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I Introduction

In this paper we focus on notes, chords, scales and a few rules that govern harmony such as
the circle of fifths and certain aspects of counterpoint. Our aim is to present a unified and
self-contained approach to these musical concepts and constructions, from the perspective of

the so-called Cayley graphs. There are many notions of distance that are used in music theory,
for example see [21] or [22] and references therein. By taking the viewpoint of the Cayley graph
distance, we are able to keep chords, circle of fifths, scales, and consonant/dissonant dichotomies
under the same framework. Generalization then becomes a natural mathematical step, especially
because we maintain the characteristics of the framework. The Cayley graphs can be thought of
as geometric objects associated to abstract groups. The connection with Western music comes
through the cyclic group Z12, and more generally groups Zn, where n is a product of two relatively
prime numbers. Specifically, we show that the oriented Cayley graph generated by the elements
3 and 4 encodes most of the chords used in Western classical music, the circle of fifths and the
major/minor scales. By dropping the arrows, thus working in the unoriented (undirected) Cayley
graph, one explains the first species of counterpoint through the action of affine transformations (as
in [16]). We follow up with these ideas to the case n = p · q with relatively prime integers p and q.
We define chords, scales, and the circle of fifths in this general setting, which we call musical system
when coupled with equal temperament tuning. We show that a weak form of counterpoint is
always available, and provide examples where it can be extended toward full-fledged counterpoint
partition.

The paper is structured as follows: in Section II we describe the notation we use for most
math and music symbols. Other terms are described later when needed. Section III contains
group theory definitions and examples together with geometric properties of Cayley graphs. We
present conditions under which automorphisms are isometries (Theorem III.13), and provide
concrete examples. For the purpose of formalizing first species counterpoint, we define affine
transformations as left translations of group automorphisms. In Section IV we show how the
oriented Cayley graph of Z12, generated by 3 and 4 helps define chords (path walks on the graph),
the circle of fifths, and scale construction. The unoriented graph, obtained from the symmetric
set {3, 4, 8, 9} is used to understand first species counterpoint. The formalism in the definition
of counterpoint is inspired and taken from [2] and [16], as is Theorem IV.11. We prove Theorem
IV.11 with the help of the machinery from Section III. We use the term affine for transformations
on a Cayley graph, and we need only a group structure for it (see Definition III.10 iii), also [15]
and [14]). Let us mention that in [2], the group of affine transformations over Zn that preserve the
Cayley metric, is denoted by

−→
GL(Zn), and takes into consideration the ring structure as well in

order to capture the double “life" of a k ∈ Zn as a note and as an interval. Inspired by [17], the first
species counterpoint is studied in detail in [3]. In these works, a multitude of strong dichotomies

Received: October 11th, 2023
Approved: February 8th, 2024

2

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

(we call these counterpoint partitions) are found with respect to unique affine transformations on
the ring. In essence, by considering only the group structure, coupled with suitable Cayley graphs
we found that we can still recover strong dichotomies, although not all of those from the 6 affine
equivalent classes in [2]. Such reduction may be seen as a drawback, however it better singles
out the Fux dichotomy as a minimizer of Cayley graph distances. Another advantage is that it
allows for a weak form of counterpoint partitions to be extended in case when n is odd (a strong
dichotomy existence implies n even). Our process eliminates many dichotomies because of the
following requirement, which is convenient to consider for Western music: the symmetric set of the
group’s generators must be consonant. Then we ask compatibility with an affine isometry T (with
respect to the Cayley graph) and idempotent, i.e. T2 = Id (properties we call the weak counterpoint
condition). These lead us to isolate the Fux dichotomy among four possible counterpoint partitions
(see Theorem IV.13). We also observe that minimizing further on the path lengths of the oriented
Cayley graph, the only possible counterpoint partition is Fux’s. Theorem VI.19 in Section VI shows
that under mild restrictions a weak from of counterpoint is available in our setting. Based on it
we show a few examples which lead to counterpoint partitions (n = 10 and n = 12) or maximal
consonant sets (n=15). These examples suggest that for n = pq and gcd{p, q} = 1, the weak
counterpoint condition implies the existence of a maximal consonant/dissonant pair of subsets of
Zn, each of cardinal [n/2]. We will study such results in a future work.

In Section VI we also define chords, scales and a generalized circle of fifths concept, inspired by
the Z12 case, and compatible with the Cayley graph framework. Generalized circle of fifths (based
on relatively primes which generate the cyclic group Zn) and scales (almost equidistant partitions
of an octave) already occurred in [7]). Although generalized chords were missing from [7], later
work supplied the addition, see for example [5], [11] and [4] and references therein. In [4] for
example, the connection between triads, the fifth (which occupies a prominent role in Clough and
Myerson construction), and the Cayley graph of Z12 generated by {3, 4, 7} is clearly spelled out.
The general system in these studies takes the generalized fifth 2k + 1, the value p := k + 1 and the
value n := 4k (number of microtones) as the backbone of the microtonal system. While this choice
clearly generalizes Z12 for k = 3, it becomes incompatible with a factorization n = pq unless
k = 3. It would be interesting to find if an analogue of first species counterpoint can be defined in
this setting. In our considerations, the generalized fifth comes out naturally after imposing n be
the product of two coprimes p and q, its value being p + q. Hence, the unifying character of the
generalization (chords, circles of fifths, scales, and first species counterpoint) is represented by the
group generators p and q and the corresponding Cayley graph. As application we have written
Maple code to experiment with the sound of chords, scales, the circle of fifths, and counterpoint
in various musical systems (Zn, s), where s encodes the total frequency length (octave for s = 2).
The tuning we consider is the equal temperament one, i.e. an equidistant division of the frequency
space. In Section V we describe how to implement it, together with notes and chords in Maple.
Our Maple code is available to the interested reader by email request.

II Terminology and Notation

We describe some basic symbols and notation from math and music used throughout the paper.
Most of the time we use capital letters to denote sets except the empty set which is denoted by
∅. If A and B are two sets, then by A \ B we denote the difference set. For a set A the number
of elements in A is denoted |A|. By N we denote the set of positive integers. The integers are
denoted by Z, and in music it represents the discrete pitch class space. If n ∈ N and n ≥ 2, the
finite set Zn = {0, 1, ..., n − 1} represents both the set of remainders obtained by division by n

3

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

and the class of integers modulo n. For a and n ≥ 2 in N the number a mod n ∈ Zn denotes the
reminder of the division of a by n. The greatest common divisor of p ∈ Z and q ∈ Z is denoted by
gcd{p, q}. The elements of Z12 are put in one-to-one correspondence with the symbols C, C\/DZ,
D, D\/EZ, E, F, F\/GZ, G, G\/AZ, A, A\/BZ, B that form the notes of the chromatic scale.

0 1 2 3 4 5 6 7 8 9 10 11
C C\/DZ D D\/EZ E F F\/GZ G G\/AZ A A\/BZ B

To avoid confusions with classic musical interval definitions (third, fifth etc.), we mention that we
also denote as Z12 the set of intervals, and more generally by Zn. Any peril of confusion with pitch
classes is eliminated by the context we will work in. Music intervals and their associated frequency
ratios will be explained algebraically in the later section related to tuning. We caution the reader
about the concept “distance". Above, it is used in the usual sense as distance between two real
numbers (or “counting distance" when referred to integers). We will make sure to distinguish
it from “distance" between two vertices on a graph, even though the vertices are represented by
integers.

III Groups, Generators and Cayley Graphs

In this section, we mention some results from group theory that we need in the sequel. For an
elementary introduction in group theory we refer to [9] and [13].

Definition III.1. Let (G, ⋆) be a group with its identity element denoted by e. A finite set S :=
{g1, g2, ..., gn} ⊂ G is a set of generators if gi ̸= e, for all i, and for any g ∈ G there exists gi1 , gi2 , ..., gik ∈
S such that g = gε1

i1
⋆ gε2

i2
⋆ ... ⋆ gεk

ik
where ε j = ±1. We say that G is finitely generated and write

G = ⟨S, S−1⟩, where S−1 = {g−1
1 , g−1

2 , ..., g−1
n }. A set of generators is minimal if when removing an

element form it, the resulting set does not generate G.

Remark III.2. A set S generates G if any element of G can be written as a word over the “alphabet"
S ∪ S−1. One can rewrite a word in its reduced form, i.e. in the definition above, if some ij = ij+1 then
ε j = ε j+1.

