Content
0 4 [▶−]
1 4 [▶−]
2 4 [▶−]

PulseTexture #1726

Layer PatternID Content
0 20 [▶−−]
1 20 [▶−−]
2 20 [▶−−]

PulseTexture #29127

Layer PatternID Content
0 62 [▶−−−]
1 62 [▶−−−]
2 62 [▶−−−]

Filtering by the detached coverage profile produced exactly three examples of detached-onbeat
textures, one for each texture length in the knowledge base:

PulseTexture #64

Layer PatternID Content
0 2 [▶−]
1 2 [▶−]
2 2 [▶−]

PulseTexture #1605

Layer PatternID Content
0 18 [▶− ]
1 18 [▶− ]
2 18 [▶− ]

PulseTexture #28551

Layer PatternID Content
0 60 [▶−− ]
1 60 [▶−− ]
2 60 [▶−− ]

IX. Application: Additive Rhythm

What I’m looking to do first with this knowledge base is additive rhythm. The most basic thing
that happens with additive rhythm is elongating musical ideas one pulse at a time.

This next application will generate a TextureStatement compounding six simple texture-
statements with this structure:
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i. XXO XX’O

Texture-statement X, being first, cannot contain TIE events in pulse position 0. Its activity profile
will be [3,1,2,1]. This profile satisfies the no-starting TIE constraint and also establishes a 2 + 2
beat structure. Texture-statement O will be the staccato onbeat texture of length 4, identified
previously under “Onbeats” (Subsection ii of Section VIII) as PulseTexture #17907. Item X’ will
extend texture-statement X by one pulse, added to the end. The first four pulses will have the same
content as texture-statement X. The fifth pulse will have an ATTACK in one layer. This establishes a
beat structure of 2 + 3.

But wait: The knowledge base does not support PulseTexture instances of length 5 or
greater. That means dividing texture-statement X into texture-statement A with activity profile
[3,1] and texture-statement B with activity profile [2,1], then extending texture-statement B into
texture-statement B’ with activity profile [2,1,1]. The structure now becomes:

ii. XXO XAB’O

Step 1: Texture-statement X is selected by querying the PulseTexture supply by attacks profile
[3,1,2,1]. This query discovered 100 candidates. Here are the first 6:

PulseTexture #17996

Layer PatternID Content
0 42 [▶ ]
1 44 [▶ ▶ ]
2 50 [▶▶▶▶]

PulseTexture #18034

Layer PatternID Content
0 42 [▶ ]
1 45 [▶ ▶▶]
2 49 [▶▶▶ ]

PulseTexture #18036

Layer PatternID Content
0 42 [▶ ]
1 45 [▶ ▶▶]
2 51 [▶▶▶−]

PulseTexture #18073

Layer PatternID Content
0 42 [▶ ]
1 46 [▶ ▶−]
2 50 [▶▶▶▶]

PulseTexture #18189

Layer PatternID Content
0 42 [▶ ]
1 49 [▶▶▶ ]
2 58 [▶−▶▶]

PulseTexture #18222

Layer PatternID Content
0 42 [▶ ]
1 50 [▶▶▶▶]
2 57 [▶−▶ ]

The query fetches results in their enumeration order, which seems to disfavor TIE events.
Since the only criterion prescribed is the attacks profile, any bias introduced by the enumeration
algorithm should be overcome by choosing one candidate at random. So I did that (and ended up
tweaking the random seed until the result had a few ties). The selected candidate was #19999:

PulseTexture #19999

Layer PatternID Content
0 44 [▶ ▶ ]
1 53 [▶▶−▶]
2 57 [▶−▶ ]
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Step 2: PulseTexture #19999 embraces six different actual passages depending upon which
musical part plays which layer. The selected permutation orders layers from most to least active,
using the beauty contest described above under “Order of Patterns in Textures” (Section V):

PulseTexture #19999

Layer PatternID Content
0 53 [▶▶−▶]
1 57 [▶−▶ ]
2 44 [▶ ▶ ]

Step 3: How to divide X into A and B, given how the knowledge base documents relations
between PulseTexture instances? There is no direct way to extract two out of four pulses from
a texture. However, texture-statement A can be obtained from texture-statement X by looking
up an intermediate texture-statement Q bearing the relation TRUNCATE (3) to X, then looking up a
PulseTexture bearing the relation TRUNCATE (2) to Q. Both of these lookups are supported by a
BTreeMap, making them efficient.