Group theory also deals with infinitely generated groups, however we do not need it in our
considerations. Notice that a group can be infinite as a set and be finitely generated. Any element
of the group can be written as a finite product of some of the generators. We will see below
examples of groups that admit different sets of generators. Let us highlight the following property:
in a finite group one can find a set of generators S such that for every g ∈ S either g−1 /∈ S or
g = g−1, i.e. S consists of ’positive’ generators. This follows from the fact that in a finite group
every element must have a finite order, e.g. see [9].

Example III.3. Let n ∈ N, n ≥ 2. The pair (Zn,⊕) forms an abelian group with a ⊕ b := (a + b) mod n
for a, b in Zn. The inverse of a is ⊖a := n − a. We will use the notation a ⊖ b for a ⊕ (n − b). The
following sets generate Zn: S = {1} and S = {k} for k ∈ Zn with gcd{k, n} = 1 (i.e. Zn is cyclic). There
can be more diverse sets of generators; if n is a product p1 p2...pk with gcd{pi, pj} = 1 for all i ̸= j, then
the set S := {p1, p2, ..., pk} generates Zn.

Example III.4. Similar to mod n addition on integers, there is the mod n multiplication. For a, b ∈ Zn,
define a ⊙ b := (ab) mod n. The distributive properties of ⊙ with respect to ⊕ work similarly as in the case
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of integer multiplication and addition. Also a ⊙ b ⊕ c = ab ⊕ c = (ab + c) mod n for all a, b, c ∈ Zn. The
following set U(n) := {k ∈ Zn | gcd(k, n) = 1} is called the set of units of Zn, and plays a crucial role
in the sequel. While ⊙ is a binary operation in Zn, the invertibility property may be violated. However,
restricting ⊙ to U(n) will do; the pair (U(n),⊙) is an abelian group.

From here on, in an arbitrary group G, the binary operation will be denoted using multiplicative
notation, i.e. instead of g ⋆ h we write gh. In particular cases, we will use the classic established
notations without peril of confusion.

Definition III.5. Let G be a group generated by a set S of positive generators (i.e. if w ∈ S then w−1 /∈ S
unless w = w−1). The oriented Cayley graph of G associated to this set of generators is defined as the pair
(V, E) where V = {g | g ∈ G} is the set of vertices and E ⊂ V × V is the set of edges: (g, h) ∈ E if and
only if there exists w ∈ S such that h = gw. The edge (g, h) is labelled w, has source vertex g and points
toward vertex h.

We will use arrows to show the edge (g, h) as a path g → h on the oriented graph. If we remove
the arrows, the graph obtained will be called unoriented Cayley graph. In some textbooks, e.g.
[9], the oriented Cayley graph from above definition is called Cayley digraph. Prior to dropping
arrows, one can define the unoriented Cayley graph concept similarly, assuming the generating set
S is symmetric, i.e. S = S−1. We do not need the symmetry condition when the oriented Cayley
graph is considered, owing to the property on finite groups mentioned above (and we can pass to
a minimal generating set). The reason we need both concepts is that we will “walk" on minimal
paths in both (un)oriented graphs, and the result may not be the same.

Example III.6. From the example above, we can write Z6 = ⟨2, 3⟩ and Z12 = ⟨3, 4⟩. Their corresponding
oriented Cayley graphs are depicted in Figures 1 and 2. We know that Zn is cyclic, hence one can draw a
very simple oriented Cayley graph with n vertices placed on a circle with consecutive arrows (loop). Also,
Z6 = ⟨4, 3⟩, i.e. the inverses of 2 and 3 generate Z6. For these generators, the Cayley graph is similar with
the one in Figure 1, except the horizontal edges where the arrows are reversed and labeled 4. One can treat
Z12 = ⟨9, 8⟩ = ⟨3, 8⟩ = ⟨4, 9⟩ similarly to obtain different oriented Cayley graphs.

Definition III.7. i) A path (between) from g to (and) h of length k in the (un)oriented Cayley graph is
a set of vertices {x0, x1, ..., xk−1, xk} such that x0 = g, xk = h and ∀ i = 0, .., k − 1 the pair (xi, xi+1)
is an edge, i.e. ∃ wi generator such that xi+1 = xiwi. If the oriented version is considered we write
x0 → x1 → ... → xk.
ii) The function d : G × G → [0, ∞) defined by d(g, h) = 0 if g = h and

d(g, h) := min {k ∈ N | there exists an unoriented path of length k from g to h} if g ̸= h

is called distance.

Remark III.8. The distance function is a metric on the unoriented Cayley graph, i.e. d is symmetric,
d(g, h) = d(h, g), non-negative, and satisfies the triangle inequality, d(g, h) ≤ d(g, w) + d(w, h), ∀
g, h, w ∈ G. The metric properties do not hold if the minimum above is taken over oriented paths only. For
example, even the symmetry property is broken; in Figure 1 one can see that from vertex 1 to 3 we have an
oriented path of length 1, whereas if we measure from 3 to 1 the length is 2. To eliminate any confusion,
wherever we use “distance" between vertices, then the unoriented Cayley graph with its metric are used.

Let us highlight another important property of the metric d. If w ∈ S ∪ S−1 then d(g, gw) = 1,
∀ g ∈ G. This entails that d is left-translation invariant: d(g, h) = d(ωg, ωh), ∀ ω ∈ G. This
holds because g−1h = (ωg)−1ωh. We will focus later on an interesting connection between
certain functions that preserve the Cayley graph distance and the music composition technique
counterpoint. For this reason we need to mention a few more group theory concepts and results.
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Figure 1: Z6 = ⟨2, 3⟩ oriented Cayley graph
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Figure 2: Z12 = ⟨3, 4⟩ oriented Cayley graph
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Definition III.9. Let G and H be a two groups. A function f : G → H is called (group) morphism if
f (g1g2) = f (g1) f (g2), ∀ g1,2 ∈ G. If moreover f is bijective, then f is called isomorphism, and we say
that the groups G and H are isomorphic. An isomorphism f : G → G is called an automorphism of G.

Definition III.10. Let G be a group generated by a finite, symmetric set, S = S−1.
i) A function f : G → G is an isometry on the unoriented Cayley graph (of G with respect to S) if the
following identity holds

d(x, y) = d( f (x), f (y)), ∀x, y ∈ G (1)

where d is the distance from Definition III.7 ii).
ii) A function φ : G → G is a right-translation if ∃ w ∈ G such that

φ(g) = gw, ∀g ∈ G (2)

Left-translation is defined similarly. In the case that G is abelian, the two concepts coincide.
iii) A (left or right) translation of an automorphism of G is called affine transformation.

We do not expand here on the graph isomorphism concept, though in essence this is what
we obtain, indirectly in the next theorem about a group automorphism which preserves the
generating set. The rigidity question, i.e. under what conditions is a graph isomorphism an affine
transformation, is important in geometric group theory. Nevertheless, this topic is beyond our
goals. For more details, the interested reader may consult e.g. [15] and references therein such as
[14].

Remark III.11. The set of all automorphisms of a group G is denoted by Aut(G). This set is also a group;
the binary operation is the usual function composition f1 ◦ f2(g) = f1( f2(g)), ∀ f1,2 ∈ Aut(G), ∀ g ∈ G.
Its identity element is the identity function Id : G → G, Id(g) = g, ∀ g ∈ G; the inverse of f is the
usual inverse function f−1, which exists because f is bijective. One can check easily that any (left or right)
translation is an isometry. Clearly, a translation is not a group morphism, unless w = e in (2). Also,
an isometry need not be a morphism, and vice-versa. We will provide below a sufficient condition for an
automorphism to be an isometry.

Example III.12. For n = 12, U(12) = {1, 5, 7, 11}. We do not need it here but one can check {5, 7} is
a minimal generating set for U(12). More importantly, we need the following known Theorem (see [9]):
The groups Aut(Zn) and U(n) are isomorphic. As a consequence, Aut(Z12) = { f1, f2, f3, f4} where
f1(g) = Id(g) = g, ∀ g ∈ Z12, f2(g) = 5⊙ g, ∀ g ∈ Z12, f3(g) = 7⊙ g, ∀ g ∈ Z12, f4(g) = 11⊙ g, ∀
g ∈ Z12. Note that for each i = 1, 2, 3, 4 we have f 2

i = fi ◦ fi = Id. It is not obvious, though one may check
by a tedious calculation, that each fi is an isometry on the unoriented Cayley graph of Z12 = ⟨3, 4, 8, 9⟩.

The next result provides a simple criteria for checking whether a group automorphism is a Cayley
graph isometry. The statement can be viewed as the easier counterpart of the rigidity problem
mentioned above, and is considered somehow implicit in the literature of Cayley isomorphism
graphs and groups, see e.g. [14]. Because we will use it extensively for elements in Aut(Zn), we
formulate it as a theorem with complete proof.

Theorem III.13. Let G be a group, e its identity element, and f ∈ Aut(G). Suppose S ⊂ G is a symmetric,
generating set for G. The following are equivalent:
i) f (S) = S.
ii) f is an isometry on the unoriented Cayley graph of G with respect to S.

Proof. i)=⇒ii) For any x, y elements of G we have d(x, y) ∈ N. We prove (1) by induction
over m := d(x, y). If m = 1 then y = xw for some w ∈ S. Hence x−1y ∈ S. By hypothesis,
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f (x−1y) ∈ S. Because f is a morphism, f (x−1y) = f (x)−1 f (y), therefore f (x)−1 f (y) ∈ S. This
implies d(e, f (x)−1 f (y)) = 1. By left-invariance and morphism properties 1 = d(e, f (x)−1 f (y)) =
d( f (x), f (y)), and the first step in induction is verified. We assume now (1) holds for a fixed
m ∈ N and any x, y with d(x, y) = m. Let x′, y′ in G with d(x′, y′) = m + 1. We want to show
d( f (x′), f (y′)) = m + 1. Let x′ := x0, x1, ..., xm, xm+1 = y′ be a path of length m + 1 in the unori-
ented Cayley graph with respect to S. Because this path realizes the minimum length between x′

and y′, we have that d(x′, xm) = m. By the induction hypothesis d( f (x′), f (xm)) = m. This implies
that f (x′), f (x1), ..., f (xm) is a path of length precisely m, because f is injective. From the path
definition we know x−1

m y′ ∈ S, hence f (xm)−1 f (y′) ∈ S. If follows that f (x′), f (x1), ..., f (xm), f (y′)
must be a path of length m + 1, hence d( f (x′), f (y′)) ≤ m + 1, by the min condition on d. If, by
contradiction d( f (x′), f (y′)) < m + 1 then there would be a path f (x′) = z0, z1, ..., zt = f (y′) with
t < m + 1. Because f is an automorphism, there exist y0 = x′, y1, ..., yt−1, yt = y′ in G such that
f (yi) = zi for all i = 0, ..., t. The path condition implies f (yi+1) = f (yi)si for some si ∈ S. Using
f (S) = S we have ∀ i = 0, .., t ∃ wi ∈ S such that f (si) = wi. Then f (yi+1) = f (yi) f (wi) = f (yiwi),
which entails (because f is injective) yi+1 = yiwi for all i = 0, ..., t. Hence we would obtain
that x′ = y0, y1, ..., yt−1, yt = y′ is a path between x′ and y′. Then by min condition in the
definition of d, it would follow that d(x′, y′) ≤ t which contradicts t < m + 1. In conclusion
d( f (x′), f (y′)) = m + 1, and the induction step is completed.
ii)=⇒i) Let s ∈ S arbitrary. Then d( f (s), f (e)) = d(s, e) = 1, hence d(e, f (s)) = 1. By the definition
of d it follows that ∃ w ∈ S such that f (s) = ew = w, hence f (s) ∈ S. We obtain f (S) ⊆ S. Because
f is automorphism and preserves d, it follows that f−1 is automorphism and preserves d. From
the first part of the implication, now applied to f−1, we get f−1(S) ⊆ S. This implies S ⊆ f (S). In
conclusion f (S) = S.

Example III.14. Let { fi, i = 1, 2, 3, 4} be the automorphisms from Example III.12. For S the symmetric
set {3, 4, 8, 9} we check fi(S) = S for all i = 1, 2, 3, 4. Obviously f1(S) = S. We have:
• f2(3) = 3, f2(4) = 8, f2(8) = 4, f2(9) = 9, hence f2(S) = S.
• f3(3) = 9, f3(4) = 4, f3(8) = 8, f2(9) = 3, hence f3(S) = S.
• f4(3) = 9, f4(4) = 8, f4(8) = 4, f4(9) = 3, hence f4(S) = S.
By Theorem III.13 all fi are isometries on the unoriented Cayley graph of Z12 with respect to S. The
next example shows that automorphisms need not be isometries (with respect to a Cayley graph). We take
the group Z10 and the symmetric generating set S = {2, 5, 8}. Because gcd{3, 10} = 1 the function
f : Z10 → Z10, f (x) = 3 ⊙ x = 3x mod 10 is an automorphism (by the result mentioned in Example
III.12). However, 1 = d(0, 2) ̸= d( f (0), f (2)) = d(0, 6) = 2 (the path 6, 8, 0 between 6 and 0 gives the
minimum length equal to 2). Notice also that 2 ∈ S and f (2) = 6 /∈ S, hence there exists automorphisms f
and symmetric sets S such that f (S) ̸= S.

Because left translations preserve the Cayley metric, using the last theorem we obtain the corollary
below. This result is used in the next section to highlight a mathematical (algebraic and geometric)
feature of counterpoint.

Corollary III.15. Let f ∈ Aut(G) as in Theorem III.13 i), and w ∈ G fixed. Then the affine transformation
L(g) = w f (g), ∀ g ∈ G, is an isometry on the Cayley graph of G with respect to S.

Certain affine transformations will help explain counterpoint later on. To that end the theorem
below characterizes affine reflections. We will need this result only in the Zn setting, though the
proof is straightforward in general for finitely generated groups.

Proposition III.16. Let G be a group, φ ∈ Aut (G), and w ∈ G. If T is either of the affine transformations
R(g) = φ(g)w, ∀ g ∈ G, or L(g) = wφ(g), ∀ g ∈ G, then the following are equivalent:
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i) T2 = Id;
ii) φ2 = Id and φ(w)w = e.
In particular, if G = Zn and for some h ∈ U(n), φ(g) = h ⊙ g ∀ g ∈ Zn, then i) and ii) are equivalent to
iii) h2g ⊕ hw ⊕ w = g for all g ∈ Zn.

Proof. In a group, the inverse exists and is unique, therefore ab = e and ba = e are equivalent for
any a, b in G. Thus φ(w)w = e is equivalent to wφ(w) = e. It suffices then to prove i) ⇐⇒ ii) e.g.
for T = R ( the argument is similar if T = L, to get condition φ2 = Id). We have R(R(g)) = g,
∀ g ∈ G ⇐⇒ φ(φ(g)w)w = g, ∀ g ∈ G ⇐⇒ φ(φ(g))φ(w)w = g, ∀ g ∈ G. The last condition
clearly holds if ii) is satisfied, hence we get i). If i) is satisfied then the last condition implies,
on one hand φ(w)w = e (plugging in it g = e), and on another hand φ(φ(g)) = g, ∀ g ∈ G (by
updating it). Hence φ2 = Id and we get ii). Hence i) ⇐⇒ ii). Condition iii) is an update of ii)
when G = Zn and φ ∈ Aut (Zn).

Example III.17. There always exists φ ∈ Aut (G) such that φ2 = Id and φ is an isometry with respect
to any generating, symmetric set S ⊂ G. The map φ(g) = g−1, ∀ g ∈ G easily satisfies φ2(g) = g, ∀ g.
Because S = S−1, using Theorem III.13, φ is an isometry on the unoriented Cayley graph.

IV Understanding Western Music with Z12

IV.i Chords

In Z12 terms, the C-major triad C − E − G is encoded as the sequence 0 − 4 − 7. The C minor
chord is encoded as 0 − 3 − 7. One can observe the following pattern: naming 0 the root of the
chord, add in succession +4, +3 (major). For the minor chord the order is reversed. We can infer
therefore, the following definition where the paths are read in Z12’s graph, see Figure 2.

Definition IV.1. Let x ∈ Z12. An x−major triad chord is the path x → x + 4 → x + 4 + 3. The
x−minor triad chord is the path x → x + 3 → x + 3 + 4. More generally, an x−major (minor) chord is a
path x1 → x2 → · · · → xk in the oriented Cayley graph such that x = x1 and:
i) x2 = x1 + 4 ( x2 = x1 + 3 for minor )
ii) x3 = x2 + 3 ( x3 = x2 + 4 for minor )
iii) xi+1 ⊖ xi ∈ {3, 4}, ∀ i = 1, ..., k
iv) the path is non-self intersecting unless xk = x1.

The first two conditions spell out the patterns +4 + 3 for the start of a major chord and +3 + 4
for the start of a minor one. The third condition allows the option of oscillation or repetition of
generators 3 and 4 as counting distances between notes. In this paper, when we need a major
(minor) chord then iii) is taken with alternating order +4,+3 ( +3,+4 for minor) all the way. The
last condition restricts a chord from wandering on the graph.