Querying the knowledge base for textures with the TRUNCATE (3) relation to PulseTexture
#19999 fetches back:

PulseTexture #1255

Layer PatternID Content
0 17 [▶▶−]
1 19 [▶−▶]
2 14 [▶ ▶]

Querying the knowledge base for textures with the TRUNCATE (2) relation to PulseTexture
#1255 gives the result desired for texture-statement A:

PulseTexture #71

Layer PatternID Content
0 17 [▶▶]
1 19 [▶−]
2 14 [▶ ]

Step 4: Extracting the final two pulses out of texture-statement X can be accomplished by
looking up an intermediate texture-statement R bearing the relation TRUNCATE (0) to X, then looking
up a PulseTexture bearing the relation TRUNCATE (0) to R.

Querying the knowledge base for textures with the TRUNCATE (0) relation to PulseTexture
#19999 fetches back:

PulseTexture #700

Layer PatternID Content
0 19 [▶−▶]
1 23 [−▶ ]
2 10 [ ▶ ]
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Querying the knowledge base for textures with the TRUNCATE (0) relation to PulseTexture #700
gives the result desired for texture-statement B:

PulseTexture #68

Layer PatternID Content
0 2 [▶ ]
1 2 [▶ ]
2 6 [−▶]

Step 5: Querying the knowledge base for textures with the EXTEND (2) relation to texture-
statement B brought back 18 textures of length 3. Filtering these down to attacks profile [2,1,1]
produced 6 candidates:

PulseTexture #1086

Layer PatternID Content
0 13 [▶ ]
1 13 [▶ ]
2 24 [−▶▶]

PulseTexture #1100

Layer PatternID Content
0 13 [▶ ]
1 14 [▶ ▶]
2 23 [−▶ ]

PulseTexture #1102

Layer PatternID Content
0 13 [▶ ]
1 14 [▶ ▶]
2 25 [−▶−]

PulseTexture #1086

Layer PatternID Content
0 13 [▶ ]
1 13 [▶ ]
2 24 [−▶▶]

PulseTexture #1100

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶ ]
2 23 [−▶ ]

PulseTexture #1102

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶ ]
2 25 [−▶−]

Of these PulseTexture #1100 was selected at random, then permuted to align with texture-
statement X:

PulseTexture #1100

Layer PatternID Content
0 14 [▶ ▶]
1 13 [▶ ]
2 23 [−▶ ]

All the component texture statements have been identified. It just remains to join these simple
statements into a compound TextureStatement instance. Here is the result:
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X X O X A B’ O
[▶−▶ ] [▶−▶ ] [▶ ] [▶−▶ ] [▶−] [▶ ▶] [▶ ]
[▶ ▶ ] [▶ ▶ ] [▶ ] [▶ ▶ ] [▶ ] [▶ ] [▶ ]
[▶▶−▶] [▶▶−▶] [▶ ] [▶▶−▶] [▶▶] [−▶ ] [▶ ]

X. Application: Vertical Masking

This application gives an imagined nod to the Schillinger System [4] or at least something that
John Myhill6 presented as coming from the Schillinger System during a spring 1979 course on
composing programs at the State University of New York at Buffalo.

I have mixed feelings about Schillinger. I have no sympathy for his aesthetic, which to me
seems to hold that music is somehow ’good’ if derivable mathematically and ’poor’ otherwise.
I am also intimidated both by the sheer size of his tome and by its opaqueness. I acquired the
Schillinger System’s two massive volumes when still in high school, but never personally got much
past the “Theory of Rhythm” (Book I) and the “Theory of Melody” (Book IV). Yet the Schillinger
System is no more arbitrary than serialism, and it potentially offers techniques far richer than
retrograde, inversion, and transposition. If one can get through those many pages of mathematical
ciphers.

The technique of vertical masking, employed here, was something John Myhill talked about while
presenting Schillinger in the above-mentioned course. The thrust of Myhill’s presentation was that
one can take a musical passage with several voices and vary it by rotating which instrument plays
which part — rotation being Schillinger’s go-to permutational device. Vertical masking provides
further variation by selectively blanking out some parts while the others continue to play. Since
this is exactly what happens in fugal expositions, the processes of part-permutation and vertical
masking naturally go together. However I am presently writing this with Schillinger’s volumes
beside me. Thumbing through these books (which I hadn’t cracked in decades), I have not been
able to locate the masking scenario Myhill presented.