Example IV.2. We list below a set of major and minor chords together with their classical music names.
The patterns can be read on Figure 2.

Triads
Major Triad: +4,+3
Minor Triad: +3,+4
Diminished Triad: +3,+3
Augmented Triad: +4,+4
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7th Chords
Major 7th Chord: +4,+3,+4
Dominant 7th Chord: +4,+3,+3
Minor 7th Chord: +3,+4,+3
Fully Diminished 7th Chord: +3,+3,+3
Half Diminished 7th Chord: +3,+3,+4
Augmented Major 7th Chord: +4,+4,+3

9th Chords
Major: +4,+3,+4,+3
Minor: +3,+4,+3,+4
Dominant 9: +4,+3,+3,+4
Dominant Flat 9: +4,+3,+3,+3
Half Diminished Flat 9: +3,+3,+4,+3

From a pure mathematical perspective, one could propose chords associated to any set of gen-
erators and set the major/minor names with respect to the generators considered. However, we
should follow some rules to eliminate what can be deemed as trivial or redundant. For example
Z12 = ⟨1⟩ or Z12 = ⟨9, 4⟩ or Z12 = ⟨3, 8⟩.

Remark IV.3. In Western classical music, certain permutations of the notes within a major/minor chord
give rise to more chords. With more rigour, we might have called the chords in Definition IV.1 basic chords.
For example, the first inversion triad is obtained by applying the cycle permutation (123) to a root position
triad. The second inversion triad obtained by applying (132) to the root position triad. Another interesting
example is the so-called C heavenly chord. Starting with the C major 9th chord C − E − G − B − D,
one applies (12) cycle permutation on the first two notes, and the (132) cycle on the last three to obtain
E − C − D − G − B. We leave the subject of chords obtained by such transformations out, though it
provides more clues of the strong connection between group theory and musical expression.

The sound component so far seems removed from the group theory behind chord construction.
We will connect with it in section V. Before then, we will explain algebraically the concept
“circle of fifths", display the patterns by which major and minor scales are built, and focus on
symmetry properties of the counterpoint. These constructions represent guiding principles in
music composition.

IV.ii The Circle of Fifths

Definition IV.4. The following ordered sequence C := [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5] is called circle of
fifths with respect to the chromatic scale Z12.

Remark IV.5. It is straightforward to observe the pattern in building the circle above: starting at C = 0
add 7 = 4 + 3, the sum of the generators {3, 4} of Z12, successively. Note that as a set, C spans the group
Z12. The reason is that gcd{7, 12} = 1 hence ⟨7⟩ = Z12. In Western classical music, one draws a circle on
which the elements of C are placed as vertices which we call “keys". In Figure 3, the circle of fifths is drawn.
From the previous section we easily infer that the name “fifths" is due to counting on the C major scale. The
circle if fifths is connected to musical scales (more below). If we regard the consecutive vertices F − C − G
on the circle C as chords in the key of C, then the key is supplanted with more chords, according to the C
scale, and with a minor/diminished flavor.

10
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0 (C)
7 (G)

2 (D)

9 (A)

4 (E)

11 (B)
6 (F♯)

1 (D♭)

8 (A♭)

3 (E♭)

10 (B♭)

5 (F)

+3+4

+7

Figure 3: The Circle of Fifths in Western Classical Music
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Figure 4: The Circle of Fifths for Z6 = ⟨2, 3⟩
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Figure 5: The Circle of Fifths for Z10 = ⟨2, 5⟩

Remark IV.6. We will generalize the concept “circle of fifths" later on, and prove that it makes sense for
certain Zn and generators. The concept is equivalent to the one found in [7], although we arrive at it via
group generators. For example, in Figure 4 and 5 we draw the analogous concept for the groups Z6 = ⟨2, 3⟩,
Z10 = ⟨2, 5⟩, and the corresponding summation of their generators. The circle can be “trivial", by which we
mean musically uninteresting: for example the generator 1 (there is nothing to add but +1 ) gives rise to a
circle of consecutive notes, similar to the unoriented Cayley graph corresponding to ⟨1⟩. Playing consecutive
notes or chords may sound predictable. Another example is Z6 = ⟨3, 4⟩, because (3 + 4)mod 6 = 1, so a
circle of fifths based on these generators is trivial. It is also possible that other pairs of generators define
non-trivial circles; e.g. both cases Z10 = ⟨2, 5⟩ and Z10 = ⟨8, 5⟩. We caution the reader that the circles
may not be comparable as sets for different groups Zn; their construction depends on the generator set and
the mod-n binary operation. The group structure may not be compatible, e.g. Z10 is not a subgroup of Z12.

IV.iii Major and Minor Scales

The development, evolution and explanation of musical scales is complicated. See for example [10]
for more insights with respect to various factors (historical, cultural) that influenced and helped
refine this subject. Our view aims at unifying it with chords, circle of fifths, and later counterpoint,
under the same roof represented by the algebraic and geometric features of the group Z12. The
patterns we identify help define scales for other groups Zn in section VI. These are based again
on the generators of the group and major/minor scales. We mention that in [7] generalized scales
are constructed with respect to each pitch class k relatively prime to n. This construction, however,
does not display major/minor flavors.

Definition IV.7. Let x ∈ Z12.
i) The x major scale is the sequence x, x ⊕ 2, x ⊕ 4, x ⊕ 5, x ⊕ 7, x ⊕ 9, x ⊕ 11, x ⊕ 12 = x.
ii) The x minor scale is the sequence x, x ⊕ 2, x ⊕ 3, x ⊕ 5, x ⊕ 7, x ⊕ 8, x ⊕ 10, x ⊕ 12 = x.

We defined the major/minor scale as a loop at note x. However, when playing the scale on an
instrument, the ending is placed an octave higher.
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Example IV.8. The C major scale is the familiar sequence of notes C, D, E, F, G, A, B, C. The C minor
scale is the sequence C, D, EZ, F, G, AZ, BZ, C.

Remark IV.9. The definition might seem peculiar and needs some justification. Given x we will apply the
following steps to “populate" an x major and minor scales sequence. In these steps we simply observe that
with k = 2, 4 = 2 · k is even (and say it displays the ′22′ pattern), and with l = 1, 3 = 2 · l + 1 = 1 + 2 · l
is odd (and say it displays the ′21′/ ′12′ patterns). These simple ideas will enable us to generalize scales
construction later in section VI.
• The sequence must contain the x major (minor) seventh chord. Hence the starting subsequence is x, x ⊕ 4,
x ⊕ 7, x ⊕ 11 (x, x ⊕ 3, x ⊕ 7, x ⊕ 10 for minor).
• If the counting distance between two subsequence elements is ≤ 2 then there is nothing to add in between.
Also, close the loop with x ⊕ 12 in both major/minor subsequences. All other counting distances (not
including the endpoint) between two consecutive elements in the subsequence is either 3 or 4.
• For the major scale: to the subsequence thus far, x, x ⊕ 4, x ⊕ 7, x ⊕ 11, x ⊕ 12, add elements in such a
way that the following patterns emerge between consecutive, updated elements: ′22′ if the counting distance
between two points is 4, and ′12′ in case it is 3. Hence, for the leg x, x ⊕ 4 only x ⊕ 2 is needed because
x, x ⊕ 2, x ⊕ 4 shows the ′22′ distance pattern. Between x ⊕ 4, x ⊕ 7, aiming at the ′12′ pattern we add
x ⊕ (4 + 1). Between x ⊕ 7 and x ⊕ 11 we need add x ⊕ 9 to obtain the ′22′ pattern. The counting distance
pattern is the familiar ′22 12 22 1′.
• For the minor scale: add elements to the subsequence thus far according to the patterns ′22′ in case the
counting distance is 4, and an alternate ′21′/′12′ patterns in case it is 3. Similar analysis reveals the x
minor scale in the definition above. Notice however the somehow whimsical alternation of the ′21′ pattern (
for the leg x, x ⊕ 2, x ⊕ 3) and the ′12′ pattern (for the leg x ⊕ 7, x ⊕ 8, x ⊕ 10). The minor scale counting
distance pattern is the familiar ′21 22 12 2′.