I had introduced ROTATE and MASK (the horizontal kind) as RelationCategory items with
Schillinger in mind. Now I discover that masking is not actually present in Schillinger’s technique.
I had also been thinking that there was a fair amount of overlap between what I am doing here
and what Schillinger did back when. This experience suggests not.

This present application starts with a texture-statement X, deconstructs it into layers, then
arranges the layers according to the plan presented below:

X−0 − 1 X−0 − 1 X−0 X−0 X X
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

O X−1 X∼0 X∼2 X O
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

6John Myhill was a close friend of Lejaren Hiller who taught mathematics at SUNY/Buffalo. His field was recursive
function theory but he was also keenly interested in composing programs.
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O indicates the staccato onbeat texture of length 4 identified under “Onbeats” as PulseTexture
#17907 (Subsection ii of Section VIII). Since the content of X has yet to be determined beyond
its length (4), the above plan uses the symbols “ ”, “ ” and “ ” to indicate different layers.
Variations upon X will be derived by blanking out one or two of the three layers. If “blank” means
rest in all pulse positions, then are 3 ways of blanking 1 out of 3 layers and also 3 ways of blanking
2 out of 3 layers. However metric considerations suggest that that for two consecutive statements
(a leader and a trailer), then a part which is active in the leader but blank in the trailer should be
allowed ’resolution’ to the trailer downbeat. So the X∼0 and X∼1 items in the above plan blank
out all bit the first pulse position.

The plan indicates layer-specific blanking options by appending the blanked layer ID, prefixed
either by a hyphen (“−”) or a tilde (“∼”). The hyphen indicates full silence (all pulses resting),
while the tilde indicates an isolated down beat of (just one attack, then rests). For example X−0− 1
indicates the PulseTexture which carries over from texture-statement X in layer 2 but which is
fully silent in layers 0 and 1.

Readers will notice that in spite of my backstory, the plan takes no steps to rotate layers. I
originally intended to include rotations but decided it would unnecessarily complicate the plan.
Layer permutation is basic functionality in TextureStatement instances. It is no reach at all to
rotate layers if one wishes to do so.

For this present application, texture-statement X will be metric, with full coverage (no part rests
during any pulse). It should be equally active in all parts; that is, the imbalanceCount (Subsection
iv of Section IV) should be 0 (this did not prove attainable).

Step 1: Selecting texture-statement X began by querying the PulseTexture supply by attacks
profile [3,1,2,1]. As reported earlier, this query discovered 100 candidates. Filtering out candidates
with coverage profiles other than [3,3,3,3] whittled this number down to 5. None of these
candidates had imbalanceCount scores of 0, which is what I was hoping for, but three candidates
had imbalanceCount scores of 1:

PulseTexture #24844

Layer PatternID Content
0 51 [▶▶▶−]
1 59 [▶−▶−]
2 61 [▶−−▶]

PulseTexture #25866

Layer PatternID Content
0 53 [▶▶−▶]
1 59 [▶−▶−]
2 59 [▶−▶−]

PulseTexture #26306

Layer PatternID Content
0 54 [▶▶−−]
1 58 [▶−▶▶]
2 59 [▶−▶−]

The application randomly selected PulseTexture #26306, which is fortunate because this
texture conforms least slavishly to the meter. (Demonstrating once again that while randomness is
necessary for unbiased selection, positive criteria should override.) The selected permutation of
PulseTexture #26306 orders its layers from most to least active, using the beauty contest described
above under “Order of Patterns in Textures” (Section V):
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PulseTexture #26306

Layer PatternID Content
1 58 [▶−▶▶]
2 59 [▶−▶−]
0 54 [▶▶−−]

Statement X

The earlier “Silence” application (Subsection i of Section VIII) identified PulseTexture #1891
as the silent texture of length 4. The supply of PulseTexture instances has a lookup map by
pattern IDs, so querying this map with patterns #29 (from all layers of PulseTexture #1891), #29
again, and #54 (bottom layer of X) is very efficient. This query fetched back PulsePattern #1916:

PulseTexture #1916

Layer PatternID Content
1 29 [ ]
2 29 [ ]
0 54 [▶▶−−]

Statement X−0 − 1

The remaining statements are identified by similar lookup queries. The earlier “Onbeats”
application (Subsection ii of Section VIII) identified PulseTexture #17907 as the staccato onbeat
texture of length 4. All three layers of PulseTexture #17907 employ PulsePattern #42, therefore
#42 is the ’blanked’ pattern ID used in for the X∼0 and X∼2 queries:

PulseTexture #2971

Layer PatternID Content
0 29 [ ]
1 59 [▶−▶−]
2 54 [▶▶−−]

Statement X−0

PulseTexture #2970

Layer PatternID Content
0 58 [▶−▶▶]
1 29 [ ]
2 54 [▶▶−−]

Statement X−1

PulseTexture #18350

Layer PatternID Content
0 42 [▶ ]
1 59 [▶−▶−]
2 54 [▶▶−−]

Statement X∼1

PulseTexture #18460

Layer PatternID Content
0 58 [▶−▶▶]
1 59 [▶−▶−]
2 42 [▶ ]

Statement X∼2

Understand that the lookup map lists pattern ID’s in all possible permutations. Thus looking up
the pattern-ID sequence [29,59,54] will fetch back PulsePattern #2971 even though this instance
actually lists its component patterns in ascending order: [29,54,59]. The code surrounding the
lookup request also determines what Permutation is necessary to present the patterns in their
requested order.

Compounding these seven simple statements together according to the plan graphed above
completes the result:
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X−0 − 1 X−0 − 1 X−0 X−0 X X
[ ] [ ] [ ] [ ] [▶−▶▶] [▶−▶▶]
[ ] [ ] [▶−▶−] [▶−▶−] [▶−▶−] [▶−▶−]
[▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−] [▶▶−−]

O X−1 X∼0 X∼2 X O
[▶ ] [▶−▶▶] [▶ ] [▶−▶▶] [▶−▶▶] [▶ ]
[▶ ] [ ] [▶−▶−] [▶−▶−] [▶−▶−] [▶ ]
[▶ ] [▶▶−−] [▶▶−−] [▶ ] [▶▶−−] [▶ ]

XI. Application: Counter Rhythm

My coined term counter rhythm abstracts pitch away from counter melody, which according to
Wikipedia is “a sequence of notes . . . written to be played simultaneously with a more promi-
nent lead melody”. This next application seeks to write two counter rhythms, to be played
simultaneously with a more prominent lead rhythm. The lead rhythm is given as an input.

My own take is that a good counter rhythm compliments the lead with respect to the meter.
That means that when the lead part syncopates over a strong beat, the counter part fills in the beat.
And when the lead part attacks a weak beat, the counter part either ties over or rests. (Remember
the premise, stated earlier under “Profiles” (Section VI), that “musical meter is established through
the convergence of polyphonic attacks on strong beats and divergence of attacks on weak beats.”)

Another desirable feature of counter rhythms is that they actively contribute. This additional
proviso was added late after initial attempts produced solutions where one counter rhythm simply
rested.

Here is the rhythm for the lead part:

[▶ ▶ ▶] [− ▶ ▶ −] [▶ ]

The meter is described using the attacks profile [2,1,2,1], which repeats. Interpreted with
respect to this 2+2 beat structure, the lead rhythm features a syncopation over beat 2. Placing 2,
rather than 3, in position 0 of the attacks profile ensures that one counter part will play a pickup
rhythm during beat 1. It also ensures that both counter parts will attack the second onbeat (since
the lead syncopates there).

The solution involves the following steps:

1. Using the knowledge base to find PulseTexture instances which conform to attacks profile
[2,1,2,1].

2. Filtering out those PulseTexture instances which do not contain the lead rhythm or which
have imbalanceCount properties greater than 2 (no successful candidates actually had fewer).
The results of this step are then randomly shuffled to eliminate enumeration bias.

3. Iterating through the shuffled instances. For each instance, a Permutation is sought which
brings the lead pattern to part 0 and which also excludes unanticipated ties. If such a
permutation is discovered, the Pulse and its associated Permutation are selected. Otherwise
iteration proceeds.

Step 1: Querying for textures with attacks profile [2,1,2,1] returns 476 PulseTexture instances.
Step 2: (Filtering)
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• Looking up [▶ ▶ ▶] returned PulsePattern #45. 58 of the textures returned in Step 1
included PulsePattern #45 as one layer while also possessing an imbalanceCount of 2.

• Looking up [− ▶ ▶ −] returned PulsePattern #72. 20 of the textures returned in Step 1
included PulsePattern 4 #72 as one layer while also possessing an imbalanceCount of 2.

Step 3: (Iteration and 2nd Filtering)
Here are the first 6 of the 58 shuffled PulseTexture instances obtained for [▶ ▶▶] (PulsePattern

#45).

PulseTexture #20853

Layer PatternID Content
0 45 [▶ ▶▶]
1 55 [▶− ]
2 72 [−▶▶−]

PulseTexture #21028

Layer PatternID Content
0 45 [▶ ▶▶]
1 62 [▶−−−]
2 72 [−▶▶−]

PulseTexture #20601

Layer PatternID Content
0 45 [▶ ▶▶]
1 47 [▶▶ ]
2 80 [−−▶−]

PulseTexture #11962

Layer PatternID Content
0 36 [ ▶▶ ]
1 45 [▶ ▶▶]
2 60 [▶−− ]

PulseTexture #20962

Layer PatternID Content
0 45 [▶ ▶▶]
1 59 [▶−▶−]
2 75 [−▶−−]

PulseTexture #9507

Layer PatternID Content
0 34 [ ▶ ]
1 44 [▶ ▶ ]
2 45 [▶ ▶▶]

The first 3 of these options begin with ties; therefore the specific texture chosen was #11962.
This texture lists pattern #45 as layer 1:

PulseTexture #11962

Layer PatternID Content
1 45 [▶ ▶▶]
0 36 [ ▶▶ ]
2 60 [▶−− ]

Here are the first 6 of the 20 shuffled PulseTexture instances obtained for [− ▶▶ −]
(PulsePattern #72).

PulseTexture #18956

Layer PatternID Content
0 43 [▶ ▶]
1 46 [▶ ▶−]
2 72 [−▶▶−]

PulseTexture #27610

Layer PatternID Content
0 57 [▶−▶ ]
1 61 [▶−−▶]
2 72 [−▶▶−]
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PulseTexture #19308

Layer PatternID Content
0 43 [▶ ▶]
1 57 [▶−▶ ]
2 72 [−▶▶−]

PulseTexture #27185

Layer PatternID Content
0 56 [▶− ▶]
1 69 [▶−▶−]
2 72 [−▶▶−]

PulseTexture #26754

Layer PatternID Content
0 55 [▶− ]
1 58 [▶−▶▶]
2 72 [−▶▶−]

PulseTexture #20853

Layer PatternID Content
0 45 [▶ ▶▶]
1 55 [▶− ]
2 72 [−▶▶−]

The first of these options is PulseTexture #18956. Layer 2 is pattern #72, which is the lead
rhythm. This pattern [− ▶▶ −] begins with a TIE , but that’s okay because it follows on after
pattern #45 [▶ ▶▶] which does not end with a REST . So #18956 is the selection:

PulseTexture #18956

Layer PatternID Content
1 72 [−▶▶−]
0 43 [▶ ▶]
2 46 [▶ ▶−]

And here is the assembled TextureStatement instance:

[▶ ▶▶] [−▶▶−] [▶ ]
[ ▶▶ ] [▶ ▶] [▶ ]
[▶−− ] [▶ ▶−] [▶ ]

XII. Application: Cross Rhythm

The term cross rhythm here refers to simultaneous musical parts playing patterns which share a
common pulse but which do not share the same length. This is distinguished from polyrhythm,
where pulses happen at different speeds, and also from hemiola, which is a full metric modulation
between, say, 3/4 time and 6/8 time. The knowledge base described here copes with hemiola
very easily. It does not cope with polyrhythm at all. The present exercise will demonstrate that
cross-rhythm is doable. However whether it is worth the trouble depends upon whether one finds
it needful to express a cross-rhythm in the TextureStatement format.

Cross rhythm and polyrhythm (but not hemiola) are both examples of what Steve Reich calls
“phase music”. Another example is the selection principle I call “statistical feedback”7 when
applied to nonuniform weights. The compositional attraction here is that you have a period
of time over which individual parts proceed inexorably but which the tension between parts
destabilizes until everything comes together at the moment of convergence. Like a cadence only
different.