IV.iv Counterpoint

Counterpoint represents a sum of composing techniques which combine two or more voices.
These techniques have arisen and evolved within the Western classical music body since the 9th

century. A first systematic compilation is presented in [8], where the rules of composing with
counterpoint are spelled out. For a self contained treatment we refer for example to [20]. We will
focus on the first species of counterpoint, and explain in detail its connection with the concepts
and results presented in the last part of Section III. Our group theory point of view is inspired by
[17], where the group Z3 × Z4, which is isomorphic to Z12, is used instead. Its unoriented Cayley
graph, obtained with generators (1, 0) and (0, 1), is called a discrete torus. It is the same graph as
the one in Figure 2, without arrows (unoriented Cayley graph). The three dimensional “torus" can
be obtained by “pulling out" some of the planar edges so that the (imaginary) edge crossing effect
disappears. The fact that the the group of affine transformations Aff(Z12) acts isometrically on the
torus of thirds was already noted in [17] and proved rigorously in Agustín-Aquino’s master thesis.

Definition IV.10. The elements of the set K ⊂ Z12, K := {0, 3, 4, 7, 8, 9}, are called consonants. We say
that its complement in Z12, {1, 2, 5, 6, 10, 11}, consists of dissonant elements and denote this set by D. The
partition (K, D) is called Fux dichotomy.

The main features of the first species of counterpoint are described below:
• If voice A plays x, y, z... then voice B plays: x ⊕ k1, y ⊕ k2, z ⊕ k3... with ki ∈ K, i = 1, 2, 3...
• There are restrictions: “parallel" fifths are forbidden, i.e. consecutive distances ki, ki+1 in the
sequence above cannot be both equal to 7. For example, the distances 3, 4 (minor/major third) and
8, 9 (minor/major sixth) “are fine but no more than three in a row", see e.g. [20].

13
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Let us mention that the treatment below and its generalization in Section VI covers only the conso-
nant/dissonant paradigm, and not the exceptions present in the various species of counterpoint.

There has been for a long time, a discussion among music theorists about considering the
perfect fourth as consonant, i.e. add 5 to K. In [17] the choice of the partition (K, D) is explained
through actions of symmetries T on the unoriented Cayley graph. More precisely, the three
properties

T2 = Id, T(K) = D, T is an isometry (3)

of the affine transformation T(x) = 5x ⊕ 2 are interpreted as a clue that 5, the fourth, should
stay dissonant. Using the tools from Section III, we are in position to prove the theorem below,
which is the result mentioned in [17]. See also [2] for an in depth analysis and examples of
multiple counterpoint partitions that are possible due to the action of the linear group of affine
transformations on Aff(Z2n).

Theorem IV.11. There exists exactly one affine transformation T on the unoriented Cayley graph of Z12
generated by S = {3, 4, 8, 9}, satisfying the conditions (3). More precisely, this transformation is given by
T(x) = 5x ⊕ 2 for x ∈ Z12.

Proof. It can be checked directly that T(x) = 5x ⊕ 2 does satisfy the required properties, however,
we need to prove that this is the only transformation satisfying (3). Let T : Z12 → Z12, T = f ⊕ w
be an affine transformation, hence f ∈ Aut(Z12) and w ∈ Z12 (because Z12 is abelian, right and left
translations coincide). From Example III.12 we see that f is necessarily one of the automorphisms
{ f1, f2, f3, f4}. We will treat each case separately, but we notice first that by Corollary III.15 and
Example III.14, T is an isometry in each of the four cases. It remains to select the ones that satisfy
T2 = Id and T(D) = K.
Case 1. f (x) = x ∀ x ∈ Z12. Then T(x) = x ⊕ w. Because T2 = Id, in particular T2(0) = 0 =
w ⊕ w. Hence w ∈ {0, 6}. However, none of the transformations T(x) = x and T(x) = x ⊕ 6
satisfies T(K) = D. We discard this case.
Case 2. f (x) = 5 ⊙ x ∀ x ∈ Z12. Then T(x) = 5x ⊕ w. Because T2(0) = 0 we must have
6w mod 12 = 0. Hence w ∈ {0, 2, 4, 6, 8, 10}. The requirement T(K) = D rules out all values
except w = 2. Also, by a direct check (or the comment in Example III.12, or by Proposition III.16 )
we have that with w = 2, T2 = Id. Hence we found an affine transformation T that satisfies all
three requirements in (3).
Case 3. f (x) = 7 ⊙ x ∀ x ∈ Z12. Then T(x) = 7x ⊕ w. Because T2(0) = 0, we must have
8w mod 12 = 0. Hence w ∈ {0, 3, 6, 9}. None of these values w corresponds to T(K) = D. E.g.
when w = 3, T(0) = 3 /∈ D; when w = 6, T(4) = 7 /∈ D; when w = 6, T(3) = 3 /∈ D; when w = 9,
T(0) = 9 /∈ D. Hence, we discard this case.
Case 4. f (x) = 11 ⊙ x ∀ x ∈ Z12. Then T(x) = 11x ⊕ w. Notice in this case T2(x) =
121x ⊕ 12w = 121x mod 12 = x, hence any w in Z12 could do. Because T(0) = w, the values
w ∈ {0, 3, 4, 7, 8, 9} are ruled out. The remaining ones w ∈ {1, 2, 5, 6, 10, 11} are ruled out as
follows: if w = 1 then T(4) = 9 /∈ D; if w = 2 then T(7) = 7 /∈ D; if w = 5 then T(8) = 9 /∈ D; if
w = 6 then T(3) = 3 /∈ D; if w = 10 then T(3) = 7 /∈ D; if w = 11 then T(3) = 8 /∈ D.
From the four cases above we conclude only T(x) = 5 ⊙ x ⊕ 2 satisfies (3).

Remark IV.12. The theorem above does not “create" the Fux partition, though it asserts an important
symmetry property. One would like to have a rigorous principle by which such partition arises, especially if
one wants to extend counterpoint to other Zn. In [2], by analysing what affine transformations correspond
to suitable partitions such that (3) holds, a plethora of counterpoint partitions (called strong dichotomies) is
found. From a mathematical perspective such abundance may not point out the Fux partition as special.
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We could filter out a few if we impose restrictions. The reader has surely noticed that the consonant set K
contains the generators 3, 4 and their inverses 9 and 8 in Z12. These elements represent paths of length 1
in the unoriented Cayley graph. Thus, the set {0, 3, 4, 8, 9} of consonants is made of minimum distances
between two voices, on the unoriented Cayley graph. One may wish to formulate counterpoint as a simple
minimization principle, however because 7 ∈ K, representing paths of length 2 (7 = 3 + 4), one would
have to either add all such paths (e.g. 5 = (9 + 8) mod 12, 6 = 3 + 3 encode paths of length 2) or
remove 7 from K. Either way, we would be led to drop (3), because in particular, T being bijective, we get
|D| = |T(K)| = |K|, i.e. D and K must have the same number of elements.

We want to arrive at the important symmetry conditions in (3) while keeping the min distance
elements (i.e. the generating symmetric set S = {3, 4, 8, 9}) in the consonant set. In this way,
we will “create" all possible partitions (K, D) of Z12 that satisfy (3) for some affine T. Let
K′ := S ∪ {0} = {0, 3, 4, 8, 9}. We want K′ ⊂ K. Then T(K′) ⊂ T(K) = D and K′ ∩ D = ∅ because
K ∩ D = ∅; hence T(K′) ∩ K′ = ∅. To find K (and by default D = Z12 \ K) we need decide only
one more element besides those in K′, i.e. K = K′ ∪ {z} where z ∈ {1, 2, 5, 6, 7, 10, 11} is to be
found. This will be done by asking what affine T, if any, satisfies:

T2 = Id, T(K′) ∩ K′ = ∅, T is an isometry on the unoriented Cayley graph (4)

Using the first and third conditions in (4) and the ideas in the proof of Theorem 3 we have to
have T = f ⊕ w for some f ∈ Aut (Z12) and w ∈ Z12. Because T(0) = w it follows from (4) that
w /∈ K′, hence w ∈ {1, 2, 5, 6, 7, 10, 11}. At the same time, f must be one of the automorphisms
from Example III.12. We discuss the same four cases from the proof of Theorem IV.11: If f (x) = x
then w ∈ {0, 6}. From above restrictions on w we are left with w = 6. This value, however, violates
T(K′) ∩ K′ = ∅ because we would get T(3) = 9 ∈ T(K′) ∩ K′. If f (x) = 5 ⊙ x then w ∈ {2, 6, 10}.
We rule out w = 6 because we would get T(3) = 15 ⊕ 6 = 9 ∈ T(K′) ∩ K′. The isometry
T(x) = 5x ⊕ 2 yields the partition sets K = {0, 3, 4, 8, 9, z}, D = T(K) = {2, 5, 10, 6, 11, T(z)} where
z, T(z) ∈ {1, 7}. There are two choices for z ̸= T(z), hence we obtain two partitions that satisfy (3),
for the uniquely found T:

K1 = {0, 3, 4, 8, 9, 7}, D1 = {2, 5, 10, 6, 11, 1} (5)

K2 = {0, 3, 4, 8, 9, 1}, D2 = {2, 5, 10, 6, 11, 7} (6)

Similarly, the isometry T(x) = 5x ⊕ 10 brings about the following partitions

K3 = {0, 3, 4, 8, 9, 5}, D3 = {10, 1, 6, 2, 7, 11} (7)

K4 = {0, 3, 4, 8, 9, 11}, D4 = {10, 1, 6, 2, 7, 5} (8)

In case 3, f (x) = 7 ⊙ x but now w is restricted to w = 6. Then T(x) = 7x ⊕ 6 has fixed point x = 3
hence T(K′) ∩ K′ ̸= ∅, and no new partition arises. In case 4, f (x) = 11 ⊙ x. A thorough check
against all values w ∈ {1, 2, 5, 6, 7, 10, 11} shows no new partition (K, D) is produced because either
T(K′) ∩ K′ ̸= ∅ or T has a fixed point. E.g., for the value w = 10, the affine map T(x) = 11x ⊕ 10
does satisfy (4), but it has two fixed points T(5) = 5 and T(11) = 11. Hence we can’t find z such
that K = K′ ∪ {z} and K ∩ T(K) = ∅. We summarize this discussion in the form of the following

Theorem IV.13. Let Z12 be generated by the symmetric set S = {3, 4, 8, 9}, and let K′ := {0} ∪ S.
There exist exactly four partitions (Ki, Di)

4
i=1 of Z12 such that K′ ⊂ Ki and ∃! Ti : Z12 → Z12 affine

transformation satisfying (3) with respect to the partition (Ki, Di), ∀ i ∈ {1, 2, 3, 4}. The partitions, given
in (5), (6) correspond to the unique affine map T(x) = 5x ⊕ 2 , and in (7), (8) to the unique affine map
T(x) = 5x ⊕ 10.
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Definition IV.14. i) We say a partition (K, D) of Zn satisfies the counterpoint condition whenever (3)
holds with respect to a unique affine T : Zn → Zn.
ii) We say that an affine T : Zn → Zn satisfies the weak counterpoint condition if (4) holds with respect to
the set K′ = {0} ∪ S where S is a symmetric, generating set of Zn.

We will study the (weak) counterpoint conditions in certain groups Zn in Section VI. The idea is
to find T which satisfy (4), and similar to the proof above increase K′ to reach (3).

Remark IV.15. Notice that the values 7, 1, 5 and 11 minimize the distance function over all path lengths
≤ 2 in the unoriented Cayley graph. From the point of view of (3), all four partitions in Theorem IV.13
should be valid to experiment counterpoint with. Although K3 from (7) does justice to 5 as a would be
consonant, one can rule out partitions (K2,3,4, D2,3,4) if we minimize further. After imposing the set K′ be
consonant, we will add z /∈ K′ to K only if (3) holds and the path length of z is minimum with respect to
the oriented Cayley graph (in this graph, the path from 0 to 9 has length 3, and this is why we have to
minimize outside K′). Then, we would be led naturally to the original counterpoint partition from Definition
IV.10.

V Sound and Tuning

In this section, we present a bare minimum needed to understand how the various concepts from
the previous sections can be implemented practically and be recognized when music is produced.
Aiming at an efficient simplicity, we avoid going deeper into topics that explain sound through
Fourier analysis, differential equations or physical characteristics of musical instruments. The
mathematical environment we need here is one-dimensional. In software implementations (we use
Maple), a one dimensional array encoding a periodic function is sampled within a time interval
and transformed into an audio file.

Definition V.1. Let f0 > 0 be a real number, k a non-negative integer, and r := 12
√

2. The function
f : [0, 1] → [−1, 1], f (t) = sin(2π f0t) is a sound wave of frequency f0. The pitch k is the frequency rk f0
of the sound wave fk(t) := sin(2πrk f0t).

Remark V.2. The above sequence of pitches in geometric progression, is called “equal temperament" in
Western music. The frequency ratio between consecutive pitches is constant r = 12

√
2 = 21/12. Obviously,

the constant r was chosen so that the chromatic scale displays double frequency length 2 f0. The starting
frequency f0 is usually chosen so that the piano middle A note plays at 440 Hz frequency. Temperate tuning
has the advantage that a song played within a key sounds similar when shifted to another key. Mod 12
equivalent pitches represent the same note, and their frequency ratio is a power of 2. The functions fk model
the so-called pure tones. We have made the choice to use the sinus function to model the pure tones, but any
periodic function would suffice to implement the musical theory concepts we are concerned with.

Throughout its history, Western music has invented many flavors of tuning. For example, in
Pythagorean tuning the ratio between two consecutive pitches is not constant, though this type
of tuning is a mathematical approximation, sometimes coarse, of the temperate one (as is the
so-called just tuning). Pythagorean tuning presets the values of the fourth and the fifth intervals
at 4

3 and 3
2 , respectively; also, the minor second has frequency 256/243 which is ≈ 21/12; the major

second is measured at 9/8 ≈ 22/12; and so on, the interval i is represented by a ratio in the form
2p3q which roughly approximates 2i/12. However, these approximations imply larger errors will
accumulate when shifting the notes to other octaves. Computers obviously, approximate irrational
number frequencies such as 21/12, with rational numbers; nevertheless, the algorithms used yield
far better approximations than those based on representation in ratios 2p3q (Pythagorean) or 2p3q5t
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(just), with integers p, q, t. For details on how the Pythagorean and just tuning ratios are obtained
by some elementary algebra manipulations, see [18].

n=Note Interval [0, n] Pythagorean frequency Temperate frequency
0=C unison or perfect eighth 1 1
1 = C\ minor second 256/243 21/12

2 = D major second 9/8 22/12

3 = D\ minor third 32/27 23/12

4 = E major third 81/64 24/12

5 = F fourth 4/3 25/12

6 = F\ tritone 729/512 26/12

7 = G fifth 3/2 27/12

8 = G\ minor sixth 128/81 28/12

9 = A major sixth 27/16 29/12

10 = A\ minor seventh 16/9 210/12

11 = B major seventh 243/128 211/12

To create a pure tone to be played t seconds at frequency f , we use the Maple code below, which
samples the function sin (2π f x) at 44100 values per second in [0, t].

with ( AudioTools ) :
Tone := proc ( f , t )

l o c a l x , f i n a l ;
f i n a l := Create ( ( x ) −> eva lhf ( s in ( x /44100*2* Pi * f ) ) , durat ion= t ) ;
re turn f i n a l :

end proc :

Temperate tuning is implemented recursively, with each note k encoded as Tone( f0rk, t), where
r = 21/12. We discard here mod 12 equivalence of notes because we want to have access to as many
octaves as possible. In practice, computers and instruments are subject to physical limitations.
In our Maple code, we improve notes by multiplying pure tones with a so-called “attack-decay-
sustain-release" envelope function g(x), and by adding modulation (shift with variable phase).
Thus, the function that encodes note k is of the form notek(x) = g(x) · fk(x + fk(x)), with fk from
Definition V.1. Finally, major/minor chords are created by a weighted average of the notes within
the chord.

VI Musical Systems in Zn

In this section, we extend temperate tuning while keeping it coupled with the Cayley graph
structure of the group Zn, when n displays a suitable factorization. We divide the space of
a generalized octave in equal frequency intervals. This procedure is not new, although most
examples are based on splitting up the pitch space in a multitude of ratios (see [10] and references
therein for non-twelve divisible equal temperaments, and [6], [19] for different length octave,
a “tritave"). What we add, in essence, is the geometric group structure of the group Zn with a
suitable Cayley graph. This mix allows us to construct compatible chords, scales, circle of fifths
and first species counterpoint partitions.

Definition VI.1. A musical system is a pair (Zn, s), where n ∈ N, n ≥ and s is a positive real number,
s > 1, with equidistant frequency intervals [si/n, s(i+1)/n], i = 0, ..., n − 1. The pure tones attached to the
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musical system are defined by fi(t) = sin(2π f0si/nt), for a fixed frequency f0 > 0.

Remark VI.2. Obviously for n = 12 and s = 2 one obtains the temperate 12 tone chromatic scale. For
n = 13 and s = 3 we obtain the Bohlen-Pierce “tritave", however, we have no further analogy because 13 is
prime; we attach the Zn group structure and its Cayley graph features to a musical system when n is a
product of two relatively prime numbers. We will restrict to this particular class of integers while keeping
the octave length s > 1 arbitrary.