This exercise will cross the pattern [ ▶▶▶▶] (5 pulses) in one musical part with the pattern
[▶ − ▶▶] (4 pulses) in a second musical part. Understand that these components need not

7https://charlesames.net/feedback/index.html
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be literal — for example, one could dynamically swap out [ ▶▶▶▶] for [ ▶▶ − ▶] or even
[− ▶▶▶▶].

Often just one part ’crosses’ the rest of the ensemble; that is, the remaining parts hold to an
established beat. The present exercise will not play favorites in that way. Rather the third part
will present the rhythm derived by Joseph Schillinger in “Interferences of Periodicities”, Chapter
2 of Book 1, the Schillinger System’s “Theory of Rhythm”. In this case the ’periodicities’ are
5 and 4 and the resultant sequence of durations (pulse counts) is {4, 1, 3, 2, 2, 3, 1, 4}. The
present exercise will articulate these durations in a detached manner, meaning that pulse positions
between ATTACK events will be TIE events up to the position just before the next ATTACK ; this will
be a REST event.

What will be produced here is a succession of texture-statement instances, and the first
thing to decide is the sequence of statement-instance lengths. One alternative would be employ
Schillinger’s interference durations; however, the knowledge base does not support PulseTexture
instances of length 1. A reasonable alternative is to employ the shorter pattern length (4), since
PulseTexture instances of length 5 are also not supported.

Next follows a collation algorithm which works out what sequence of pulse events each part
will play during a statement, which looks up the corresponding PulsePattern in the knowledge
base, and which in turn uses all three patterns to look up a PulseTexture and an associated
Permutation. I explained how PulseTexture lookups work under the “Vertical Masking” appli-
cation (Section X). The point here is that the knowledge base doesn’t really help out with these
collation tasks. Cross rhythm is not what the knowledge base is about. The present exercise only
makes sense if performed within a larger context that makes active use of the TextureStatement
representation.

Here is the assembled result:

[ ▶▶▶] [▶ ▶▶] [▶▶ ▶] [▶▶▶ ] [▶▶▶▶] [▶ ]
5 5 5 5

[▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶ ▶▶] [▶ ]
4 4 4 4 4

[▶−− ] [▶▶− ] [▶ ▶ ] [▶− ▶] [▶−− ] [▶ ]
4 1 3 2 2 3 1 4

XIII. Reflections

This article describes a personal effort to carry through ideas I’ve had percolating in response to
earlier projects of mine. Whether anybody (other than Schillinger) has done this before, all or in
part, I wouldn’t know. I have long been out of academics. Having limited cognitively productive
hours, I feel no obligation to divert them into scholarship.

I am grateful to Hugo Carvalho, to the MusMat Research Group, and to the Brazilian Journal
of Music and Mathematics for inviting me to contribute. The software project described here did
not exist prior to that invitation, so it can legitimately said to have been created under MusMat
auspices.

If I suddenly had a massively parallel supercomputer at my disposal (plus a full-time profes-
sional programmer to adapt my existing inline code to multi-threading), I would increase the
number of overlaid patterns in a texture (its depth) from 3 to 4. That would raise the number of
textures by a power of 4 and the number of texture-pair evaluations by a power of 8 (?). I believe
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the examples provided by this article demonstrate how the length limit can be worked around
using compound texture statements. There is no corresponding workaround for the depth limit.

Limited changes of scale are imaginable. Parts can easily scale vertically to homophonic choirs.
Creative interpretation of the PulseEventType set (REST , ATTACK , TIE ) can be used to scale pulses
horizontally into longer durations. Here context may exert influence. Thus the first duration in
the succession [REST , ATTACK ] might be filled with some sort of pickup rhythm.

Something “Concurrence” had which presently does not exist here are primitive pattern
alterations like these:

• Promoting a rest/demoting a tie:[ ▶ ]⇐⇒ [ ▶− ]
• Promoting a tie/demoting an attack:[ ▶− ]⇐⇒ [ ▶▶ ]
• Anticipating/delaying an attack:[ ▶▶] ⇐⇒ [ ▶−▶]

Such alterations don’t readily generalize to textures. Still, they ought to be explored.
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