Theorem VI.3. Let p, q ∈ N with gcd {p, q} = 1, and n = pq. Then ⟨p, q⟩ = ⟨p, n − q⟩ = ⟨q, n − p⟩ =
⟨n − p, n − q⟩ = Zn

Proof. This is a simple consequence of Theorem 8.2 and its Corollary 2 in [9]: Za × Zb
∼= Zn if

and only if n = ab and gcd{a, b} = 1

The theorem above allows us to define chords. According to the theorem, there are four generator
pairs, and at this point each one could be used to define chord sequences. We will need the
relatively prime setup for the circle of fifths existence, hence the generator set {p, q} is most
suitable.

Definition VI.4. Let p, q ∈ N with gcd {p, q} = 1, n = pq, and assume p > q. For x ∈ Zn
the x−major triad chord is the path x → x + p → x + p + q. The x−minor triad chord is the path
x → x + q → x + q + p. More generally, an x−major (minor) chord is a path x1 → x2 → · · · → xk in
the oriented Cayley graph such that x = x1 and:
i) x2 = x1 ⊕ p ( x2 = x1 ⊕ q for minor )
ii) x3 = x2 ⊕ q ( x3 = x2 ⊕ p for minor )
iii) xi+1 ⊖ xi ∈ {p, q}, ∀ i = 1, ..., k
iv) the path is non-self intersecting unless xk = x1.

An x chord x1 = x → x2 → ... → xk is said to be within the octave if
k−1

∑
i=1

xi+1 ⊖ xi ≤ n.

Example VI.5. In Z10 = ⟨2, 5⟩ the 0−major triad is the path 0 → 5 → 7. In Z15 = ⟨3, 5⟩ the path
0 → 5 → 8 → 13 represents a 0−major chord. In Z20 = ⟨4, 5⟩, the 0−minor triad is the path 0 → 4 → 9.
We warn the reader that for different values n, notes labelled by the same symbol are not equivalent and do
not sound the same. We start by convention with 0 representing the same frequency sound in all systems
(Zn, s). With s kept fixed, a note k in (Zn, s) encodes a sound wave at frequency sk/n, whereas the same k
in a system (Zm, s) encodes a sound wave at frequency sk/m. Hence, the 0− major triad 0 → 5 → 7 of
(Z10, 2) and the 0−major triad 0 → 5 → 8 of (Z15, 2) have only the sound of note 0 in common, whereas
the sound of k = 5 will depend on whether n = 10 or n = 15.

Example VI.6. In Z12 the C major triad 0 → 4 → 7 is within the octave. The largest C major chord with
this property is 0 → 4 → 7 → 11, i.e. the C major 7th chord. The C major 9th chord, 0 → 4 → 7 → 11 → 2
is not within the octave because 4 + 3 + 4 + 3 > 12. In Z15 = ⟨3, 5⟩, the minor chord 1 → 4 → 9 → 12
is the largest 1−minor chord within the octave. Notice that 1 → 4 → 9 → 12 → 2 is also a 1−minor
chord, but not within the octave because 3 + 5 + 3 + 5 > 15. We will use the “largest major/minor chord
within an octave" concept later, to define major/minor scales.

Remark VI.7. One can consider a more general factorization n = p1 p2 . . . pk in pairwise relatively prime
factors. However, one may encounter issues with duplicate generating sets, such as Z30 = ⟨2, 3, 5⟩ = ⟨5, 6⟩.
Another issue might arise in the circle of fifths construction, for which we would need n and p1 + p2 + ...+ pk
to be relatively prime. One can still implement chords based on multiple generators and explore more means
of musical expression. For example, with generators {2, 3, 5} one obtains a variety of chords that contains

18

http://www.musmat.org/


Journal MusMat • December 2022 • Vol. VI, No. 2

mixed flavors of major and minor ones. Such cases can be coupled with a longer octave length, so that the
30 notes within the scale are well-spaced out.

Next theorem justifies a construction of the generalized circle of fifths. Provided n, p and q are
chosen as in the theorem, starting with 0 and adding p + q-steps, all elements of Zn lie on a circle.
In other words ⟨p + q⟩ = Zn. Moreover, the circle is not “trivial" to the right, in the sense that,
clockwise the circle does not display the elements of Zn consecutively. In [7], generalized circles
of fifths are defined for each k ∈ Zn such that gcd{k, n} = 1. Our version obviously corresponds
to k = p + q.

Theorem VI.8. Let p, q ∈ N with gcd {p, q} = 1, p, q > 1, and n = pq. We have:
gcd {p + q, n} = 1 and (p + q) mod n = p + q ̸= 1.

Proof. Let k | n and k | p + q. We must show k = 1. Since n = pq, k | pq. Assume by contradiction,
k > 1. Because we know gcd{p, q} = 1, either k | p or k | q or ∃ p′, ∃ q′ prime number divisors of
p and q, respectively, such that p′q′ | k (to see this, use the unique prime number factorization of p
and q). In either of these three cases, because k | p + q, we would find a common divisor of both p
and q, which contradicts gcd{p, q} = 1. The second relation is obvious because 1 < p+ q < pq.

Definition VI.9. The ordered sequence Cn := [i ⊙ (p + q)]ni=0 is called circle of fifths with respect to the
chromatic scale Zn.

Remark VI.10. In Section IV we have drawn examples of such circles. The circle may be “trivial" in certain
cases, i.e. the sequence Cn is made of all Zn’s elements in consecutive order. For example, Z6 = ⟨3, 4⟩
and (3 + 4)mod 6 = 1, hence the circle of fifths based on these generators is trivial. It is also possible that
other pairs of generators define non-trivial circles: e.g. both cases Z10 = ⟨2, 5⟩ and Z10 = ⟨8, 5⟩ define
non-trivial circles of fifths and one can choose either one to define chords.

Next we propose a definition of scales in Zn akin to Definition IV.9. Recall that we are working in
the case n = pq and gcd{p, q} = 1. Without loss of generality, say p > q. We notice p and q cannot
be both even. However, there are three cases to distinguish depending on whether the pair (p, q)
is (odd, even), (odd, odd) or (even, odd). The cases (odd, even) and (even, odd) are not symmetric,
due to the major/minor flavor of a scale.

Definition VI.11. Let n = pq with gcd{p, q} = 1 and p > q.
a) Assume first that p = 2k and q = 2l + 1. We say that p displays the ′22...2′ pattern (there are k
occurrences of the digit 2) and q displays the ′22..21′/ ′12..22′ pattern (there are l occurrences of the digit 2
and one of the digit 1). Let x ∈ Zn.
i) The x-major scale is the sequence (xi)

t
i=1 ⊂ Zn such that

• x1 = x, xt = x and the sequence contains the largest x−major chord within the octave.
• for any consecutive notes xi → xj of the above x-major chord, we have

xi+1 = xi ⊕ 2,..., xj−1 = xj−2 ⊕ 2, xj =

{
xj−1 ⊕ 2 if xj ⊖ xi = p
xj = xj−1 ⊕ 1 if xj ⊖ xi = q

(i.e. between consecutive notes of the chord, the patterns are either ′22...2′ or ′22..21′).

ii) The x-minor scale is defined similarly, by considering the largest x-minor chord within the octave, and
by filling the scale with alternating ′22..21′/ ′12..2′ patterns.
b) If p = 2k + 1 then the scales are defined similarly, by using the ′ 22...2︸ ︷︷ ︸

k

1′ pattern for p. For the minor

chord, if q = 2l + 1 then use its pattern ′ 22...2︸ ︷︷ ︸
l

1′ without alternating it with ′12...22︸ ︷︷ ︸
l

′; if q = 2l then use

its ′22...2′ pattern instead.
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The definition above mimics and generalizes the alternation patterns observed in the major/minor
scales of Z12. The purpose of extra alternation in the minor scale (when p is even and q odd),
or the lack of it (when p is odd and q is odd) is to avoid ′11′ occurrences within the scale. We
illustrate the definition with a few examples of 0−major/minor scales. By translation, one can
obtain all x scales within a musical system.

Example VI.12. For Z10 = ⟨2, 5⟩, p = 5, q = 2. The patterns are p = ′221′ and q = ′2′. 0 → 5 → 7
is the largest 0−major chord within the octave. In between x1 = 0 and x4 = 5, we fill in x2 = 2,
x3 = 4, hence the leg x1 → x4 satisfies the ′221′ pattern. The leg x4 = 5 → x5 = 7 satisfies the q
pattern by default. Because the scale closes with xt = 0, we obtain the 0−major scale as the sequence
x1 = 0, x2 = 2, x3 = 4, x4 = 5, x5 = 7, x6 = 0. The 0−minor scale is built on the minor chord 0 → 2 → 7.
Adding notes using the definition, we obtain the sequence 0, 2, 4, 6, 7, 0.

Example VI.13. For Z15 = ⟨3, 5⟩, p = 5, q = 3. The patterns are ′221′ for p and ′21′ for q (without ′12′

because p is odd). The largest 0−major chord within the octave is 0 → 5 → 8 → 13. The 0−major scale is
the sequence 0, 2, 4, 5, 7, 8, 10, 12, 13, 0. The largest 0−minor chord within the octave is 0 → 3 → 8 → 11.
Hence the 0−minor scale is the sequence 0, 2, 3, 5, 7, 8, 10, 11, 0.

Example VI.14. For Z30 = ⟨5, 6⟩, p = 6, q = 5. The patterns are ′222′ for p and ′221′/ ′122′ for q. Note
that the alternation in the q pattern is used only in the minor scale. The largest 0−major chord within
the octave is 0 → 6 → 11 → 17 → 22 → 28. The 0−major scale is the sequence 0, 2, 4, 6, 8, 10, 11, 13,
15, 17, 19, 21, 22, 24, 26, 28, 0. The largest 0−minor chord within the octave is 0 → 5 → 11 → 16 → 22 →
27. The 0−minor scale is the sequence 0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 0. Note that the legs
of length q = 5 are filled in by alternating ′221′ with ′122′.

Remark VI.15. In [7] scales are defined as sequences xi = [ i·k
n ], i = 1, ..., k, where k ∈ Zn is relatively

prime to n. In our case k = p + q is relatively prime to n, and we may define a similar scale. However,
the major/minor alternatives will be lost because the major/minor chords on which the scales are built, are
discarded by such a definition.

Remark VI.16. In our context, triads such as {0, p, p + q}, {0, q, p + q}, {0, p, p + p}, {0, q, q + q} can
be used to construct hexatonics. Tonnetz spaces can be built using perpendicular axes for the generators p, q,
and diagonal axes for the generalized circle of fifths and major/minor scales. For the Z12 case, see e.g. [12].

Aiming toward counterpoint, the two results below show that isometric reflections always exist in
our set-up.

Proposition VI.17. Let n = pq with gcd{p, q} = 1 and φ : Zn → Zn defined by φ(x) = (n − 1)⊙ x.
Then φ ∈ Aut (Zn), φ2 = Id, and φ is an isometry on the unoriented Cayley graph of Zn with respect to
any symmetric generating set S of Zn.

Proof. Clearly gcd{n − 1, n} = 1, thus φ ∈ Aut (Zn). Notice that φ is actually the reflection
φ(x) = (nx − x) mod n = ⊖x, ∀ x ∈ Zn. Hence everything follows from Proposition III.16 and
Example III.17.

Corollary VI.18. In the hypotheses of Proposition VI.17, with arbitrary w ∈ Zn, the affine transformation
T : Zn → Zn defined by T(x) = φ(x)⊕ w is an isometry on the corresponding unoriented Cayley graph,
and T2 = Id.

We use the above corollary to show that the weak counterpoint condition from Definition IV.14 is
available under mild restrictions.
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Theorem VI.19. In the hypotheses of Proposition VI.17 and Corollary VI.18, with generating set S =
{p, q, n − p, n − q} and K′ = {0} ∪ S, the affine transformation T(x) = (n − 1)x ⊕ w satisfies (4), for
any w /∈ K′ ⊕ K′.

Proof. Due to the above proposition and its corollary, we have that T is an isometry and T2 = Id.
To achieve the last requirement in (4) we check the contrapositive, i.e. if T(K′) ∩ K′ ̸= ∅ then
w ∈ K′ ⊕ K′. Indeed, if x ∈ T(K′) ∩ K′ then ∃ y ∈ K′ such that T(y) = (n − y)⊕ w = x ∈ K′,
hence w = y ⊕ x ∈ K′ ⊕ K′.

This last theorem tells us that a strict inclusion K′ ⊕ K′ ⊊ Zn is sufficient to obtain the weaker
form of counterpoint (4). If n is even, one can push (4) to (3), see proof of Theorem IV.13 where
n = 12, and example below where n = 10. If n is odd, one cannot push (4) to (3), however, one
can enlarge K′ to a largest possible set of consonants K, disjoint from T(K) = D such that K ∪ D
covers all but one element of Zn, see example below with n = 15. We will consider this statement
for arbitrary n in a future work.

Example VI.20. For Z10 = ⟨2, 5, 8⟩ we have K′ = {0, 2, 5, 8} and K′ ⊕ K′ = {0, 2, 3, 4, 5, 6, 7, 8}.
Hence, with w ∈ {1, 9} the affine transformation T(x) = 9x ⊕ w is an isometry which satisfies T2 = Id
and T(K′) ∩ K′ = ∅, by Theorem VI.19. Let us also note that the only non-trivial automorphism φ of
Z10 which satisfies φ2 = Id is φ(x) = 9 ⊙ x (check this using U(10)). Now, for the choice w = 1,
using the same ideas as in Theorem IV.13, one finds two partitions (K1,2, D1,2) of Z10 associated to affine
T(x) = 9x ⊕ 1 satisfying T(Ki) = Di, i.e. the counterpoint requirements in (3) are met. These partitions
are given by K1 = {0, 2, 5, 8, 4} and K2 = {0, 2, 5, 8, 7}. The choice w = 9 gives two more counterpoint
partitions, (K3,4, D3,4) of Z10 with respect to T(x) = 9x ⊕ 9. These are given by K3 = {0, 2, 5, 8, 6} and
K4 = {0, 2, 5, 8, 3}.

Example VI.21. For Z15 = ⟨3, 5, 10, 12⟩ we have K′ = {0, 3, 5, 10, 12} and
K′ ⊕ K′ = {0, 3, 5, 10, 12, 6, 8, 13, 2, 7, 9}. Hence, for any w ∈ {1, 4, 11, 14} the affine transformation
T(x) = 14x ⊕ w is an isometry which satisfies T2 = Id and T(K′) ∩ K′ = ∅ by Theorem VI.19. Because
15 is odd, it is not possible to obtain the counterpoint condition precisely, but in each valid case for w we
can “push" K′ toward a bigger set of consonants K ⊂ Z12. Note in this case one can increase K′ with no
more than two intervals because |K′| = 5, and we want K′ ⊂ K, T(K) ∩ K = ∅ with bijective T; thus
|K|+ |T(K)| = 2|K| < 15. We set out to find two more values z1 ̸= z2 ∈ Z15 \ K′ such that their images
T(z1) ̸= T(z2) belong to Z15 \ K′ ∪ {z1, z2}. With w = 1 for example, T(x) = 14x ⊕ 1, and we are
looking to find sets K := K′ ∪ {z1, z2} and D := T(K) = {1, 13, 11, 6, 4} ∪ {T(z1), T(z2)} such that
K ∩ D = ∅. Hence we need find which z1 ̸= z2 ∈ {2, 7, 8, 9, 14} meet the requirement. Because T(8) = 8
we eliminate z1,2 = 8. If z1 = 2 then T(z1) = 14 and any of the cases z2 ∈ {7, 9} will do. For example
with z2 = 7, T(z2) = 9 and the disjoint sets K = {0, 3, 5, 10, 12, 2, 7} and D = {1, 13, 11, 6, 4, 14, 9} act
as a consonant/dissonant pair in Z15, extending the weak counterpoint condition. Let us note that there
are two non-trivial automorphisms φ of Z15, other than φ(x) = 14 ⊙ x, which satisfy φ2 = Id, namely
φ1(x) = 4 ⊙ x and φ2(x) = 11 ⊙ x. One can check that condition i) in Theorem III.13 is satisfied to
conclude that both φ1,2 are isometries. Hence, these can also be used to test for what w ∈ Z15 the affine
map T = φ1,2 ⊕ w achieves T(K′) ∩ K′ = ∅, i.e. the weak counterpoint condition.

VII Conclusion

We have interpreted various concepts from music theory through the lens of the Cayley (un)oriented
graphs associated to the group Z12. Using the Cayley graph as a guiding principle, we have
defined and studied chords, scales, circle of fifths, and first species counterpoint partitions in the
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setting of a group Zn generated by two relatively prime numbers p and q such that n = pq. We
have written Maple code to implement and practically experience these concepts.
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